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Abstract
In this paper, we prove a two-sided variant of the Kirszbraun theorem. Consider an arbitrary subset
X of Euclidean space and its superset Y . Let f be a 1-Lipschitz map from X to Rm. The Kirszbraun
theorem states that the map f can be extended to a 1-Lipschitz map f̃ from Y to Rm. While
the extension f̃ does not increase distances between points, there is no guarantee that it does not
decrease distances significantly. In fact, f̃ may even map distinct points to the same point (that is,
it can infinitely decrease some distances). However, we prove that there exists a (1 + ε)-Lipschitz
outer extension f̃ : Y → Rm′

that does not decrease distances more than “necessary”. Namely,

∥f̃(x) − f̃(y)∥ ≥ c
√
εmin(∥x− y∥, inf

a,b∈X
(∥x− a∥ + ∥f(a) − f(b)∥ + ∥b− y∥))

for some absolutely constant c > 0. This bound is asymptotically optimal, since no L-Lipschitz
extension g can have ∥g(x) − g(y)∥ > Lmin(∥x− y∥, infa,b∈X(∥x− a∥ + ∥f(a) − f(b)∥ + ∥b− y∥))
even for a single pair of points x and y.

In some applications, one is interested in the distances ∥f̃(x) − f̃(y)∥ between images of points
x, y ∈ Y rather than in the map f̃ itself. The standard Kirszbraun theorem does not provide any
method of computing these distances without computing the entire map f̃ first. In contrast, our
theorem provides a simple approximate formula for distances ∥f̃(x) − f̃(y)∥.
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1 Introduction

In this paper, we prove a two-sided variant of the Kirszbraun theorem. The Kirszbraun
theorem [9] is widely used in high-dimensional geometry and analysis, and has recently found
applications in theoretical computer science and machine learning [1, 2, 3, 4, 5, 6, 7, 8, 10,
12, 14, 15, 16]. Recall that a function f from a subset S of Euclidean space1 ℓn

2 to Euclidean
space ℓm

2 is L-Lipschitz if it increases distances between points by at most a factor of L:

1 We denote d-dimensional Euclidean space by ℓd
2; i.e., ℓd

2 is Rd with the standard Euclidean distance.

© Arturs Backurs, Sepideh Mahabadi, Konstantin Makarychev, and Yury Makarychev;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:backurs@ttic.edu
mailto:mahabadi@ttic.edu
mailto:konstantin@northwestern.edu
mailto:yury@ttic.edu
https://doi.org/10.4230/LIPIcs.SoCG.2021.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Two-Sided Kirszbraun Theorem

∥f(x) − f(y)∥ ≤ L∥x− y∥ for all x, y ∈ X. The Lipschitz constant ∥f∥Lip of a function f is
the minimum number L such that f is L-Lipschitz. Now, consider a subset S of Euclidean
space ℓn

2 , its superset T ⊂ ℓn
2 , and an L-Lipschitz map f : S → Rm. The Kirszbraun theorem

states that f can be extended to a map f̃ : T → Rm without increasing its Lipschitz constant.
That is, the theorem guarantees that f̃ does not increase distances by more than a factor
of L. Can we guarantee that distances ∥f̃(x) − f̃(y)∥ do not decrease significantly? The
theorem does not provide us with any such guarantee; in fact, f̃ may even map distinct
points to the same point and thus contract some distances infinitely.

