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ABSTRACT
We study the notion of stability and perturbation resilience intro-

duced by Bilu and Linial [7] and Awasthi, Blum, and She�et [2]. A

combinatorial optimization problem is α-stable or α-perturbation-

resilient if the optimal solution does not change when we perturb

all parameters of the problem by a factor of at most α . In this pa-

per, we give improved algorithms for stable instances of various

clustering and combinatorial optimization problems. We also prove

several hardness results.

• We give an exact algorithm for 2-perturbation resilient in-

stances of clustering problems with natural center-based ob-

jectives. The class of clustering problems with natural center-

based objectives includes such problems as k-means, k-median,

and k-center. Our result improves upon the result of Balcan

and Liang [4], who gave an algorithm for clustering 1 +
√

2 ≈

2.41 perturbation-resilient instances. Our result is tight in the

sense that no polynomial-time algorithm can solve (2 − ε )-
perturbation resilient instances of k-center unless NP = RP ,

as was shown by Balcan, Haghtalab, and White [3].

• We give an exact algorithm for (2−2/k )-stable instances of Min-

imum Multiway Cut with k terminals, improving the previous

result of Makarychev, Makarychev, and Vijayaraghavan [13],

who gave an algorithm for 4-stable instances. We also give an

algorithm for (2−2/k+δ )-weakly stable instances of Minimum

Multiway Cut.

• Finally, we show that there are no robust polynomial-time

algorithms for n1−ε
-stable instances of Set Cover, Minimum

Vertex Cover, and Min 2-Horn Deletion (unless P = NP ).
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1 INTRODUCTION
The notion of stability and perturbation resilience was proposed by

Bilu and Linial [7] and Awasthi, Blum, and She�et [2]. Informally, an

instance is Bilu–Linial stable or perturbation-resilient if the optimal

solution remains the same when we perturb the instance. The

de�nition was introduced in the context of beyond-the-worst-case

analysis and aims to capture a wide class of real-life instances that

are computationally easier than worst-case instances. As several

authors argue, in instances arising in practice, the optimal solution

is often signi�cantly better than all other solutions and thus does

not change if we slightly perturb the instance [6, 7].

De�nition 1.1. Consider an instance I = (G,w ) of a graph parti-

tioning problem with a set of vertex or edge weightswi . An instance

(G,w ′), with weights w ′i , is an α-perturbation (α ≥ 1) of (G,w ) if

wi ≤ w ′i ≤ αwi for every vertex/edge i; that is, an α-perturbation

is an instance obtained from the original one by multiplying each

weight by a number from 1 to α (the number may depend on i).
Now, consider an instance I = (V ,d ) of a clustering problem,

whereV is a set of points and d is a metric onV . An instance (V ,d ′)
is an α-perturbation of (V ,d ) if d (u,v ) ≤ d ′(u,v ) ≤ αd (u,v ); here,

d ′ does not have to be a metric. If, in addition, d ′ is a metric, then

d ′ is an α-metric perturbation of (V ,d ).
An instance I of a graph partitioning or clustering problem is

α-stable or α-perturbation-resilient if it has a unique optimal solu-

tion and every α-perturbation of I has the same unique optimal

solution/clustering as I. We will refer to α as the stability or per-

turbation resilience parameter. Adhering to the literature, we call

α-stable instances of graph partitioning problems “α-Bilu–Linial

stable” or simply “α-stable” and α-stable instances of clustering

problems “α-perturbation-resilient”.

It was shown that stable/perturbation-resilient instances of such

problems as k-center, k-means, k-median, clustering problems with

center-based and min-sum objectives, Max Cut, Minimum Multi-

way Cut, and TSP – with a su�ciently large value of the stabil-

ity/resilience parameter α – can be solved exactly in polynomial

time [2–4, 6, 7, 13, 14]; meanwhile, the worst-case instances of these

problems are NP-hard. Further, for two problems – k-center [3] and

Max Cut [13] – tight or almost tight lower and upper bounds on

α are known; in addition, for Max k-Cut and Minimum Multicut,

strong hardness or non-integrality results are known [13]. How-

ever, for many other problems, known lower and upper bounds are

not tight, and many interesting questions in the area remain open.

Following are some of the most important ones.

Problem 1. Get a better upper bound on the perturbation resilience
parameter for k-median and k-means (arguably the most popular
clustering problems). Balcan and Liang [4] showed that (1 +

√
2)-

perturbation-resilient instances of k-means and k-median can be
solved exactly in polynomial time. Balcan, Haghtalab, and White [3]
showed that it is possible to solve 2-perturbation-resilient instances
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of k-center in polynomial time. Is it possible to get a similar result
for k-means and k-median, and possibly a unifying algorithm that
solves all 2-perturbation-resilient instances of these 3 problems?

Problem 2 (Posed by Roughgarden in his lecture notes [17]

and talks [16, 18]). Get a better upper bound and any lower bound
on the stability parameter for Minimum Multiway Cut. The only
currently known result [13] states that 4-stable instances of Minimum
Multiway Cut can be solved in polynomial time.

Problem 3. Algorithmic results for stable/perturbation-resilient
instances are especially interesting when the stability/perturbation
resilience parameter α is close to 1, since these results are more likely
to be relevant in practice. Currently, there are algorithms for 1.8-stable
instances of TSP [14], and 2-stable instances of k-center [3]. Find an
NP-hard problem such that its α-stable instances can be solved in
polynomial time for some α < 1.8.

Problem 4. Understand whether stable instances of other combi-
natorial optimization problems can be solved in polynomial time.

In this paper, we address said problems. We design a simple al-

gorithm for solving 2-perturbation-resilient instances of k-means,

k-median, and other clustering problems with natural center-based
objectives. We show how to solve (2− 2/k )-stable instances of Mini-

mum Multiway Cut (where k is the number of terminals), as well as

weakly stable instances (see below for the de�nitions). Speci�cally,

we prove that the standard LP relaxation for Minimum Multiway

Cut [9] is integral when the instance is (2 − 2/k )-stable. This result

also addresses Problem 3, showing that 4/3-stable instances of 3-

Multiway Cut can be solved in polynomial time. On the other hand,

we show that there are ( 4

3+1/(k−1) −ε )-stable instances of Minimum

Multiway Cut, for which the standard LP relaxation is not integral.

Finally, we show that there are no robust polynomial-time algo-

rithms even for n1−ε
-stable instances of Set Cover, Minimum Vertex

Cover, and Min 2-Horn Deletion unless P = NP . In the following

subsections, we discuss our results in more detail.

Prior work. Awasthi, Blum, and She�et [2] initiated the study

of perturbation-resilient instances of clustering problems. They

o�ered the de�nition of a separable center-based objective (s.c.b.o.)

and introduced an important center proximity property (see Def-

inition 2.6). They presented an exact algorithm for solving 3-per-

turbation-resilient instances of clustering problems with s.c.b.o.;

they also gave an algorithm for (2 +
√

3)-perturbation-resilient

instances of clustering problems with s.c.b.o. that have Steiner

points. Additionally, they showed that for every α < 3, k-median

instances with Steiner points are NP-hard under the α-center prox-

imity property mentioned above (see De�nition 2.6), which includes

all α-perturbation-resilient instances of the problem. Ben-David

and Reyzin [5] showed that, under the same center proximity con-

dition, for every ε > 0, k-median, k-center, and k-means instances

with no Steiner points that satisfy (2 − ε )-center proximity are NP-

hard. Later, Balcan and Liang [4] designed an exact algorithm for

(1 +
√

2)-perturbation-resilient instances of problems with s.c.b.o.,

improving the result of Awasthi, Blum, and She�et. Balcan and

Liang also studied clustering with the min-sum objective and (α ,ε )-
perturbation resilience (a weaker notion of perturbation resilience,

which we do not discuss in this paper). Recently, Balcan, Haghtalab,

and White [3] designed an algorithm for 2-perturbation-resilient

instances of symmetric and asymmetric k-center and showed that

there is no polynomial-time algorithm for (2 − ε )-perturbation re-

silient instances of k-center unless NP = RP . They also gave an

algorithm for 2-perturbation-resilient instances of problems with

s.c.b.o. that satisfy a strong additional condition of cluster veri�-

ability. To summarize, in the setting where there are no Steiner

points, the best known algorithm for arbitrary s.c.b.o. requires that

the instance be 1 +
√

2 ≈ 2.4142 perturbation-resilient [4]; the

best known algorithm for k-center requires that the instance be 2-

perturbation-resilient, and the latter result cannot be improved [3].

There are several results for stable instances of graph partition-

ing problems. Bilu and Linial [7] designed an exact polynomial-

time algorithm for O (n)-stable instances of Max Cut. Bilu, Daniely,

Linial, and Saks [6] improved the result, showing thatO (
√
n)-stable

instances can be solved in polynomial time. Then, Makarychev,

Makarychev, and Vijayaraghavan [13] gave a polynomial-time al-

gorithm for O (
√

logn · log logn)-stable instances of Max Cut and

4-stable instances of Minimum Multiway Cut (as well as for weakly

stable instances of these problems). They also showed that the re-

sults for Max Cut are essentially tight, and proved lower bounds for

Max k-Cut (for k ≥ 3) and Minimum Multicut (see [13] for details).

1.1 Our Results for Clustering Problems
In a clustering problem, we are given a metric space (X ,d ) and

an integer parameter k ; our goal is to partition X into k clusters

C1, . . . ,Ck so as to minimize the objective functionH (C1, . . . ,Ck ;d )
(which depends on the problem at hand). The most well-studied

and, perhaps, most interesting clustering objectives are k-means,

k-median, and k-center. These objectives are de�ned as follows.

Given a clustering C1, . . . ,Ck , the objective is equal to the mini-

mum over all choices of centers c1 ∈ C1,. . . ,ck ∈ Ck of the following

functions:

Hmeans (C1, . . . ,Ck ;d ) =
k∑
i=1

∑
u ∈Ci

d (u,ci )
2
;

Hmedian (C1, . . . ,Ck ;d ) =
k∑
i=1

∑
u ∈Ci

d (u,ci );

Hcenter (C1, . . . ,Ck ;d ) = max

i ∈{1, ...,k }
max

u ∈Ci
d (u,ci ).

Note that in the optimal solution each clusterCi consists of the ver-

tices u that are closer to ci than to other centers c j ; i.e. (C1, . . . ,Ck )
is the Voronoi partition of X with centers c1, . . . ,ck . We refer to

objectives satisfying this property as center-based objectives. We

study two closely related classes of center-based objectives – sepa-
rable center-based objectives and natural center-based objectives

(which we discuss below and formally de�ne in Section 2). We note

that k-means, k-median, and k-center are separable and natural

center-based objectives.

Metric Perturbation Resilience. The standard de�nition of per-

turbation resilience previously considered in the literature (see

De�nition 1.1) does not require that the perturbation d ′ be a met-

ric (d ′ does not have to satisfy the triangle inequality). It is more

natural to consider only metric perturbations of I — those perturba-

tions in which d ′ is a metric. In this paper, we give the de�nition of
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metric perturbation resilience, in which we do require that d ′ be a

metric (see De�nition 2.5). Note that every α-perturbation-resilient

instance is also α-metric perturbation-resilient.

