A Union of Euclidean Spaces is Euclidean

Konstantin Makarychev, Northwestern
Yury Makarychev, TTIC

AMS Meeting, New York, May 7, 2017

Problem bu Assaf Naor

Suppose that metric space (X, d) is a union of two metric spaces A and B that isometrically embed into ℓ_{2}. Does X necessarily embed into ℓ_{2} with a constant distortion?

Motivation

The problem is closely connected to research in theoretical computer science on "local-global properties" of metric spaces [Arora, Lovász, Newman, Rabani, Rabinovich, Vempala `06; Charikar, M, Makarychev `07]

Why are computer scientists interested?

Results imply strong lower bounds for Sherali-Adams linear programming relaxations for many combinatorial optimization problems, including Sparsest Cut, Vertex Cover, Max Cut, Unique Games. [Charikar, M, Makarychev `09]

Our Results

Q: Suppose that metric space (X, d) is a union of two metric spaces A and B that embed isometrically into ℓ_{2}. Does X necessarily embed into ℓ_{2} with a constant distortion?

A: Yes, X embeds into ℓ_{2} with distortion at most 8.93.
$A \hookrightarrow \ell_{2}^{a}$ with distortion $\alpha, B \hookrightarrow \ell_{2}^{b}$ with distortion β
\Downarrow
$X=A \cup B \hookrightarrow \ell_{2}^{a+b+1}$ with distortion at most $11 \alpha \beta$

Approach

This talk: consider the isometric case.

$$
\begin{aligned}
& \varphi_{1}: A \hookrightarrow \ell_{2} \\
& \varphi_{2}: B \hookrightarrow \ell_{2}
\end{aligned}
$$

We will define 3 maps:

- $\bar{\varphi}_{1}: A \cup B \hookrightarrow \ell_{2}$, a 7 -Lipschitz extension of φ_{1} to X
- $\bar{\varphi}_{2}: A \cup B \hookrightarrow \ell_{2}$, a 7-Lipschitz extension of φ_{2} to X
- $\Delta(x)=d(x, A)-d(x, B)$

$$
\psi=\bar{\varphi}_{1} \oplus \bar{\varphi}_{2} \oplus \Delta
$$

Approach

$\psi=\bar{\varphi}_{1} \oplus \bar{\varphi}_{2} \oplus \Delta$

Assume that we have

- $\bar{\varphi}_{1}: A \cup B \hookrightarrow \ell_{2}$, a 7-Lipschitz extension of φ_{1} to X
- $\bar{\varphi}_{2}: A \cup B \hookrightarrow \ell_{2}$, a 7-Lipschitz extension of φ_{2} to X
- $\Delta(x)=d(x, A)-d(x, B)$

First,

$$
\|\psi\|_{L i p}=\left\|\bar{\varphi}_{1} \oplus \bar{\varphi}_{2} \oplus \Delta\right\|_{L i p} \leq \sqrt{7^{2}+7^{2}+2^{2}}
$$

since $\|\Delta\|_{L i p} \leq 2$.

Approach

$\psi=\bar{\varphi}_{1} \oplus \bar{\varphi}_{2} \oplus \Delta$

- $\bar{\varphi}_{1}$ ensures that distances between points in A don't decrease:
$\left.\bar{\varphi}_{1}\right|_{A}=\varphi_{1}$ is an isometric embedding of A into ℓ_{2}.
- $\bar{\varphi}_{2}$ ensures that distances between points in B don't decrease.
- Δ ensures that distances between points $a \in A$ and $b \in B$ don't decrease by more than a constant factor.

Approach
 $\psi=\bar{\varphi}_{1} \oplus \bar{\varphi}_{2} \oplus \Delta$

If $d\left(a, a^{\prime}\right) \ll d(a, b)$ then

$$
\begin{aligned}
\left\|\bar{\varphi}_{2}(a)-\bar{\varphi}_{2}(b)\right\| & \approx\left\|\bar{\varphi}_{2}\left(a^{\prime}\right)-\bar{\varphi}_{2}(b)\right\| \\
& =d\left(a^{\prime}, b\right) \approx d(a, b)
\end{aligned}
$$

If $d\left(a, a^{\prime}\right) \approx d(a, b)$ then

$$
\|\Delta(a)-\Delta(b)\| \geq d\left(a, a^{\prime}\right) \approx d(a, b)
$$

Approach

$\psi=\bar{\varphi}_{1} \oplus \bar{\varphi}_{2} \oplus \Delta$

If $d\left(a, a^{\prime}\right) \ll d(a, b)$ then

$$
\begin{aligned}
\left\|\bar{\varphi}_{2}(a)-\bar{\varphi}_{2}(b)\right\| & \approx\left\|\bar{\varphi}_{2}\left(a^{\prime}\right)-\bar{\varphi}_{2}(b)\right\| \\
& =d\left(a^{\prime}, b\right) \approx d(a, b)
\end{aligned}
$$

If $d\left(a, a^{\prime}\right) \approx d(a, b)$ then

$$
\|\Delta(a)-\Delta(b)\| \geq d\left(a, a^{\prime}\right) \approx d(a, b)
$$

Constructing maps $\bar{\varphi}_{1}$ and $\bar{\varphi}_{2}$

Goal:
Given a map $\varphi \equiv \varphi_{2}: B \rightarrow \ell_{2}$
find a Lipschitz extension $\bar{\varphi}: A \cup B \rightarrow \ell_{2}$ of φ.