In this paper, we prove that there exists an extension f̃ that does not decrease distances
more than “necessary”. What kind of distance contraction is necessary? Consider sets
S ⊂ T ⊂ ℓn

2 and an L-Lipschitz map f : S → ℓm
2 . Note if f significantly contracts the

distance between a, b ∈ S, then so must f̃ , since f and f̃ coincide on a and b. Moreover,
every L-Lipschitz extension f̃ must map points that are close to a and b to points close to
f(a) and f(b), which we assumed are close to each other. More generally, consider arbitrary
points x, y ∈ T , a, b ∈ S, and a cL-Lipschitz extension f̃ of f (where c ≥ 1). Then, we have

∥f̃(x) − f̃(y)∥ ≤ ∥f̃(x) − f̃(a)∥ + ∥f̃(a) − f̃(b)∥ + ∥f̃(b) − f̃(y)∥
≤ cL∥x − a∥ + ∥f(a) − f(b)∥ + cL∥b − y∥. (1)

Since f̃ is cL-Lipschitz, we also have

∥f̃(x) − f̃(y)∥ ≤ cL∥x− y∥. (2)

We see that f̃ must satisfy (1) for all a, b ∈ S and (2). We restate this condition in the
following claim.

▷ Claim 1. Let S ⊂ T ⊂ ℓn
2 and f be an L-Lipschitz map from S to ℓm

2 . Define metric
dub(·, ·) on T as follows.

dub(x, y) = min
(
L∥x− y∥, inf

a,b∈S
(L∥x− a∥ + ∥f(a) − f(b)∥ + L∥b− y∥)

)
. (3)

Then for every c ≥ 1 and a cL-Lipschitz extension f̃ : T → ℓm
2 of f , we have

∥f̃(x) − f̃(y)∥ ≤ cdub(x, y) for all x, y ∈ T.

Note that dub(·, ·) satisfies all the axioms of a metric except that dub(x, y) may be equal to 0
for x ̸= y.

Our goal now is to prove a “tight” variant of the Kirszbraun theorem: there
exists a Lipschitz extension f̃ of f such that ∥f̃(x) − f̃(y)∥ ≥ Ω(dub(x, y))
for every x and y.

However, in order to obtain such a result or, for that matter, any non-trivial result, we need
to relax two conditions in the Kirszbraun theorem. We use the following example to explain
what these conditions are and why we need to relax them.

▶ Example 2. Consider a set S that consists of a circle C around point (0, 0) ∈ ℓ2
2 and two

points x = (2, 0) and y = (2, 2).
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Define f as follows: f maps each point of C to itself, x to x, and y to y′ = (0, 0). Let
T = S ∪ [x, y]. It is immediate that f is 1-Lipschitz and dub(u, v) > 0 for every pair of points
u and v. However, observe that the images of C and [a, b] under every Lipschitz extension
f̃ : T → ℓ2

2 necessarily intersect. Thus, every Lipschitz extension f̃ infinitely decreases the
distance between some pair of points.

To overcome this obstacle, we consider outer extensions f̃ of f [14], which are allowed to
use additional dimensions/coordinates. As standard, we denote the direct sum of Euclidean
or Hilbert spaces ℓa

2 and ℓb
2 by ℓa

2 ⊕ ℓb
2, which is isometrically isomorphic to ℓa+b

2 .

▶ Definition 3. Let S be a non-empty subset of Euclidean space ℓn
2 or separable Hilbert space

ℓ∞
2 and T be its superset. Consider a map f : S → ℓm

2 , where m can be finite or infinite.
Map f̃ from T to ℓm

2 ⊕ ℓ∆
2 ≃ ℓm′ is an outer extension of f : S → ℓm

2 to T ⊃ S (where ∆
may be finite or infinite, and m′ = m+ ∆) if it maps every point x ∈ S to f(x) ⊕ 0̄.2 We
will call extensions that do not use extra coordinates proper extensions.

In Example 2, a Lipschitz outer extension f̃ can map segment [x, y] to a curve that starts
at x, goes above the plane ℓ2

2, and then enters y. Map f̃ no longer maps distinct points to
the same point. However, the Lipschitz constant of f̃ must be greater than 1. Indeed, let
m be the midpoint between x and y. Point m is at distance 1 from each of the points x
and y. If f̃ were 1-Lipschitz, then it would map m to a point whose distances to x = f(x)
and y′ = f(y) would not exceed 1. However, the only such point is the midpoint between x

and y′, which lies on C. Thus, if f̃ were 1-Lipschitz, it would map distinct points to the same
point and thus would contract some distances infinitely. Therefore, given an L-Lipschitz
map f , we will construct a (1 + ε)L-Lipschitz outer extension f̃ rather than an L-Lipschitz
extension. We are ready to state our main result.