We de�ne a class of clustering problems with natural center-
based objectives; an objective is a natural center-based objective

if it is representable in the following form. For some functions

fc and дu (r ) (fc is a function of c , дu (r ) is a function of u and r ;

intuitively, fci is the cost of having a center at ci and дu (r ) is the

cost of connecting u to a center at distance r from u), we have

H (C1, . . . ,Ck ;d ) = min

c1∈C1, ...,ck ∈Ck

k∑
i=1

*.
,
fci +

∑
u ∈Ci

дu (d (u,ci ))
+/
-
(1)

or H (C1, . . . ,Ck ;d ) =

min

c1∈C1, ...,ck ∈Ck
max

*..
,

max

i ∈{1, ...,k }
fci , max

i ∈{1, ...,k }
u ∈Ci

дu (d (u,ci ))
+//
-
. (2)

This class includes such problems as k-means, k-median (sum objec-

tives with fc = 0,дu (r ) equal r2
and r , respectively), and k-center (a

max-objective with fc = 0 and дu (r ) = r ). It also includes a special

version of a metric facility location problem, in which the set of

facilities F is a subset of the points that we want to cluster, i.e.

F ⊆ X , and each point c ∈ F is associated with an opening cost

fc . (Observe that, as stated above, the objective function asks for k
facilities, while, in general, we are allowed to open any number of

facilities; to resolve this, we simply guess the optimal number and

then use the above objective function.)

We present a polynomial-time algorithm for 2-metric perturba-

tion-resilient instances of clustering problems with natural center

based objectives; thus, we improve the known requirement on the

perturbation resilience parameter α from α ≥ 1 +
√

2 ≈ 2.4142

to α ≥ 2 and relax the condition on instances from a stronger

α-perturbation resilience condition to a weaker and more natural

α-metric perturbation resilience condition. In particular, our result

improves the requirement for k-median and k-means from α ≥

1 +
√

2 to α ≥ 2. Our result is optimal for some natural center-

based objectives, since (2 − ε )-perturbation-resilient instances of

k-center cannot be solved in polynomial time unless NP = RP [3].

Theorem 1.2. There exists a polynomial-time algorithm that given
any 2-metric perturbation-resilient instance ((X ,d ),H ,k ) of a cluster-
ing problem with a natural center-based objective, returns the (exact)
optimal clustering of X .

Our algorithm is quite simple. It �rst runs the single-linkage

algorithm to construct the minimum spanning tree on the points of

X and then partitions the minimum spanning tree into k clusters

using dynamic programming. We note that Awasthi, Blum, and

She�et [2] also used the single-linkage algorithm together with

dynamic programming to cluster 3-perturbation-resilient instances.

However, their approach is substantially di�erent from ours: They

�rst �nd a hierarchical clustering of X using the single-linkage

algorithm and then pick k optimal clusters from this hierarchical

clustering. This approach fails forα-perturbation-resilient instances

with α < 3 (see [2]). That is why we do not use the single-linkage

hierarchical clustering in our algorithm, and, instead, partition the

minimum spanning tree.

We note that the de�nitions of separable and natural center-

based objectives are di�erent. However, in Appendix A we consider

a slightly strengthened de�nition of s.c.b.o. and show that every

s.c.b.o., under this new de�nition, is also a natural center-based

objective; thus, our result applies to it. We are not aware of any

non-pathological objective that satis�es the de�nition of s.c.b.o. but

is not a natural center-based objective.

Finally, we consider clustering with s.c.b.o. and show that the

optimal solution for every α-metric perturbation-resilient instance

satis�es the α-center proximity property; previously, that was only

known for α-perturbation-resilient instances [2]. Our result implies

that the algorithms by Balcan and Liang [4] and Balcan, Hagh-

talab, and White [3] for clustering with s.c.b.o. and k-center, re-

spectively, apply not only to α-perturbation-resilient but also to

α-metric perturbation-resilient instances.

1.2 Our Results for MinimumMultiway Cut
We show that (2 − 2/k )-stable and (2 − 2/k + δ )-weakly stable

instances of Minimum Multiway Cut can be solved in polynomial

time (for every δ > 0).

De�nition 1.3. In the Minimum Multiway Cut problem, we are

given a graph G = (V ,E,w ) with positive edge weights w (e ) and a

set of terminals T = {s1, . . . ,sk } ⊂ V . Our goal is to partition the

vertices into k sets P1, . . . ,Pk such that si ∈ Pi , so as to minimize

the total weight of cut edges.

To obtain our results, we extend the framework for solving stable

instances of graph partitioning problems developed in [13]. Con-

sider an LP relaxation for a graph partitioning problem. In [13],

it was shown that if there is a rounding scheme satisfying two

conditions, which we call the approximation and co-approximation

conditions, with certain parameters α and β , then the LP relaxation

is integral for (αβ )-stable instances of the problem. In particular,

there is an exact polynomial-time algorithm for (αβ )-stable in-

stances: solve the LP relaxation; if it is integral, output the integral

solution corresponding to the LP solution; otherwise, output that

the instance is not stable. The algorithm is robust in the sense of

Raghavan and Spinrad [15]: if the instance is (αβ )-stable, the algo-

rithm returns the optimal solution; if it is not, the algorithm either

returns the optimal solution or certi�es that the instance is not

(αβ )-stable.
1

To use this framework for solving the Minimum Multiway Cut,

we have to construct a rounding scheme for the LP relaxation by Că-

linescu, Karlo�, and Rabani [9]. However, rounding this relaxation

is a highly non-trivial task; see papers by Sharma and Vondrák [19]

and Buchbinder, Schwartz, and Weizman [8] for the state-of-the-art

rounding algorithms. Our key observation is that in order to apply

the results from [13], it is su�cient to design a rounding scheme

that only rounds LP solutions that are very close to integral solu-

tions. We present such a rounding scheme with parameters α and

β satisfying αβ = 2 − 2/k and obtain our results.

1
We do not claim that our algorithms for clustering problems are robust.
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1.3 Our Hardness Results
We show that there are ( 4

3+1/(k−1) −ε )-stable instances of Minimum

Multiway Cut, for which the LP relaxation is not integral. Then

we prove that there are no robust polynomial-time algorithms for

n1−ε
-stable instances of Set Cover, Minimum Vertex Cover, and Min

2-Horn Deletion (unless P = NP ). We note that robustness is a very

desirable property of algorithms for stable instances. We discuss it

in Section 2 (see De�nition 2.8). This result, particularly, implies

that there are no polynomial-time solvable convex relaxations (e.g.,

LP or SDP relaxations) that are integral for n1−ε
-stable instances

of Set Cover, Minimum Vertex Cover, and Min 2-Horn Deletion

(unless P = NP ).

1.4 Overview
In Section 2, we formally de�ne key notions used in this paper.

Then, in Section 3, we prove that the optimal solution for every α-

metric perturbation-resilient instance satis�es the α-center proxim-

ity property. We use this result later in the analysis of our algorithm;

also, as noted above, it is of independent interest and implies that

previously known algorithms from [3, 4] work under the metric

perturbation resilience assumption. In Section 4, we present our

algorithm for solving 2-perturbation-resilient instances of problems

with natural center-based objectives.

In Section 5, we describe our algorithmic results for Minimum

Multiway Cut. In Section 6, we prove our hardness results for Set

Cover, Minimum Vertex Cover, Min 2-Horn Deletion, and Minimum

Multiway Cut. Finally, in Appendix A, we state our result that if

a s.c.b.o. satis�es some additional properties, then it is a natural

center-based objective; we prove this result in the full version of

the paper.

2 PRELIMINARIES
In this section, we formally de�ne key notions used in this paper:

clustering problems, α-metric perturbation resilience, separable

center-based and natural center-based objectives.

De�nition 2.1. An instance of a clustering problem is a tuple

((X ,d ),H ,k ) of a metric space (X ,d ), objective function H , and

integer number k > 1. The objectiveH is a function that, given a

partition of X into k sets C1, . . . ,Ck and a metric d on X , returns a

nonnegative real number, which we call the cost of the partition.

Given an instance of a clustering problem ((X ,d ),H ,k ), our goal

is to partition X into disjoint (non-empty) sets C1, . . . ,Ck , so as to

minimize H (C1, . . . ,Ck ;d ). Awasthi et al. [2] gave the following

de�nition for center-based and separable center-based objectives.

De�nition 2.2 (Awasthi et al. [2]). A clustering objective is center-
based if the optimal solution can be de�ned by k points c1, . . . ,ck
in the metric space, called centers, such that every data point is

assigned to its nearest center. Such a clustering objective is separable
if it further satis�es the following two conditions:

• The objective function value of a given clustering is either

a (weighted) sum or the maximum of the individual cluster

scores.

• Given a proposed single cluster, its score can be computed in

polynomial time.

Formally, this de�nition does not impose any constraints on the

points c1, . . . ,ck other than the requirement that every p ∈ Ci is

closer to ci than to c j for every j , i . However, in the paper [2],

Awasthi et al. (implicitly) assume that c1, . . . ,ck satisfy an extra

condition: Each point ci must be the optimal center for the cluster

Ci . In the proof of Fact 2.2, they write: “Furthermore, since the

distances within C∗i were all changed by the same constant factor,

c∗i will still remain an optimal center of cluster i” [emphasis added].

In De�nition 2.3, we formally introduce the notion of the optimal

center of a cluster C . The optimal center of C should only depend

on the cluster C and the metric induced on C ; it should not depend

on other clusters. For instance, in k-means, the optimal center of a

clusterCi is the point c that minimizes the objective

∑
p∈Ci d (p,c )

2
.

Note that often the optimal center is not unique e.g. if the cluster

C consists of two points u and v , then both u and v are optimal

centers of C . We denote this set by center(C,d |C ).

De�nition 2.3. We say that H is a center-based objective func-

tion if for every metric d on X , there exists an optimal clustering

C1, . . . ,Ck of X (i.e., a clustering that minimizesH (C1, . . . ,Ck ;d ))
satisfying the following condition: there exists sets of optimal cen-

ters {center(Ci ,d |Ci )}i=1, ...,k , such that every data point p ∈ Ci is

closer to any optimal center ci ∈ center(Ci ,d |Ci ) than to any opti-

mal center c j ∈ center(Cj ,d |Cj ) (i , j). The value of center(C,d |C )
may depend only on C and d |C .

The objective is separable if, additionally, we can de�ne individ-

ual cluster scores so that the following holds.

• The cost of the clustering is either the sum (for separable sum-

objectives) or maximum (for separable max-objectives) of the

cluster scores.

• The score H (C,d |C ) of each cluster C depends only on C ,

center(C,d |C ) and d |C , and can be computed in polynomial

time (this implies that each set center(C,d |C ) can be computed

in polynomial time as well).

In this paper, we consider a slightly narrower class of natural
center-based objectives (which we described in the introduction).

The class contains most important center-based objectives: k-center,

k-means, and k-median, as well as the special variant of the metric

facility location objective, as explained in Section 1.1. We are not

aware of any reasonable center-based objective that is not a natural

center-based objective. Now, we formally de�ne natural center-

based objectives.

