A Union of Euclidean Spaces is Euclidean

Konstantin Makarychev, Northwestern Yury Makarychev, TTIC

AMS Meeting, New York, May 7, 2017

Problem by Assaf Naor

Suppose that metric space (X, d) is a union of two metric spaces A and B that isometrically embed into ℓ_2 . Does X necessarily embed into ℓ_2 with a constant distortion?

Motivation

The problem is closely connected to research in theoretical computer science on "local-global properties" of metric spaces [Arora, Lovász, Newman, Rabani, Rabinovich, Vempala `06; Charikar, M, Makarychev `07]

Why are computer scientists interested?

Results imply strong lower bounds for Sherali-Adams linear programming relaxations for many combinatorial optimization problems, including Sparsest Cut, Vertex Cover, Max Cut, Unique Games. [Charikar, M, Makarychev `09]

Our Results

Q: Suppose that metric space (X, d) is a union of two metric spaces A and B that embed isometrically into ℓ_2 . Does X necessarily embed into ℓ_2 with a constant distortion?

A: Yes, X embeds into ℓ_2 with distortion at most 8.93. $A \hookrightarrow \ell_2^a$ with distortion $\alpha, B \hookrightarrow \ell_2^b$ with distortion β $\downarrow \downarrow$ $X = A \cup B \hookrightarrow \ell_2^{a+b+1}$ with distortion at most $11\alpha\beta$

Approach

This talk: consider the isometric case.

 $\begin{aligned} \varphi_1 &: A \hookrightarrow \ell_2 \\ \varphi_2 &: B \hookrightarrow \ell_2 \end{aligned}$

We will define 3 maps:

- $\bar{\varphi}_1 {:}\, A \cup B \, \hookrightarrow \, \ell_2$, a 7-Lipschitz extension of φ_1 to X
- $\bar{\varphi}_2 {:}\, A \cup B \, \hookrightarrow \, \ell_2$, a 7-Lipschitz extension of φ_2 to X
- $\Delta(x) = d(x, A) d(x, B)$

$$\psi = \bar{\varphi}_1 \oplus \bar{\varphi}_2 \oplus \Delta$$

Approach

 $\psi = \bar{\varphi}_1 \oplus \bar{\varphi}_2 \oplus \Delta$

Assume that we have

- $\bar{\varphi}_1 {:}\, A \cup B \, \hookrightarrow \, \ell_2$, a 7-Lipschitz extension of φ_1 to X
- $\bar{\varphi}_2 {:}\, A \cup B \, \hookrightarrow \, \ell_2$, a 7-Lipschitz extension of φ_2 to X
- $\Delta(x) = d(x, A) d(x, B)$

First,

 $\|\psi\|_{Lip} = \|\bar{\varphi}_1 \oplus \bar{\varphi}_2 \oplus \Delta\|_{Lip} \le \sqrt{7^2 + 7^2 + 2^2}$

since $\|\Delta\|_{Lip} \leq 2$.

Approach

$$\psi = \bar{\varphi}_1 \oplus \bar{\varphi}_2 \oplus \Delta$$

• $\bar{\varphi}_1$ ensures that distances between points in A don't decrease:

 $\bar{\varphi}_1|_A = \varphi_1$ is an isometric embedding of A into ℓ_2 .

- $\bar{\varphi}_2$ ensures that distances between points in B don't decrease.
- Δ ensures that distances between points $a \in A$ and $b \in B$ don't decrease by more than a constant factor.

 $\|\bar{\varphi}_2(a) - \bar{\varphi}_2(b)\| \approx \|\bar{\varphi}_2(a') - \bar{\varphi}_2(b)\|$ $= d(a',b) \approx d(a,b)$

If $d(a, a') \approx d(a, b)$ then $\|\Delta(a) - \Delta(b)\| \ge d(a, a') \approx d(a, b)$

a' is the closest point to a in B

If $d(a, a') \ll d(a, b)$ then $\|\bar{\varphi}_2(a) - \bar{\varphi}_2(b)\| \approx \|\bar{\varphi}_2(a') - \bar{\varphi}_2(b)\|$ $= d(a', b) \approx d(a, b)$

If $d(a, a') \approx d(a, b)$ then $\|\Delta(a) - \Delta(b)\| \ge d(a, a') \approx d(a, b)$

Constructing maps $ar{arphi}_1$ and $ar{arphi}_2$

Goal:

Given a map $\varphi \equiv \varphi_2 : B \to \ell_2$

find a Lipschitz extension $\overline{\varphi}: A \cup B \to \ell_2$ of φ .