Constructing maps $\bar{\varphi}_{1}$ and $\bar{\varphi}_{2}$

Assume that $B \subset \ell_{2}$ and $\varphi=i d ;|A \cup B|<\infty$.

Constructing map $\bar{\varphi}$

Idea 1: map every a to the closest $a^{\prime} \in B$ w.r.t. d. Issue: the map may not be Lipschitz.

Cover for A

$$
\text { Let } R_{a}=d(a, B) \text { for } a \in A \text {. }
$$

$C \subset A$ is a cover for A if

- for every $a \in A$, there is $c \in C$ s.t.

$$
d(a, c) \leq R_{a} \text { and } R_{c} \leq R_{a}
$$

- for every $c, d \in C: d(c, d) \geq \min \left(R_{c}, R_{d}\right)$.

$a \in A$ is close to some $c \in C$

points in C are "separated"

Cover for A

Prove by induction that there is always a cover C. Let $c \in A$ be the point in A with the least value of R_{C}. By induction, there is a cover C^{\prime} for $A \backslash \operatorname{Ball}\left(c, R_{c}\right)$. Let $C=C^{\prime} \cup\{c\}$.

Cover for A

Prove by induction that there is always a cover C. Let $c \in A$ be the point in A with the least value of R_{C}. By induction, there is a cover C^{\prime} for $A \backslash \operatorname{Ball}\left(c, R_{c}\right)$. Let $C=C^{\prime} \cup\{c\}$.

Cover for A

Prove by induction that there is always a cover C. Let $c \in A$ be the point in A with the least value of R_{C}. By induction, there is a cover C^{\prime} for $A \backslash \operatorname{Ball}\left(c, R_{c}\right)$. Let $C=C^{\prime} \cup\{c\}$.

Cover for A

Prove by induction that there is always a cover C. Let $c \in A$ be the point in A with the least value of R_{C}. By induction, there is a cover C^{\prime} for $A \backslash \operatorname{Ball}\left(c, R_{c}\right)$. Let $C=C^{\prime} \cup\{c\}$.

Constructing map $\bar{\varphi}$

Idea 2: map every $c \in C$ to the closest $c^{\prime} \in B$.
The map is 4 -Lipschitz.

Constructing map $\bar{\varphi}$

Idea 2: map every $c \in C$ to the closest $c^{\prime} \in B$.
The map is 4-Lipschitz. Assume $R_{c} \leq R_{d}$.

Constructing map $\bar{\varphi}$

Idea 2: map every $c \in C$ to the closest $c^{\prime} \in B$.
The map is 4-Lipschitz. Assume $R_{c} \leq R_{d}$.

Constructing map $\bar{\varphi}$

Idea 2: map every $c \in C$ to the closest $c^{\prime} \in B$.
The map is 4-Lipschitz. Assume $R_{c} \leq R_{d}$.

$$
d\left(c^{\prime}, d^{\prime}\right) \leq 2 d(c, d)+2 d\left(c, c^{\prime}\right) \leq 4 d(c, d)
$$

Kirszbraun Theorem

Let $C \subset D \subset \ell_{2}$ and f be a Lipschitz map from C to ℓ_{2}. There exists an extension $g: D \rightarrow \ell_{2}$ of f such

$$
\|g\|_{L i p}=\|f\|_{L i p}
$$

Constructing map $\bar{\varphi}$

Idea 2: map every $c \in C$ to the closest $c^{\prime} \in B$.
Extend f from C to A using the Kirszbraun theorem.

Constructing map $\bar{\varphi}$

Idea 2: map every $c \in C$ to the closest $c^{\prime} \in B$.
Extend f from C to A using the Kirszbraun theorem.

$$
\bar{\varphi}(u)= \begin{cases}f(u), & \text { if } u \in A \\ u, & \text { if } u \in B\end{cases}
$$

$\bar{\varphi}(u)$ is 7-Lipschitz:

- $\left.\bar{\varphi}\right|_{A}$ is 4-Lipschitz
- $\left.\bar{\varphi}\right|_{B}$ is 1 -Lipschitz
- $\|\bar{\varphi}(a)-\bar{\varphi}(b)\|=\|f(a)-b\| \leq \cdots$

Constructing map $\bar{\varphi}$

Constructing map $\bar{\varphi}$

$$
\|f(a)-b\| \leq 6 R_{a}+d(a, b) \leq 7 d(a, b)
$$

Constructing map $\bar{\varphi}$

$$
\|f(a)-b\| \leq 6 R_{a}+d(a, b) \leq 7 d(a, b)
$$

Lower Bound

There exists a metric space $X=A \cup B$ s.t.

- A and B isometrically embed into ℓ_{2}
- every embedding of X into ℓ_{2} has distortion at least $3-\varepsilon_{n}$, where $n=|A|=|B|$ and $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$

Open Problems

1. Find the least value of D s.t. if $A, B \hookrightarrow \ell_{2}$ isometrically, then $A \cup B \hookrightarrow \ell_{2}$ with distortion at most D. We know that $D \in[3,8.93)$.
2. Study the problem for other ℓ_{p}. We conjecture that the answer is negative for every $p \notin\{2, \infty\}$.
3. What happens if $X=A_{1} \cup \cdots \cup A_{k}$ and each $A_{i} \hookrightarrow \ell_{2}$ isometrically? We only know that $c \log k \leq D \leq 2^{C k}$.
4. Assume that every subset of X of size $\sqrt{|X|}$ isometrically embeds into ℓ_{2}. What is the least distortion with which $X \hookrightarrow \ell_{2}$?
More results and open problems in the paper!