De�nition 2.4. We say thatH is a natural center-based objective

function for a ground set X , if there exist functions f : X → R and

д : X × R → R such that H (C1, . . . ,Ck ;d ) satis�es Equation (1)

or (2) (see Section 1.1). We require that the functions f and д be

computable in polynomial time, and that дu be non-decreasing for

every u ∈ X . We call the points ci that minimize the objective the

centers of the clustering.

Now, we formally de�ne metric perturbation and metric pertur-

bation resilience. Since we do not require that the objectiveH is

homogeneous as a function of the metric d , we introduce two per-

turbation resilience parameters α1 and α2 in the de�nition, which

specify by how much the distances can be contracted and expanded,

respectively, in the perturbed instances.
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De�nition 2.5. Consider a metric space (X ,d ). We say that a

metric d ′ is an (α1,α2)-metric perturbation of (X ,d ), for α1,α2 ≥ 1,

if α−1

1
d (u,v ) ≤ d ′(u,v ) ≤ α2d (u,v ) for every u,v ∈ X . An instance

((X ,d ),H ,k ) is (α1,α2)-metric perturbation-resilient if for every

(α1,α2)-metric perturbation d ′ of d , the unique optimal clustering

for ((X ,d ′),H ,k ) is the same as for ((X ,d ),H ,k ). We say that an

instance ((X ,d ),H ,k ) is α -metric perturbation-resilient if it is (α ,1)-
metric perturbation-resilient.

Note that in the case of a s.c.b.o., the centers of clusters in the

optimal solutions for ((X ,d ),H ,k ) and ((X ,d ′),H ,k ) may di�er.

Observe that if the instance ((X ,d ),H ,k ) is (α1,α2)-metric per-

turbation-resilient, then ((X ,λd ),H ,k ) is (λα1,λ
−1α2)-metric per-

turbation-resilient for λ ∈ [α−1

1
,α2]. Particularly, if ((X ,d ),H ,k )

is (α1,α2)-metric perturbation-resilient, then ((X ,α2d ),H ,k ) is

(α1α2,1)-metric perturbation-resilient and the optimal solution

for ((X ,α2d ),H ,k ) is the same as for ((X ,d ),H ,k ). Thus, to solve

an (α1,α2)-metric perturbation-resilient instance ((X ,d ),H ,k ), it

su�ces to solve α = (α1α2) metric perturbation-resilient instance

((X ,α2d ),H ,k ). Consequently, we will only consider α-metric per-

turbation-resilient instances in this paper.

We recall the de�nition of the α-center proximity property for

s.c.b.o., introduced in [2].

De�nition 2.6. We say that a clustering C1, . . . ,Ck of X with

centers c1, . . . ,ck satis�es the α -center proximity property if for all

i , j and p ∈ Ci , we have d (p,c j ) > αd (p,ci ).

Now, we give the de�nition of weak stability for Multiway

Cut [13]. Unlike the de�nition of stability, this de�nition does not

require that the optimal partition P remain the same when we per-

turb the instance; instead, it, loosely speaking, requires that the

optimal partition to the perturbed instance be “close enough” to P .

Let N be a set of partitions that are close to P in some sense; e.g. it

may be the set of partitions that can be obtained from P by moving

at most a δ fraction of the vertices among sets P1, . . . ,Pk . Then we

formally de�ne (γ ,N )-stability as follows.

De�nition 2.7. Consider an instance I = (G,T ) of Minimum

Multiway Cut, where G = (V ,E,w ) is a weighted graph and T =
{s1, . . . ,sk } ⊂ V is the set of terminals. Denote the optimal multiway

cut in G by P = (P1, . . . ,Pk ). Let N be a set of partitions that

contains P and γ ≥ 1 be a parameter. We say that I is a (γ ,N )-
weakly stable instance of Minimum Multiway Cut if for every γ -

perturbation G ′ = (V ,E,w ′) of G, and every partition P ′ < N ,

partition P has a strictly smaller cost than P ′ in G ′.

Note that the notion of weak stability generalizes the notion of

stability: an instance is γ -stable if and only if it is (γ , {P })-weakly

stable. Finally, we de�ne the notion of a robust algorithm [15].

De�nition 2.8. A robust algorithm forγ -stable instances of a com-

binatorial optimization problem Π is a polynomial time algorithm

that satis�es the following property, when ran on an instance IΠ :

• If the instance is γ -stable, then it returns the unique optimal

solution of IΠ .

• If the instance is not γ -stable, then it either returns an optimal

solution of IΠ or it reports that the instance is not γ -stable.

It is very desirable to have robust algorithms for stable instances

of combinatorial optimization problems. A robust algorithm will

never return a solution which is not optimal even if our instance

is not stable (in which case, it may report that the instance is not

stable). Thus, we can safely use robust algorithms on instances that

are likely to be stable but may as well be non-stable.

3 CENTER PROXIMITY FOR METRIC
PERTURBATION RESILIENCE

In this section, we prove that the (unique) optimal solution to

an α-metric perturbation-resilient clustering problem satis�es the

α-center proximity property. Our proof is similar to the proof of

Awasthi, Blum, and She�et, who showed that the optimal solution to

a (non-metric) α-perturbation-resilient clustering problem satis�es

the α-center proximity property.

Theorem 3.1. Consider an α -metric perturbation-resilient cluster-
ing problem ((X ,d ),H ,k ) with a center-based objective. LetC1, . . . ,Ck
be the unique optimal solution, and let c1, . . . ,ck be a set of centers of
C1, . . . ,Ck (that is, each ci ∈ center(Ci ,d |Ci )). Then, the following
α-center proximity property holds: for all i , j and p ∈ Ci , we have
d (p,c j ) > αd (p,ci ).

Proof. Suppose that for some i , j and p ∈ Ci , we have

that d (p,c j ) ≤ αd (p,ci ). Let r∗ = d (p,ci ). De�ne a new metric

d ′ as follows. Consider the complete graph on X . Assign length

len(u,v ) = d (u,v ) to each edge (u,v ) other than (p,c j ). Assign

length len(p,c j ) = r∗ to the edge (p,c j ). Let metric d ′(u,v ) be

the shortest path metric on the complete graph on X with edge

lengths len(u,v ). Note that d (p,c j ) ≥ d (p,ci ) = r∗ since p ∈ Ci
and C1, . . . ,Ck is an optimal clustering. Hence, for every (u,v ):
len(u,v ) ≤ d (u,v ) and d ′(u,v ) ≤ d (u,v ). It is easy to see that

d ′(u,v ) = min

(
d (u,v ),d (u,p)+r∗+d (c j ,v ),d (v,p)+r

∗+d (c j ,u)
)
.

Observe that since the ratiod (u,v )/len(u,v ) is at mostd (p,c j )/r
∗ ≤

α for all edges (u,v ), we have d (u,v )/d ′(u,v ) ≤ α for all u and v .

Hence, d (u,v ) ≤ αd ′(u,v ) ≤ αd (u,v ), and consequently, d ′ is an

(α ,1)-metric perturbation of d .

We now show that d ′ is equal to d within the cluster Ci and

within the cluster Cj .

Lemma 3.2. For all u,v ∈ Ci , we have d (u,v ) = d ′(u,v ), and for
all u,v ∈ Cj , we have d (u,v ) = d ′(u,v ).

Proof. I. Consider two points u, v in Ci . We need to show that

d (u,v ) = d ′(u,v ). It su�ces to prove that

d (u,v ) ≤ min(d (u,p) + r∗ + d (c j ,v ),d (v,p) + r
∗ + d (c j ,u)).

Assume without loss of generality that d (u,p) + r∗ + d (c j ,v ) ≤
d (v,p) + r∗ + d (c j ,u). We have

d (u,p)+r∗+d (c j ,v ) = d (u,p)+d (p,ci )+d (c j ,v ) ≥ d (u,ci )+d (c j ,v ).

Since v ∈ Ci , we have d (v,ci ) ≤ d (v,c j ), and thus

d (u,p) + r∗ + d (c j ,v ) ≥ d (u,ci ) + d (ci ,v ) ≥ d (u,v ).

II. Consider two points u, v in Cj . Similarly to the previous case,

we need to show that d (u,v ) ≤ d (u,p) + r∗ + d (c j ,v ). Since now
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u ∈ Cj , we have d (u,c j ) ≤ d (u,ci ). Thus,

d (u,p) + r∗ + d (c j ,v ) =
(
d (u,p) + d (p,ci )

)
+ d (c j ,v )

≥ d (u,ci ) + d (c j ,v ) ≥ d (u,c j ) + d (c j ,v )

≥ d (u,v ). �

By the de�nition of α-metric perturbation resilience, the optimal

clusterings for metrics d and d ′ are the same. By Lemma 3.2, the

distance functions d and d ′ are equal within the clusters Ci and Cj .

Hence, the centers of Ci and Cj w.r.t. metric d ′ are also the points

ci and c j , respectively (see De�nition 2.3). Thus, by the de�nition of

center-based objective, and since the clustering is unique, we must

have d ′(ci ,p) < d ′(c j ,p), and, consequently, d (ci ,p) = d ′(ci ,p) <
d ′(c j ,p) = r

∗ = d (ci ,p). We get a contradiction. �

Corollary 3.3. Consider a 2-metric perturbation-resilient in-
stance. LetC1, . . . ,Ck be an optimal clustering with centers c1, . . . ,ck .
Then each point u ∈ Ci is closer to ci than to any point v < Ci .

Proof. Suppose that v ∈ Cj for some j , i . By the triangle

inequality, d (u,v ) ≥ d (u,c j ) − d (v,c j ). By Theorem 3.1, d (u,c j ) >
αd (u,ci ) and d (v,c j ) < d (v,ci )/α . Thus,

d (u,v ) ≥ d (u,c j ) − d (v,c j ) > αd (u,ci ) − d (v,ci )/α

≥ αd (u,ci ) −
(
d (u,ci ) + d (u,v )

)
/α .

In the last inequality, we used the triangle inequality d (v,ci ) ≤
d (u,ci ) + d (u,v ). Rearranging the terms, we get that d (u,v ) >
(α − 1)d (u,ci ). Plugging in α = 2, we get the desired inequality. �

4 CLUSTERING ALGORITHM
In this section, we present our algorithm for solving 2-metric

perturbation-resilient instances of clustering problems with natural

center-based objectives. Our algorithm is based on single–linkage

clustering: �rst, we �nd a minimum spanning tree on the metric

space X (e.g., using Kruskal’s algorithm) and then run a dynamic

programming algorithm on the spanning tree to �nd the clusters.

We describe the two steps of the algorithm in Sections 4.1 and 4.2.

We note that the algorithm only relies on the 2-center proximity

property, and thus, it is optimal for this broader class of problems,

unless P = NP (see Ben-David and Reyzin [5]).

4.1 Minimum Spanning Tree
At the �rst phase of the algorithm, we construct a minimum span-

ning tree on the points of the metric space using Kruskal’s algorithm.

Kruskal’s algorithm maintains a collection of trees. Initially, each

tree is a singleton point. At every step, the algorithm �nds two

points closest to each other that belong to di�erent trees and adds

an edge between them. The algorithm terminates when all points

belong to the same tree. Let T be the obtained spanning tree.