▶ Theorem 4 (Two-sided Kirszbraun Theorem). Consider m,n ∈ Z≥1 ∪ {∞} and ε ∈ [0, 1].
Let S ⊂ T be non-empty subsets of ℓn

2 and f be an L-Lipschitz map from S to ℓm
2 . Let

dub(·, ·) be as defined by formula (3). There exists a (1 + ε)L-Lipschitz outer extension f̃

from T to ℓm
2 ⊕ ℓ∆

2 ≃ ℓm′

2 such that

∥f̃(x) − f̃(y)∥ ≥ c
√
εdub(x, y) for all x, y ∈ T.

Here, c is an absolute constant. If |T \ S| is finite, then ∆ = O(log |T \ S|) and m′ = m+ ∆;
if |T \ S| is infinite, then ∆ = m′ = ∞.

2 That is, if m is finite, we identify ℓm
2 with the subspace of ℓm′

2 spanned by the first m basis vectors and
allow f̃ to take values in ℓm′

2 .

SoCG 2021



13:4 Two-Sided Kirszbraun Theorem

We discuss some properties of f̃ . It is easy to see that Claim 1 applies to both proper and
outer extensions. Therefore, ∥f̃(x) − f̃(y)∥ ≤ (1 + ε)dub(x, y). In particular, when ε ∈ (0, 1]
is fixed, distances ∥f̃(x) − f̃(y)∥ and Θ(dub(x, y)) are within a constant factor of each other.

∥f̃(x) − f̃(y)∥
dub(x, y) ∈ [c

√
ε, 1 + ε]. (4)

Least possible contraction for each pair (x, y). Another property of the map f̃ is that
it asymptotically contracts distances less than any other (c′L)-Lipschitz proper or outer
extension g of f :

∥f̃(x) − f̃(y)∥
by Theorem 4

≥ c
√
εdub(x, y)

by Claim 1
≥ c

√
ε

c′ ∥g(x) − g(y)∥ for all x, y ∈ T.

Easy to compute distances. For finite subsets S and T , we can efficiently compute extensions
– whose existence is guaranteed by the standard Kirszbraun theorem and Theorem 4 – using
semidefinite programming (SDP).3 However, in many proofs and applications we need to
know only distances ∥f̃(x) − f̃(y)∥ and not the map f̃ itself. The Kirszbraun theorem does
not provide any method for obtaining the distances other than computing the entire map f̃ ,
using SDP or MWU, and then directly computing ∥f̃(x) − f̃(y)∥. In contrast, Theorem 4
provides a simple formula (4) for approximately computing all pairwise distances.

Optimal parameters

The following theorem shows that the parameters in Theorem 4 cannot be significantly
improved.

▶ Theorem 5. The following items hold.

There exist finite sets S ⊂ ℓ2
2 and T = S ∪ {z1, z2} ⊂ ℓ2

2 and a 1-Lipschitz function
f : S → ℓ2

2 such that the following is true. For every ε ∈ (0, 1] and a (1 + ε)-Lipschitz
extension f̃ ,

∥f̃(z1) − f̃(z2)∥ ≤ O(
√
ε dub(z1, z2)).

For every m,n,N ≥ 1, there exist finite sets S ⊂ T ⊂ ℓn
2 with |T \S| = N and a 1-Lipschitz

map f : S → ℓm
2 such that the following is true. For every c > 0, if f̃ : ℓn

2 → ℓm′

2 is an
L-outer extension and ∥f̃(x) − f̃(y)∥ ≥ c dub(x, y) for every x, y ∈ T , then m′ ≥ c′ loge N

where c′ = 1/(loge(L/c+ 1)).