Constructing maps $\bar{\varphi}_1$ and $\bar{\varphi}_2$

Assume that $B \subset \ell_2$ and $\varphi = id$; $|A \cup B| < \infty$.

Idea 1: map every a to the closest $a' \in B$ w.r.t. d.

Issue: the map may not be Lipschitz.

Let
$$R_a = d(a, B)$$
 for $a \in A$.

- $C \subset A$ is a cover for A if
- for every $a \in A$, there is $c \in C$ s.t. $d(a,c) \leq R_a$ and $R_c \leq R_a$
- for every $c, d \in C$: $d(c, d) \ge \min(R_c, R_d)$.

 $a \in A$ is close to some $c \in C$

points in C are "separated"

Idea 2: map every $c \in C$ to the closest $c' \in B$.

The map is 4-Lipschitz.

Idea 2: map every $c \in C$ to the closest $c' \in B$.

The map is 4-Lipschitz. Assume $R_c \leq R_d$.

Idea 2: map every $c \in C$ to the closest $c' \in B$.

The map is 4-Lipschitz. Assume $R_c \leq R_d$.

Idea 2: map every $c \in C$ to the closest $c' \in B$.

The map is 4-Lipschitz. Assume $R_c \leq R_d$.

 $d(c',d') \le 2 d(c,d) + 2 d(c,c') \le 4d(c,d)$

Kirszbraun Theorem

Let $C \subset D \subset \ell_2$ and f be a Lipschitz map from C to ℓ_2 . There exists an extension $g: D \to \ell_2$ of f such $\|g\|_{Lip} = \|f\|_{Lip}$

Idea 2: map every $c \in C$ to the closest $c' \in B$.

Extend f from C to A using the Kirszbraun theorem.

Idea 2: map every $c \in C$ to the closest $c' \in B$.

Extend f from C to A using the Kirszbraun theorem.

$$\overline{\varphi}(u) = \begin{cases} f(u), & \text{if } u \in A \\ u, & \text{if } u \in B \end{cases}$$

 $\overline{\varphi}(u)$ is 7-Lipschitz:

- $\bar{\varphi}|_A$ is 4-Lipschitz
- $\overline{\varphi}|_B$ is 1-Lipschitz
- $\|\bar{\varphi}(a) \bar{\varphi}(b)\| = \|f(a) b\| \leq \cdots$

 $||f(a) - b|| \le 6R_a + d(a, b) \le 7d(a, b)$

 $||f(a) - b|| \le 6R_a + d(a, b) \le 7d(a, b)$

Q.E.D.

Lower Bound

There exists a metric space $X = A \cup B$ s.t.

- A and B isometrically embed into ℓ_2
- every embedding of X into ℓ_2 has distortion at least $3 \varepsilon_n$, where n = |A| = |B| and $\varepsilon_n \to 0$ as $n \to \infty$

Open Problems

- 1. Find the least value of D s.t. if $A, B \hookrightarrow \ell_2$ isometrically, then $A \cup B \hookrightarrow \ell_2$ with distortion at most D. We know that $D \in [3, 8.93)$.
- 2. Study the problem for other ℓ_p . We conjecture that the answer is negative for every $p \notin \{2, \infty\}$.
- 3. What happens if $X = A_1 \cup \cdots \cup A_k$ and each $A_i \hookrightarrow \ell_2$ isometrically? We only know that $c \log k \leq D \leq 2^{Ck}$.
- 4. Assume that every subset of X of size $\sqrt{|X|}$ isometrically embeds into ℓ_2 . What is the least distortion with which $X \hookrightarrow \ell_2$?

More results and open problems in the paper!