Let C1, . . . ,Ck be the optimal clustering. The key observation is

that each cluster Ci forms a subtree of the spanning tree T .

Lemma 4.1. Each clusterCi in the optimal solution forms a subtree
of the spanning treeT . In other words, the unique path between every
two vertices u,v ∈ Ci does not leave the cluster Ci .

Proof. Let ci be the center of Ci . We show that the (unique)

path p from u to ci lies in Ci , and, therefore, the Lemma holds. Let

u ′ be the next vertex after u on the path p. Consider the step at

which Kruskal’s algorithm added the edge (u,u ′). At that step, u
and ci were in distinct connected components (as p is the only

path connecting u and ci ). Thus, d (u,u ′) ≤ d (u,ci ) as otherwise

the algorithm would have added the edge (u,ci ) instead of (u,u ′).
By Corollary 3.3, the inequality d (u,u ′) ≤ d (u,ci ) implies that u ′

belongs toCi . Proceeding by induction we conclude that all vertices

on the path p belong to Ci . �

4.2 Dynamic Programming Algorithm
At the second phase, we use dynamic programming to compute

the optimal clustering. (We only describe the DP for objectives that

satisfy Equation (1), but it is straightforward to make it work for

objectives satisfying Equation (2).) We root the treeT at an arbitrary

vertex. We denote the subtree rooted at u by Tu . We �rst assume

that the tree is binary. Later, we explain how to transform any tree

into a binary tree by adding dummy vertices.

The algorithm partitions the tree into (non-empty) subtrees

P1, . . . ,Pk and assigns a center ci ∈ Pi to all vertices in the subtree

Pi so as to minimize the objective:

k∑
i=1

fci +
k∑
i=1

∑
u ∈Pi

дu (d (u,ci )). (3)

Lemma 4.1 implies that the optimal partitioning of X is the solution

to this problem.

Let costu (k
′,c ) be the minimum cost of partitioning the subtree

Tu into k ′ subtrees P1, . . . ,Pk ′ and choosing k ′ centers c1, . . . ,ck ′
(the cost is computed using the formula (3) with k = k ′) so that the

following conditions hold:

(1) u ∈ P1 and c1 = c (we denote the tree that contains u by

P1 and require that its center be c),

(2) if c1 ∈ Tu , then c1 ∈ P1 (if the center c1 of P1 lies in Tu ,

then it must be in P1),

(3) ci ∈ Pi for i > 1 (the center ci of every other tree Pi lies in

Pi ).

That is, we assume thatu belongs to the �rst subtree P1 and that c is

the center for P1. Every center ci must belong to the corresponding

set Pi except for c1. However, if c1 ∈ Tu , then c1 ∈ P1.

Denote the children of vertex u by lu and ru (recall that we

assume that the tree is binary). The cost costu (k
′,c ) is computed

using the following recursive formulas: If c < Tlu ∪Tru , then

costu (j,c ) = fc + дu (d (c,u)) +min

(
min

{
costlu (j

′,c ′) + costru (j
′′,c ′′) :

j ′ + j ′′ = j − 1, c ′ ∈ Tlu ,c
′′ ∈ Tru

}
, (4)

min

{
costlu (j

′,c ′) + costru (j
′′,c ) − fc :

j ′ + j ′′ = j, c ′ ∈ Tlu

}
, (5)

min

{
costlu (j

′,c ) + costru (j
′′,c ′′) − fc :

j ′ + j ′′ = j, c ′′ ∈ Tru
}
, (6)

min

{
costlu (j

′,c ) + costru (j
′′,c ) − 2fc :

j ′ + j ′′ = j + 1

})
. (7)
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If c ∈ Tlu , then we remove lines (4) and (5) from the formula.

If c ∈ Tru , then we remove lines (4) and (6) from the formula.

The �rst term fc + дu (d (c,u)) is the cost of opening a center in c
and assigning u to c . The lines (4–7) correspond to the following

cases:

(4) neither lu nor ru is in P1; they are assigned to (trees Pi and

Pj with centers) c ′ and c ′′,

(5) lu is not in P1, but ru is in P1; they are assigned to c ′ and c ,

(6) lu is in P1, but ru is not in P1; they are assigned to c and c ′′,

(7) both lu and ru are in P1; they are assigned to c .

For leaves, we set costu (1,c ) = fc +дu (d (u,c )) and costu (j,c ) = ∞
for j > 1. Note that if we want to �nd a partitioning of T into at

most k subtrees, we can use a slightly simpler dynamic program. It

is easy to verify that the formulas above hold. The cost of the opti-

mal partitioning of T into k subtrees equals minc ∈X costroot (k,c ),
where root is the root of the tree.

We now explain how to transform the tree T into a binary tree.

If a vertex u has more than two children, we add new dummy

vertices between u and its children by repeating the following

procedure: take a vertex u having more than two children; pick any

two children of u: u1 and u2; create a new child v of u and rehang

subtrees Tu1
and Tu2

to the vertex v . We forbid opening centers in

dummy vertices v by setting the opening cost fv to be in�nity. We

set the assignment costs дv to be 0. Note that Lemma 4.1 still holds

for the new tree if we place every dummy vertex in the same part

Pi as its parent.

5 MINIMUMMULTIWAY CUT
In this section, we present our algorithmic results for Minimum

Multiway Cut (recall De�nition 1.3). Consider the LP relaxation by

Călinescu, Karlo�, and Rabani [9] for Minimum Multiway Cut. For

every vertex u, there is a vector ū = (u1, . . . ,uk ) in the LP. In the

integral solution corresponding to a partition (P1, . . . ,Pk ), ui = 1,

if u ∈ Pi ; and ui = 0, otherwise. That is, ū = ei (the i-th standard

basis vector) if u ∈ Pi .

minimize

1

2

∑
e=(u,v )∈E

w (e ) · ‖ū − v̄ ‖1

subject to

s̄j = ej for every j ∈ {1, . . . ,k } ,

k∑
i=1

ui = 1 for every vertex u,

uj ≥ 0 for every vertex u and j ∈ {1, . . . ,k } .

Let d (u,v ) = 1

2
‖ū − v̄ ‖1. A randomized rounding scheme R is a

randomized algorithm that given the instance and an LP solution,

outputs a feasible partition P = (P1, . . . ,Pk ) of V (we denote the

cluster Pi which vertexu belongs to by P (u)). We say that a random-

ized rounding scheme is an (α ,β )-rounding if for every LP solution

{ū} the following conditions hold:

• Approximation Condition: Pr (P (u) , P (v )) ≤ αd (u,v ).

• Co-approximation Condition:
Pr (P (u) = P (v )) ≥ β−1 (1 − d (u,v )).

Note that an (α ,β )-rounding is a randomized α-approximation

algorithm for Minimum Multiway Cut and a β−1
-approximation for

the complement problem (Maximum Multiway Uncut), the problem

whose objective is to maximize the number of uncut edges.

It is shown in [13] that if there is an (α ,β )-rounding then the

optimal LP solution for every (αβ )-stable instance of Minimum

Multiway Cut is integral. Further, [13] presents a (2,2)-rounding

for Minimum Multiway Cut.

In this paper, we show that the conditions on (α ,β )-rounding

can be substantially relaxed. We say that an LP solution is ε-close

to an integral solution if every vertex u is ε-close to some terminal

si ; that is, for every u there exists i such that d (u,si ) ≤ ε (here, d is

the distance de�ned by the LP solution). A rounding scheme is an

ε-local (α ,β )-rounding if for every LP solution that is ε-close to an

integral one the approximation and co-approximation conditions

hold (but the conditions do not necessary hold for an LP solution

that is not ε close to an integral). Clearly, every (α ,β )-rounding is

also ε-local (α ,β )-rounding. We prove a counterpart of the result

from [13] for ε-local (α ,β )-rounding.

Theorem 5.1. Assume that there exists an ε-local (α ,β )-rounding
for some ε = ε (n,k ) > 0 (ε may depend on n and k). Then the optimal
LP solution for an (αβ )-stable instance of Minimum Multiway Cut is
integral.

As a corollary of Theorem 5.1, we get that the existence of an

ε-local (α ,β )-rounding scheme implies the existence of a robust

algorithm for (αβ )-stable instances of Minimum Multiway Cut. Fur-

ther, we prove the following theorem for weakly stable instances.

Theorem 5.2. Assume that there is a polynomial-time ε-local
(α ,β )-rounding for some ε = ε (n,k ) > 1/poly(n) > 0, and further
that the support of the distribution of multiway cuts generated by
the rounding has polynomial size2. Let δ > 1/poly(n) > 0. Then
there is a polynomial-time algorithm for (αβ + δ ,N )-weakly stable
instances of Minimum Multiway Cut. Given an (αβ + δ ,N )-weakly
stable instance, the algorithm �nds a partition P ′ ∈ N (the algorithm
does not know the set N ).

The proofs of Theorems 5.1 and 5.2 are overall similar to the proofs

of their counterparts in [13]. The crucial di�erence, however, is that

we do not apply the rounding scheme to the optimal LP solution

{ū} (which may be far from an integral solution), but rather we take

a convex combination of {ū} and an appropriately chosen integral

solution (with weights ε and 1 − ε) and get a fractional solution

that is ε-close to this integral solution. Then, we apply the (α ,β )-
rounding to it and proceed essentially in the same way as in [13].

We give proofs of Theorems 5.1 and 5.2 in Appendix B.

We now present an ε-local (α ,β )-rounding for Minimum Multi-

way Cut with αβ = 2− 2/k and ε = 1/(10k ). We assume that the LP

solution is ε-close to an integral (as otherwise the algorithm may

output any solution). Since the LP solution is ε-close to an integral,

for every vertex u there exists a unique j such that d (u,sj ) ≤ ε .
We denote this j by j (u). Note that, in particular, uj (u ) ≥ 1 − ε and

uj′ ≤ ε for j ′ , j (u).

2
If we do not make this assumption, we can still get a randomized algorithm for

(α β + δ , N )-weakly stable instances.



STOC’17, June 2017, Montreal, Canada Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev

Rounding scheme R
let p = 1/k , θ = 6/(5k ) (note that θ > ε)
choose r ∈ (0,θ ) uniformly at random

choose i ∈ {1, . . . ,k } uniformly at random

with probability p apply rule A to every u
with probability 1 − p apply rule B to every u

rule A: if uj (u ) ≥ 1 − r , add u to Pj (u ) ; otherwise, add u to Pi
rule B: if ui < r , add u to Pj (u ) ; otherwise, add u to Pi

return partition P = (P1, . . . ,Pk )

Theorem 5.3. The algorithm is an ε-local (α ,β )-rounding for
Minimum Multiway Cut for some α and β , with αβ = 2 − 2/k , and
ε = 1/(10k ). The algorithm runs in polynomial-time and generates a
distribution of multiway cuts with a domain of polynomial size.

Proof. First, we show that the algorithm returns a feasible

solution. To this end, we prove that the algorithm always adds

u = st to Pt . Note that j (u) = t . If the algorithm uses rule A, then

uj (u ) = 1 > 1 − r , and thus it adds u to Pj (u ) = Pt . If the algorithm

uses rule B, then ui ≥ r only when i = j (u); thus the algorithm

adds u to Pj (u ) = Pt , as required. Let θ = 6/(5k ) and

α =
2(k − 1)

k2θ
=

5

3

(
1 −

1

k

)
and β = kθ =

6

5

.

Now we show that the rounding scheme satis�es the approxima-

tion and co-approximation conditions with parameters α and β .

Consider two vertices u and v . Let ∆ = d (u,v ). We verify that the

approximation condition holds for u and v . There are two possi-

ble cases: j (u) = j (v ) or j (u) , j (v ). Consider the former case

�rst. Denote j = j (u) = j (v ). Note that P (u) , P (v ) if and only if

one of the vertices is added to Pi , the other to Pj , and i , j. Sup-

pose �rst that rule A is applied. Then, P (u) , P (v ) exactly when

1 − r ∈ (min(uj ,vj ),max(uj ,vj )] and i , j. The probability of this

event (conditioned on the event that rule A is applied) is

Pr (i , j ) · Pr

(
1 − r ∈ (min(uj ,vj ),max(uj ,vj )

)
=

=
k − 1

k
·

max(uj ,vj ) −min(uj ,vj )

θ

=
k − 1

k
·
|uj −vj |

θ

(here we used that max(uj ,vj ) ≥ 1 − ε > 1 − θ ). Now suppose

that rule B is applied. Then, we have P (u) , P (v ) exactly when

r ∈ (min(ui ,vi ),max(ui ,vi )] and i , j. The probability of this

event (conditioned on the event that rule B is used) is

1

k

∑
i :i,j

Pr (r ∈ (min(ui ,vi ),max(ui ,vi )]) =
1

k

∑
i :i,j

|ui −vi |

θ
.

Thus,

Pr (P (u) , P (v )) = p
k − 1

k

|uj −vj |

θ
+ (1 − p)

1

k

∑
i :i,j

|ui −vi |

θ

=
k − 1

k2θ

∑
i
|ui −vi | =

2(k − 1)

k2θ
∆ = α∆.

Now consider the case when j (u) , j (v ). Then the approximation

condition holds simply because Pr (P (u) , P (v )) ≤ 1 and α∆ ≥
1. Namely, we have ∆ = d (u,v ) ≥ d (sj (u ) ,sj (v ) ) − d (u,sj (u ) ) −

d (v,sj (v ) ) ≥ 1 − 2ε ≥ 1 − 2/30 = 14/15 and α ≥ 5

3

(
1 − 1

3

)
= 10/9;

thus, α∆ ≥ (10/9) × (14/15) > 1.

Let us verify that the co-approximation condition holds for u
and v . Assume �rst that j (u) = j (v ). Let j = j (u) = j (v ). Then,

∆ = d (u,v ) ≤ d (u,sj ) + d (v,sj ) ≤ 2ε ≤ 1/15. As we showed,

Pr (P (u) , P (v )) ≤ α∆. We get, Pr (P (u) = P (v )) ≥ 1 − α∆ ≥
β−1 (1 − ∆), where the last bound follows from the following in-

equality
1−β−1

α−β−1
≥

1/6

5/3−5/6
= 1

5
≥ ∆.

Assume now that j (u) , j (v ). Without loss of generality, we

assume that uj (u ) ≤ vj (v ) . Suppose that rule A is applied. Event

P (u) = P (v ) happens in the following disjoint cases:

(1) uj (u ) ≤ vj (v ) < 1 − r (then both u and v are added to Pi );
(2) uj (u ) < 1 − r ≤ vj (v ) and i = j (v ).

The probabilities that the above happen are (1 − vj (v ) )/θ and

(vj (v ) − uj (u ) )/θ × (1/k ), respectively. Note that du ≡ d (u,sj (u ) ) =
1

2

(
1 − uj (u ) +

∑
t :t,j (u ) ut

)
= 1−uj (u ) , since we have

∑
t :t,j (u ) ut =

1 − uj (u ) . Similarly, dv ≡ d (v,sj (v ) ) = 1 − vj (v ) . We express the

total probability that one of the two cases happens in terms of du
and dv (using that ∆ ≥ d (sj (u ) ,sj (v ) ) − du − dv = 1 − du − dv ):

(dv + (du − dv )/k )/θ = ((k − 1)dv + du )/(θk )

≥ (du + dv )/(θk ) ≥ (1 − ∆)/(θk )

= β−1 (1 − ∆).

Now, suppose that rule B is applied. Note that if ui ≥ r and

vi ≥ r , then both u and v are added to Pi , and thus P (u) = P (v ).
Therefore,

Pr (P (u) = P (v ) | rule B) ≥ Pr (ui ≥ r , vi ≥ r ) =
1

k

k∑
i=1

min(ui ,vi )

θ

=
1

kθ

k∑
i=1

ui +vi − |ui −vi |

2

=
1

kθ
(1 − ∆) = β−1 (1 − ∆).

We conclude that

Pr (P (u) = P (v )) ≥ pβ−1 (1 − ∆) + (1 − p)β−1 (1 − ∆)

= β−1 (1 − ∆).

We have veri�ed that both conditions hold for α = 2(k − 1)/(k2θ )
and β = kθ . As required, αβ = 2 − 2/k .

The algorithm clearly runs in polynomial-time. Since the algo-

rithm generates only two random variables i and r , and additionally

makes only one random decision, the size of the distribution of P
is at most 2 × k × (nk ) = 2k2n. �

From Theorems 5.1, 5.2, and 5.3 we get the main theorem of this

section.

Theorem 5.4. The optimal LP solution for a (2 − 2/k )-stable in-
stance of Minimum Multiway Cut is integral. Consequently, there
is a robust polynomial-time algorithm for solving (2 − 2/k )-stable
instances. Further, there is a polynomial-time algorithm that given a
(2 − 2/k + δ ,N )-weakly stable instance of Minimum Multiway Cut
�nds a solution P ′ ∈ N (for every δ ≥ 1/poly(n) > 0).
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6 NEGATIVE RESULTS
6.1 MinimumMultiway Cut
In this subsection, we present a lower bound for integrality of

stable instances for the LP relaxation for Minimum Multiway Cut

by Călinescu, Karlo�, and Rabani [9] (which we will refer to as

the CKR relaxation). For that, we �rst make two claims regarding

the construction of stable instances and the use of integrality gap

examples as lower bounds for integrality of stable instances. We

state both claims in the setting of Minimum Multiway Cut, but they

can be easily applied to other partitioning problems as well.

Claim 6.1. Given an instance G = (V ,E,w ), w : E → R≥0,
of Minimum Multiway Cut with terminals T = {s1, ...,sk }, and an
optimal solution E∗ ⊆ E, for every γ > 1 and every ε ∈ (0,γ − 1), the
instance GE∗,γ = (V ,E,wE∗,γ ), where wE∗,γ (e ) =

w (e )
γ for e ∈ E∗,

and wE∗,γ (e ) = w (e ) for e < E∗, is a (γ − ε )-stable instance (whose
unique optimal solution is E∗).

Proof. First, it is easy to see that for every γ > 1, E∗ is the

unique optimal solution for GE∗,γ . We will now prove that GE∗,γ
is (γ − ε )-stable, for every ε ∈ (0,γ − 1). For that, we consider

any (γ − ε )-perturbation of GE∗,γ . More formally, this is a graph

G ′ = (V ,E,w ′), wherew ′(e ) = f (e ) ·wE∗,γ (e ), and f (e ) ∈ [1,γ −ε]

for all e ∈ E. Let Ē , E∗ be any feasible solution of G ′. We have

w ′(Ē) =
∑

e ∈Ē∩E∗
f (e )wE∗,γ (e ) +

∑
e ∈Ē\E∗

f (e )wE∗,γ (e )

≥ w ′(E∗) −
∑

e ∈E∗\Ē

f (e )wE∗,γ (e ) +
∑

e ∈Ē\E∗
wE∗,γ (e )

> w ′(E∗) −
∑

e ∈E∗\Ē

w (e ) +
∑

e ∈Ē\E∗
w (e ) (since γ > f (e ))

= w ′(E∗) −
∑
e ∈E∗

w (e ) +
∑
e ∈Ē

w (e )

≥ w ′(E∗) (since Ē is feasible for G ).

Thus,E∗ is the unique optimal solution for every (γ−ε )-perturbation

of GE∗,γ , and so GE∗,γ is (γ − ε )-stable. �

We will now use the above claim to show how an integrality

gap example for Minimum Multiway Cut can be converted to a

certi�cate of non-integrality of stable instances.

Claim 6.2. Let G be an instance of Minimum Multiway Cut, such
that OPT /OPTLP = α > 1, where OPT is the value of an optimal
integral Multiway Cut, and OPTLP is the value of an optimal frac-
tional solution. Then, for every ε ∈ (0,α − 1), we can construct an
(α − ε )-stable instance such that the CKR relaxation is not integral
for that instance.

Proof. Let G = (V ,E,w ) be an instance of Minimum Multiway

Cut such that OPT /OPTLP = α > 1. Let γ = α − δ , for any �xed

δ ∈ (0,α − 1). Let E∗ be an optimal integral solution, i.e. OPT =∑
e ∈E∗ w (e ). By Claim 6.1, for every ε ′ ∈ (0,γ −1),GE∗,γ is a (γ −ε ′)-

stable instance whose unique optimal solution is E∗. Let {ū}u ∈V be

an optimal LP solution for G. We de�ne de = d (u,v ) =
1

2
‖ū − v̄ ‖1,

for every e = (u,v ) ∈ E, and we have OPTLP =
∑
e ∈E w (e )de . Note

that {ū}u ∈V is a feasible fractional solution forGE∗,γ , and we claim

that its cost in GE∗,γ is strictly smaller than the (integral) cost of

the optimal solution E∗ in GE∗,γ . For that, we have

wE∗,γ (E
∗) =

∑
e ∈E∗

wE∗,γ (e ) =
1

γ

∑
e ∈E∗

w (e ) =
α

α − δ

∑
e ∈E

w (e )de

>
∑
e ∈E

w (e )de ≥
∑
e ∈E

wE∗,γ (e )de ,

which implies that the LP is not integral for the instance GE∗,γ .

Setting δ = ε ′ = ε/2 �nishes the proof. �

Claim 6.2 allows us to convert any integrality gap result for the

CKR relaxation into a lower bound for non-integrality. Thus, by

using the Freund-Karlo� integrality gap construction [10], we can

deduce that there are

(
8

7+ 1

k−1

− ε

)
-stable instances of Minimum

Multiway Cut for which the CKR relaxation is not integral. An

improved integrality gap construction by Angelidakis, Makarychev,

and Manurangsi [1] also implies that there are

(
6

5+ 1

k−1

− ε

)
-stable

instances of Minimum Multiway Cut for which the CKR relaxation

is not integral. But, with a more careful analysis, we can obtain

a stronger lower bound. More formally, we prove the following

theorem.

Theorem 6.3. For every ε > 0 and k ≥ 3, there exist
(

4

3+ 1

k−1

− ε

)
-

stable instances of MinimumMultiway Cut withk terminals for which
the CKR relaxation is not integral.

Proof. We use the Freund-Karlo� construction [10], that is,

for any k , we construct the graph G = (V ,E,w ), where the set of

vertices is V = {1, ...,k } ∪ {(i, j ) : 1 ≤ i < j ≤ k }, and the set of

edges is E = E1 ∪ E2, E1 = {[i, (i, j )],[j, (i, j )] : 1 ≤ i < j ≤ k } and

E2 =
{
[(i, j ), (i ′, j ′)] : i < j,i ′ < j ′, |{i,i ′, j, j ′}| = 3

}
. Here, we use

the notation [u,v] to denote an edge, instead of the standard (u,v ),
so as to avoid confusion with the tuples used to describe the vertices.

The set of terminals is T = {1, ..,k } ⊂ V . The weights are set in

the same way as in the Freund and Karlo� construction, i.e. the

edges in E1 all have weight 1 and the edges in E2 all have weight

w = 3

2k . Freund and Karlo� proved that by setting the weights

in this way, the graph has an optimal solution that assigns every

vertex (i, j ),i < j, to terminal i . Let E∗ ⊆ E be the edges cut by this

solution. We haveOPT = w (E∗) =
(k

2

)
+ 3

2k · 2
(k

3

)
= (k − 1)2. They

also proved that an optimal fractional solution assigns each vertex

(i, j ) to the vector (ei + ej )/2, and, thus, the (fractional) length of

each edge e ∈ E is de =
1

2
. This implies thatOPTLP =

1

2

∑
e ∈E we =

1

2
·
(
2

(k
2

)
+ 3

2k · 3
(k

3

))
= OPT / 8

7+ 1

k−1

.

We now scale the weights of all edges in E∗ down by a factor γ >
1, and, by Claim 6.1, obtain a (γ − ε )-stable instance GE∗,γ , whose

unique optimal solution is E∗. The cost of this optimal solution is

OPTγ =
1

γ · OPT . We consider the same fractional solution that

assigns every node (i, j ) to the vector (ei + ej )/2. The fractional

cost now is:

XE∗,γ =
1

2

[
1

γ
·

(
k

2

)
+

3

2γk
· 2

(
k

3

)]
+

1

2

[(
k

2

)
+

3

2k

(
k

3

)]
.
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We want to maintain non-integrality, i.e. we want OPTγ > XE∗,γ .

Thus, we must have

1

2γ
(k − 1)2 >

1

8

(k − 1) (3k − 2), which gives γ <
4(k − 1)

3k − 2

.

This implies that, for every ε > 0, there exist

(
4

3+ 1

k−1

− ε

)
-stable

instances of Minimum Multiway Cut with k terminals that are not

integral with respect to the CKR relaxation. �

6.2 Minimum Vertex Cover
In this subsection, we prove that, under standard complexity as-

sumptions, no robust algorithms (as de�ned in De�nition 2.8) exist

for γ -stable instances of Minimum Vertex Cover, even when γ is

very large (we precisely quantify this later in this subsection). Be-

fore presenting our results, it is worth noting that robustness is

a very desirable property of algorithms, since it guarantees that

the output is always correct, even when the instance is not stable

(and it is usually the case that we do not know whether the input is

stable or not). Furthermore, proving that no robust algorithm exists

for γ -stable instances of a given problem implies that no LP/SDP or

other convex relaxation that is solvable in polynomial time can be

integral for γ -stable instances of the problem, thus ruling out the

possibility of having an algorithm that solves γ -stable instances by

solving the corresponding relaxation. We now turn our attention

to Minimum Vertex Cover.

A Minimum Vertex Cover (VC) instance G = (V ,E,w ), w : V →
R≥0, is called γ -stable, for γ ≥ 1, if it has a unique optimal solution

X ∗ ⊆ V , and for every γ -perturbation (i.e. for every instance G ′ =
(V ,E,w ′) where w (u) ≤ w ′(u) ≤ γw (u), for every u ∈ V ), the

solution X ∗ remains the unique optimal solution. In order to prove

our impossibility result for Vertex Cover, we need the following

de�nition.

De�nition 6.4 (GAP-IS). For any 0 < α < β , the (α ,β )-GAP-IS

problem is a promise problem that takes as input a (vertex-weighted)

graph G whose independent set is either strictly larger than β or at

most α and asks to distinguish between the two cases, i.e. decide

whether G has an independent set of size

• strictly larger than β (i.e. OPT > β ; YES instance)

• at most α (i.e. OPT ≤ α ; NO instance)

We will prove that the existence of a robust algorithm for γ -

stable instances of VC would allow us to solve (β/γ − δ ,β )-GAP-IS,

for every β > 0 and arbitrarily small δ > 0.

Lemma 6.5. Given a robust algorithm for γ -stable instances of
Minimum Vertex Cover, for some γ > 1, there exists an algorithm that
can be used to e�ciently solve (β/γ − δ ,β )-GAP-IS, for every β > 0

and every δ ∈ (0,β/γ ).

Proof. Given a (β/γ − δ ,β )-GAP-IS instance G = (V ,E,w ),
w : V → R≥0, we construct the graph G ′ = (V ′,E ′,w ′), where

V ′ = V ∪ {s}, E ′ = E ∪ {(v,s ) : v ∈ V }, w ′(v ) = w (v ) for all v ∈ V
and w ′(s ) = β . Every vertex cover X ⊆ V ′ of G ′ is of one of the

following forms:

• X = V , with cost w ′(X ) = w (V ).

• X = (V \ I ) ∪ {s}, where I is an independent set of the original

graphG . The cost of X in this case isw ′(X ) = w (V )−w (I )+ β .

Let I∗ ⊆ V denote a maximum independent set ofG andOPTI S (G ) =

w (I∗) denote its cost. Then, an optimal vertex cover is either V or

(V \ I∗) ∪ {s}. Observe that we can never have w (V ) = w ((V \
I∗) ∪ {s}), since this would imply that OPTI S (G ) = β , and this is

impossible, given that G is a (β/γ − δ ,β )-GAP-IS instance.

We now run the robust algorithm for γ -stable instances of VC on

G ′, and depending on the outputY , we make the following decision:

• Y = V :V is the optimal VC ofG ′, and sow (V ) ≤ w (V )−w (I )+
β for all independent sets I of G. This implies that w (I∗) ≤ β ,

and, since the instance is a (β/γ − δ ,β )-GAP-IS instance, we

must have w (I∗) ≤ β/γ − δ . We output NO.

• Y = (V \ I∗) ∪ {s} for some (maximum) independent set I∗:
We have w (V ) ≥ w (V ) −w (I∗) + β , and so w (I∗) ≥ β . From

the above discussion, this implies that w (I∗) > β , and so we

output YES.

• Y = not stable: Since the instance is not γ -stable, it is not hard

to see that there must exist an independent set I ofG , such that

w (V \ I ) + γw (I ) ≥ w (V \ I ) + β (since otherwise the instance

would be γ -stable withV being the optimal VC), which implies

that w (I ) ≥ β/γ . Thus, w (I∗) > β , and so we output YES.

We designed an algorithm that uses a robust algorithm for γ -stable

instances of Minimum Vertex Cover as a black-box and solves the

(β/γ − δ ,β )-GAP-IS problem, for every β > 0 and arbitrarily small

δ > 0. �

We now use the known inapproximability results for Indepen-

dent Set in conjunction with Lemma 6.5. In particular, we need the

following two theorems, the �rst proved by Zuckerman [20] (also

proved earlier by Håstad in [11] under the complexity assumption

that NP * ZPP ), and the second by Khot and Ponnuswami [12].

Theorem 6.6 (Zuckerman [20]). It is NP-hard to approximate
theMaximum Independent Set to withinn1−ε , for every constant ε > 0.
Equivalently, it is NP-hard to solve (α ,β )-GAP-IS, for β/α = n1−ε ,
for every constant ε > 0.

Theorem 6.7 (Khot and Ponnuswami [12]). For every constant
ε > 0, there is no polynomial time algorithm that approximates the
Maximum Independent Set to within n/2(logn)3/4+ε

, assuming that

NP * BPT IME
(
2
(logn)O (1)

)
.

Combining Lemma 6.5 with the above two theorems, we obtain

the following theorem.

Theorem 6.8.

(1) For every constant ε > 0, there is no robust algorithm for
γ -stable instances of Minimum Vertex Cover, for γ = n1−ε ,
assuming that P , NP .

(2) For every constant ε > 0, there is no robust algorithm for γ -
stable instances ofMinimumVertex Cover, forγ = n

2
(logn )3/4+ε ,

assuming that NP * BPTIME
(
2
(logn)O (1)

)
.

As an immediate corollary, we get the same lower bounds for sta-

bility for Set Cover, since Minimum Vertex Cover can be formulated

as a Set Cover instance.
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Corollary 6.9.

(1) For every constant ε > 0, there is no robust algorithm for
γ -stable instances of Set Cover, for γ = n1−ε , assuming that
P , NP .

(2) For every constant ε > 0, there is no robust algorithm for
γ -stable instances of Set Cover, for γ = n

2
(logn )3/4+ε , assuming

that NP * BPTIME
(
2
(logn)O (1)

)
.

6.3 Min 2-Horn Deletion
In this subsection, we focus on Min 2-Horn Deletion, and prove that

the lower bound for robust algorithms for VC can be extended to

this problem as well, since VC can be formulated as a Min 2-Horn

Deletion in a convenient way. We start with the de�nition of Min

2-Horn Deletion and then state and prove the main theorem of this

section.

De�nition 6.10 (Min 2-Horn Deletion). Let {xi }i ∈[n]
be a set of

boolean variables and let F = {Cj }j ∈[m]
be a set of clauses on

these variables, where each C ∈ F has one of the following forms:

xi , x̄i , x̄i ∨ x j , or x̄i ∨ x̄ j . In words, each clause has at most two

literals and is allowed to have at most one positive literal. We are

also given a weight function w : F → R≥0, and the goal is to �nd

an assignment f : {x1, ...,xn } → {true, f alse} such that the weight

of the unsatis�ed clauses is minimized.

It will be convenient to work with the dual Min 2-Horn Deletion,

in which each clause contains at most one negated literal. Observe

that the two problems are equivalent, since, given a Min 2-Horn

Deletion instance with variables {xi }i ∈[n]
, we can de�ne the vari-

ables yi = x̄i , i ∈ [n], and substitute them in F , thus obtaining

a dual Min 2-Horn Deletion with the exact same value. We now

prove the following theorem.

Theorem 6.11.

(1) For every constant ε > 0, there is no robust algorithm for
γ -stable instances of Min 2-Horn Deletion, for γ = n1−ε ,
assuming that P , NP .

(2) For every constant ε > 0, there is no robust algorithm for
γ -stable instances of Min 2-Horn Deletion forγ = n

2
(logn )3/4+ε ,

assuming that NP * BPTIME
(
2
(logn)O (1)

)
.

Proof. Let us assume that there exists a robust algorithm for

γ -stable instances of Min 2-Horn Deletion, for some γ > 1. We will

prove that this would give a robust algorithm for γ -stable instances

of VC. For that, we consider any Minimum Vertex Cover instance

G = (V ,E,w ), w : V → R≥0, and construct an instance F (G ) of

Min 2-Horn Deletion as follows (for convenience, as explained

above, we assume that each clause contains at most one negation,

i.e. we construct a dual Min 2-Horn Deletion formula). We introduce

variables {xu }u ∈V and |V |+ |E | clauses, withCu := x̄u , for everyu ∈
V , andC(u,v ) := xu∨xv , for every (u,v ) ∈ E. We also assign weights

w ′, withw ′(Cu ) = w (u),u ∈ V , andw ′(C(u,v ) ) = 1+γ ·
∑
q∈V w (q),

for every (u,v ) ∈ E.

Observe that an immediate upper bound for the cost of the

optimal assignment of F (G ) is

∑
u ∈V w (u), since we can always

delete all the clauses Cu and set all variables to true . Thus, an op-

timal assignment never violates a clause C(u,v ) , (u,v ) ∈ E. This

means that in an optimal assignment f ∗, for every (u,v ) ∈ E, either

f ∗ (xu ) = true or f ∗ (xv ) = true . This implies that the set X ( f ∗) =
{u ∈ V : f ∗ (xu ) = true} is a feasible vertex cover ofG . It also means

that the cost of an optimal assignment is

∑
u ∈V :f ∗ (xu )=true w (u) =

w (X ( f ∗)). We will now show that X ( f ∗) is in fact an optimal ver-

tex cover of G. First, note that the cost of any assignment д (not

necessarily optimal) that does not violate any of the clauses C(u,v ) ,

(u,v ) ∈ E, is

∑
u ∈V :д (xu )=true w (u). Suppose now that there ex-

ists a vertex cover X ′ , X ( f ∗) with cost w (X ′) < w (X ( f ∗)). Let

д(xu ) = true ifu ∈ X ′, and д(xu ) = f alse ifu < X ′. It is easy to see

that д does not violate any of the clauses C(u,v ) , (u,v ) ∈ E. Thus,

the cost of the assignment д is equal to

∑
u ∈V :д (xu )=true w (u) =

w (X ′) < w (X ( f ∗)), which contradicts the optimality of f ∗, and, so,

we conclude that the set X ( f ∗) is an optimal vertex cover of G.

We will now show that if F (G ) is notγ -stable, thenG cannot beγ -

stable. First, observe that anyγ -perturbation of F (G ) has an optimal

solution of cost at most γ ·
∑
u ∈V w (u), implying that in every γ -

perturbation of F (G ), an optimal solution only deletes clauses of the

form Cu = xu , for u ∈ V . In other words, in every γ -perturbation

of F (G ), an optimal assignment д de�nes a feasible vertex cover

X = {u ∈ V : д(u) = true}. This also implies that the perturbation

of the weights w (C(u,v ) ) cannot change the optimal assignment,

and so, the weights of the clauses Cu , u ∈ V , completely specify

the optimal value. Moreover, if w̃ is the weight function for a γ -

perturbation of F (G ) (whose optimal assignment de�nes the set X
as before), we can use the observation of the previous paragraph

to conclude that the vertex cover X is optimal for the instance

G ′ = (V ,E,w ′), in which w ′(u) = w̃ (Cu ) for all u ∈ V . Note that

G ′ is a γ -perturbation of G. Suppose now that F (G ) is not γ -stable.

Thus, there exists a subset X ⊆ V such that an optimal assignment

for F (G ) deletes the clauses {Cu : u ∈ X } (i.e. f (xu ) = true i�

u ∈ X ) while there exists a γ -perturbation F ′(G ) of F (G ) such that

an optimal assignment for F ′(G ) deletes the clauses {Cu : u ∈ X ′}
for some X ′ , X . As argued, X is an optimal vertex cover forG and

X ′ is an optimal vertex cover for some γ -perturbation of G. Since

X , X ′, the instance G is not γ -stable.

We are ready to present our robust algorithm for γ -stable in-

stances of VC. We use the robust algorithm for γ -stable instances of

Min 2-Horn Deletion on F (G ). Let Y be the output of the algorithm,

when ran on the instance F (G ):

• Y = f , where f : {xu }u ∈V → {true, f alse}: As discussed

previously, the set X = {u ∈ V : f (xu ) = true} is an optimal

vertex cover for G, and so we output X .

• Y = not stable: We output “not stable", since, by the previous

discussion, the VC instance cannot be γ -stable.

Plugging in the bounds of Theorem 6.8, we obtain our bounds. �
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A UNIVERSAL SEPARABLE CENTER-BASED
CLUSTERING OBJECTIVES

In this section, we show that every separable center-based objective,

satisfying some additional properties, is a natural center-based

objective. To this end, we de�ne a universal center-based objective

and show that every universal center-based objective is a natural

center-based objective.

Loosely speaking, a universal center-based objective is a center-

based objective that satis�es two properties, which we discuss now:

• An arbitrary center-based objective is de�ned on a speci�c

set of points X and can be used to compute the cost of clus-

tering only of the set X (given a metric d on X ). In contrast,
a universal objective can be used to compute the cost of
clustering of any ground set X .

• Recall that in every optimal clustering with a center-based

objective each point u ∈ X is closer to the center of its own

cluster than to the center of any other cluster. If a partition

is not optimal, some points might be closer to the centers of

clusters that do not contain them than to the centers of their

own clusters. Then, we can move such points to other clusters

so as to minimize their distance to the cluster centers. In fact,

one of the two steps of Lloyd’s algorithm does exactly this;

hence, we call such a transformation a Lloyd’s improvement. We

slightly strengthen the de�nition of a center-based objective by

requiring that a universal objective not increase when we
make a Lloyd’s improvement of any – not necessarily
optimal – clustering.

Now we give a few auxiliary de�nitions and then formally de�ne

universal center-based objectives. Since data sets used in applica-

tions are usually labeled, we will consider “labeled metric spaces”.

We will assume that the cost of clustering of X may depend on the

distances between the points in X and point labels (but not on the

identities of points).

De�nition A.1 (Labeled Metric Space). A metric space labeled

with a set of labels L is a pair ((X ,d ),l ), where (X ,d ) is a metric

space, and l : X → L is a function that assigns a label to each point

in X .

De�nition A.2 (Isomorphic Labeled Metric Spaces). We say that

two metric spaces ((X ′,d ′),l ′) and ((X ′′,d ′′),l ′′) labeled with the

same set L are isomorphic if there exists an isometry φ : X ′ → X ′′

(i.e., φ is a bijection preserving distances: d ′(u,v ) = d ′′(φ (u),φ (v ))
for all u,v ∈ X ′) that preserves labels; i.e. l ′(u) = l ′′(φ (u)) for all

u ∈ X ′.

We note that in the de�nition above the set L may be in�nite. We

denote the restriction of ((X ,d ),l ) to a non-empty subsetC ⊂ X by

((X ,d ),l ) |C : ((X ,d ),l ) |C = ((C,d |C ),l |C ). Note that the restriction

of a metric set labeled with L to a cluster C is also a metric set

labeled with L.

De�nition A.3. Consider a clustering problem ((X ,d ),H ,k ) with

a center-based objective. We say that a clustering C ′
1
, . . . ,C ′k is a

Lloyd’s improvement of a clustering C1, . . . ,Ck if there exists a set

of centers c1, . . . ,ck ofC1, . . . ,Ck (i.e., each ci ∈ center(Ci ,d )) such

that

• ci ∈ C
′
i (a Lloyd’s improvement does not move the centers to

other clusters)

• for every x ∈ X : if x ∈ Ci and x ∈ C ′j , then d (x ,c j ) ≤ d (x ,ci )

(a Lloyd’s improvement may move point x from Ci to C ′j only

if d (x ,c j ) ≤ d (x ,ci )).

De�nition A.4 (Universal Objective). We say thatH is a univer-

sal center-based clustering objective for a label set L, if for every

metric space ((X ,d ),l ) labeled with L the problem ((X ,d ),Hl ,k ) is

a clustering problem with a separable center-based objective and

the following two conditions hold.

(1) Cluster scores Hl are universal (“can be used on any met-

ric space”): Given any �nite metric space ((C,d ),l ) labeled

with L, the function Hl (C,d ) returns a real number – the

cost of C; and Hl ′ (C
′,d ′) = Hl ′′ (C

′′,d ′′) for any two iso-

morphic labeled metric spaces ((C ′,d ′),l ′) and ((C ′′,d ′′),l ′′).
(2) If C ′

1
, . . . ,C ′k is a Lloyd’s improvement of C1, . . . ,Ck , then

H (C ′
1
, . . . ,C ′k ;d ) ≤ H (C1, . . . ,Ck ;d ).

Note that every natural center-based objective is a universal

objective. The label set is the set of pairs ( f ,д), where f ∈ R is a

real number; д is a nondecreasing function from R≥0 to R. Every

point x ∈ X is assigned the label l (x ) = ( fx ,hx ). The score of a

https://youtu.be/QQPFAkNAhUE
https://youtu.be/QQPFAkNAhUE
theory.stanford.edu/~tim/f14/l/l8.pdf
https://youtu.be/thHt1lhLqJA
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cluster C equals

Hl (C,d ) = min

c ∈C

(
fc +

∑
x ∈C

дx (d (x ,c ))
)
; (8)

Hl (C,d ) = min

c ∈C

(
max

(
fc ,max

x ∈C
дx (d (x ,c )

))
. (9)

It is easy to see that Lloyd’s improvements may only decrease the

cost of a clustering, since the functions дx are non-decreasing. We

now show that every clustering problem with universal separable

center-based objectives is a problem with natural center-based

objectives.

Theorem A.5. I. Let ((X ,d ),H ,k ) be a clustering problem with
a universal center-based separable sum-objective. Then, the scoring
functionHl can be represented as (8) for some nondecreasing functions
f andд such that the minimum is attained when c is a center ofC ; and
thusH (C1, . . . ,Ck ;d ) =

∑k
i=1

Hl (Ci ,d |Ci ) is a natural center-based
objective.

II. Let ((X ,d ),H ,k ) be a clustering problemwith a universal center-
based separable max-objective. If the cost of any singleton cluster
{x } equals 0, then the scoring function Hl can be represented as (9)
for some nondecreasing functions f and д such that the minimum
is attained when c is a center of C ; ; and thus H (C1, . . . ,Ck ;d ) =
maxi ∈{1, ...,k } Hl (Ci ,d |Ci ) is a natural center-based objective.

We defer the proof of this theorem to the full version of the paper

(available on arXiv).

B PROOFS OF THEOREM 5.1 AND
THEOREM 5.2

In this section, we prove Theorems 5.1 and Theorem 5.2. The proofs

are very similar to the proofs from [13]; but we make a key obser-

vation that it is su�cient to only require that the rounding schemes

are ε-local (see Section 5 for the de�nitions).

We use the following lemma by Bilu and Linial [7] (the lemma

holds for any graph partitioning problem; here, we state it speci�-

cally for Minimum Multiway Cut).

Lemma B.1 (Bilu and Linial [7]). Consider a γ -stable instance
of Minimum Multiway Cut. Let P be the optimal multiway cut and
Ecut be the set of edges cut by P . Let P ′ , P be any other multiway
cut and E ′cut be the set of edges cut by P

′. Then,

γ w (Ecut \ E
′
cut ) < w (E ′cut \ Ecut ).

Proof of Theorem 5.1. Consider an (αβ )-stable instance of Min-

imum Multiway Cut. Let P be the optimal multiway cut and Ecut
be the set of edges cut by P .

Assume that there is an optimal LP solution, which is not integral.

Denote it by

{
ūLP

}
. Let

{
ūI NT

}
be the LP solution corresponding to

the optimal combinatorial solution. Consider a convex combination

{ū} of solutions

{
ūLP

}
and

{
ūI NT

}
, de�ned by ū = εūLP + (1 −

ε )uI NT
. Note that the cost of

{
ūLP

}
is at most the cost of

{
ūI NT

}
,

and thus, by the convexity of the LP objective, the cost of {ū} is at

most the cost of

{
ūI NT

}
. Further, note that {ū} is not integral, but

it is ε-close to an integral solution (as de�ned in Section 5). Hence,

we can apply our ε-local (α ,β )-rounding scheme to it.

Let d (u,v ) = ‖ū−v̄ ‖1
2

. Let P ′ be a random multiway cut obtained

by rounding {ū}, and let E ′cut be the set of edges cut by P ′. Since

the solution ū is not integral, P ′ , P with non-zero probability.

From (αβ )-stability of the instance and Lemma B.1, we get that

(αβ )w (Ecut \ E
′
cut ) < w (E ′cut \ Ecut ) unless P ′ = P ,

and therefore (here we use that Pr(P , P ′) > 0),

(αβ )E
[
w (Ecut \ E

′
cut )

]
< E

[
w (E ′cut \ Ecut )

]
. (10)

Let

LP+ =
∑

(u,v )∈Ecut

w (u,v ) (1 − d (u,v )) and

LP− =
∑

(u,v )∈E\Ecut

w (u,v ) d (u,v ).

From the approximation and co-approximation conditions that the

rounding scheme satis�es, we get

E
[
w (Ecut \ E

′
cut )

]
=

∑
(u,v )∈Ecut

w (u,v ) Pr((u,v ) < E ′cut )

≥
∑

(u,v )∈Ecut

w (u,v )β−1 (1 − d (u,v )) = β−1LP+,

E
[
w (E ′cut \ Ecut )

]
=

∑
(u,v )∈E\Ecut

w (u,v ) Pr((u,v ) ∈ E ′cut )

≤
∑

(u,v )∈E\Ecut

w (u,v ) α d (u,v ) = α LP−.

Using inequality (10), we conclude that LP+ < LP−. On the other

hand, from the formulas for LP+ and LP−, we get

LP+ − LP− = w (Ecut ) −
∑

(u,v )∈E

w (u,v ) d (u,v ) ≥ 0,

since the cost of the LP solution {ū} is at most the cost of

{
ūI NT

}
.

We get a contradiction, which concludes the proof. �

Now we proceed with the proof of Theorem 5.2. We use the

following lemma from [13].

Lemma B.2. Consider a (γ ,N )-stable instance of Minimum Mul-
tiway Cut. Let P be the minimum multiway cut. Then for every
multiway cut P ′ < N , we have

γw (Ecut \ E
′
cut ) < w (E ′cut \ Ecut ),

where Ecut is the set of edges cut by P and E ′cut is the set of edges cut
by P ′.

Lemma B.3. Suppose that there is a polynomial-time ε-local (α ,β )-
rounding, where ε ≥ 1/poly(n) > 0. Let δ ≥ 1/poly(n) > 0. Then
there is a polynomial-time algorithm that, given an (αβ+δ ,N )-stable
instance of Minimum Multiway Cut and a feasible multiway cut P◦,
it does the following

• if P◦ < N , it �nds a multiway cut P ′ such that

cost(P ′) − cost(P ) ≤ (1 − τ )
(
cost(P◦) − cost(P )

)
,

where P is theminimummultiway cut, cost(P ), cost(P◦), cost(P ′)

are the costs of P , P◦, and P ′, respectively;τ = εδ β−1

α β+δ ≥
1

poly(n) >

0.

• if P◦ ∈ N , it either returns a multiway cut P ′ better than P◦ or
certi�es that P◦ ∈ N .
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Proof. Let E◦cut be the set of edges cut by P◦. De�ne edge

weights w ′(u,v ) by

w ′(u,v ) =



w (u,v ), if(u,v ) ∈ E◦cut ,

(αβ )w (u,v ), otherwise.

We solve the LP relaxation for Minimum Multiway Cut with weights

w ′(u,v ). Let {ūLP } be the optimal LP solution. Let

{
ūI NT

}
be the

LP solution corresponding to P◦ (here, the de�nition of

{
ūI NT

}

di�ers from that in Theorem 5.1). As in the proof of Theorem 5.1,

we de�ne a convex combination of solutions {ūLP } and

{
ūI NT

}
:

ū = εūLP + (1 − ε )uI NT
. Note that {ū} is ε-close to an integral

solution. Hence we can apply our ε-local (α ,β )-rounding scheme

to it.

Let d (u,v ) = ‖ū − v̄ ‖1/2, d I NT (u,v ) = ‖ūI NT − v̄ I NT ‖1/2, and

dLP (u,v ) = ‖ūLP − v̄LP ‖1/2; let dOPT
be the distance de�ned by

the optimal multiway cut P . From the subadditivity of the `1-norm,

we get

d (u,v ) ≤ (1 − ε )d I NT (u,v ) + εdLP (u,v ). (11)

We apply the ε-local (α ,β )-rounding procedure to the solution {ū}
and get a distribution of random multiway cuts P ′ = (P ′

1
, . . . ,P ′k ).

Let E ′cut be the set of edges cut by P ′. De�ne

LP+ =
∑

(u,v )∈E◦cut

w ′(u,v ) (1 − d (u,v ))

=
∑

(u,v )∈E◦cut

w (u,v ) (1 − d (u,v )),

LP− =
∑

(u,v )∈E\E◦cut

w ′(u,v ) d (u,v )

= (αβ )
∑

(u,v )∈E\E◦cut

w (u,v ) d (u,v ).

We have,

E
[
w (E◦cut \ E

′
cut )

]
=

∑
(u,v )∈E◦cut

w (u,v ) Pr((u,v ) < E ′cut )

≥ β−1

∑
(u,v )∈E◦cut

w (u,v ) (1 − d (u,v ))

= β−1LP+,

E
[
w (E ′cut \ E

◦
cut )

]
=

∑
(u,v )∈E\E◦cut

w (u,v ) Pr((u,v ) ∈ E ′cut )

≤ α
∑

(u,v )∈E◦cut

w (u,v ) d (u,v ) = β−1LP−.

Therefore,

E
[
w (E◦cut ) −w (E ′cut )

]
= E

[
w (E◦cut \ E

′
cut )

]
− E

[
w (E ′cut \ E

◦
cut )

]
≥ β−1 (LP+ − LP−).

Observe that (here, we use (11))

LP+ − LP− =
∑

(u,v )∈E

w ′(u,v ) (d I NT (u,v ) − d (u,v ))

≥ ε
∑

(u,v )∈E

w ′(u,v ) (d I NT (u,v ) − dLP (u,v )).

Since

{
ūLP

}
is an optimal LP solution for the instance with weights

w ′, we have∑
(u,v )∈E

w ′(u,v ) dLP (u,v ) ≤
∑

(u,v )∈E

w ′(u,v ) dOPT (u,v ).

Therefore, if P◦ < N , using Lemma B.2, we get

LP+ − LP− ≥ ε
∑

(u,v )∈E

w ′(u,v ) (d I NT (u,v ) − dOPT (u,v ))

= ε
(
w ′(E◦cut \ Ecut ) −w

′(Ecut \ E
◦
cut )

)
= ε

(
w (E◦cut \ Ecut ) − (αβ )w (Ecut \ E

◦
cut )

)
≥

εδ

αβ + δ
w (E◦cut \ Ecut )

≥
εδ

αβ + δ
(w (E◦cut ) −w (Ecut )).

Thus, E
[
w (E◦cut ) −w (E ′cut )

]
≥

εδ β−1

α β+δ (w (E◦cut ) − w (Ecut )), or

equivalently

E
[
w (E ′cut ) −w (Ecut )

]
≤

(
1 −

εδβ−1

αβ + δ

)
(w (E◦cut ) −w (Ecut )).

Hence, if P◦ ∈ N , for some multiway cut P ′ in the distribution, we

have

w (E ′cut ) −w (Ecut ) ≤

(
1 −

εδβ−1

αβ + δ

)
(w (E◦cut ) −w (Ecut )).

We can e�ciently �nd this multiway cut, since the distribution of

P ′ has a support of polynomial size.

Note that the algorithm does not know whether P◦ ∈ N or not;

it tries all multiway cuts P ′ and �nds the best one P ′′. If P ′′ is

better than P◦, the algorithm returns P ′′; otherwise, it certi�es that

P◦ ∈ N . �

Proof of Theorem 5.2. We assume that all edge costs are inte-

gers between 1 and someW . Let C∗ be the cost of the optimal solu-

tion. We start with an arbitrary feasible multiway cut P (0) . Denote

its cost byC (0)
. LetT = dlog

1/(1−τ ) C
(0)e + 2 = O (n2τ logW ) (note

thatT is polynomial in the size of the input). We iteratively apply the

algorithm from Lemma B.3T times: �rst we get a multiway cut P (1)

from P (0) , then P (2) from P (1) , and so on. Finally, we get a multiway

cut P (T )
. If at some point the algorithm does not return a multiway

cut, but certi�es that the current multiway cut P (i ) is in N , we out-

put P (i ) and terminate the algorithm. We assume below that that

does not happen, and we get multiway cuts P (0) , . . . ,P (T )
. Denote

the cost of P (i ) by C (i )
. Note that C (0) > C (1) > · · · > C (T ) ≥ C∗.

Further, if Ci < N then C (i+1) −C∗ ≤ (1 − τ ) (C (i ) −C∗) and thus

C (i+1) −C (T ) ≤ (1 − τ ) (C (i ) −CT ). Observe that we cannot have

C (i+1) − C (T ) ≤ (1 − τ ) (C (i ) − CT ) for every i , because then we

would have

C (T−1) −C (T ) ≤ (1 − τ )T−1 (C (0) −CT ) ≤ (1 − τ )T−1C (0) < 1,

which contradicts to our assumption that all edge weights are inte-

gral and, consequently, C (T−1) −C (T )
is a positive integer number.

We �nd i such that C (i+1) −C (T ) > (1 − τ ) (C (i ) −CT ) and output

P (i ) . We are guaranteed that P (i ) ∈ N . �


	Abstract
	1 Introduction
	1.1 Our Results for Clustering Problems
	1.2 Our Results for Minimum Multiway Cut
	1.3 Our Hardness Results
	1.4 Overview

	2 Preliminaries
	3 Center Proximity for Metric Perturbation Resilience
	4 Clustering Algorithm
	4.1 Minimum Spanning Tree
	4.2 Dynamic Programming Algorithm

	5 Minimum Multiway Cut
	6 Negative Results
	6.1 Minimum Multiway Cut
	6.2 Minimum Vertex Cover
	6.3 Min 2-Horn Deletion

	References
	A Universal Separable Center-Based Clustering Objectives
	B Proofs of Theorem 5.1 and Theorem 5.2