For every m,n ≥ 1, there exist infinite sets S ⊂ T ⊂ ℓn
2 and a 1-Lipschitz map f : S → ℓm

2
such that for every Lipschitz extension f̃ : T → ℓm′

2 satisfying ∥f̃(x) − f̃(y)∥ ≥ c dub(x, y)
(for every x, y ∈ T and some c > 0), we have m′ = ∞.

3 Standard Kirszbraun extensions can be also computed using quadratically constrained quadratic
programming (QCQP) or the multiplicative weight update method (MWU) [3].
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1.1 Applications
Next we discuss two applications of our result.

Updating Euclidean metric

Similarity information in data sets is often encoded with Euclidean distance: two data points
are similar if and only if they are close to each other (one can store either the distance itself
or an embedding of points in Euclidean space). Consider the scenario where we initially
have a data set X and some information about objects in X. Based on this information, we
compute a Euclidean distance dX on X. Then, we get an updated information about some
subset of points Y . Using this information, we compute a new Euclidean distance dY on Y .
Now we want to update dX with new distances from dY . A natural way to do this is to first
“combine” the metrics into a distance function dc(·, ·)

dc =
{
dY (x, y), if x, y ∈ Y

dX(x, y), otherwise
. (5)

Since dc is not necessarily a metric, we consider the metric closure du of dc (recall that by
definition du(x, y) is the length of the shortest path between x and y in the complete graph
on X with edge lengths dc(x, y); see Definition 10). Metric du is our updated metric. We
want du to be Euclidean (as dX and dY are), but, in general, it does not have to be Euclidean.

▶ Definition 6. A map f from a metric space (U, dU ) to a metric space (V, dV ) has distortion
at most D ≥ 1 if for some c > 0 and every x, y ∈ U ,

cdU (x, y) ≤ dV (f(x), f(y)) ≤ cDdU (x, y).

We say that a metric space (U, dU ) is D-Euclidean or that it embeds into Euclidean space
with distortion at most D, if there is an embedding f : U → ℓm

2 (for some m ∈ N ∪ ∞) with
distortion at most D.

We provide a sufficient condition when du is Euclidean.

▶ Theorem 7. I. Consider a finite DX-Euclidean metric space (X, dX). Let Y be a subset
of X and dY be a DY -Euclidean metric on Y . Assume that dY (x, y) ≤ CdX(x, y) for all
x, y ∈ Y (where C ≥ 1). Then the updated metric du (defined as the closure of dc; see (5))
is O(CDXDY )-Euclidean.

II. The requirement that dY (x, y) ≤ CdX(x, y) in item I is necessary. For every N , there
exist a 1-Euclidean metric space (X, dX) on at most N points, Y ⊂ X, and 1-Euclidean
metric dY on Y such that every embedding of the updated metric du into ℓ2 requires distortion
at least Ω(logN).

Bi-Lipschitz extension

The bi-Lipschitz constant, i.e., distortion, of a map f : X → Y is the minimum D such that
for some λ > 0 and every x, y ∈ X, λ·dX(x, y) ≤ dY (f(x), f(y)) ≤ λ·D ·dX(x, y). Recall that
the Bi-Lipschitz map, is a map with a bounded distortion. Recently, Mahabadi, Makarychev,
Makarychev, and Razenshteyn [14] proved a bi-Lipschitz variant of the Kirszbraun theorem
and showed its applications to prioritized dimension reductions.

SoCG 2021



13:6 Two-Sided Kirszbraun Theorem

▶ Theorem 8 (Kirszbraun theorem for bi-Lipschitz maps [14]). Consider S ⊂ T ⊂ ℓn
2 and a

map f : S → ℓm
2 with distortion at most D. There exists an outer extension f̃ : T → ℓm′

2
with distortion at most O(D), where m′ = m+ n.

This theorem follows immediately from Theorem 4 with the caveat that we do not get any
bound on m′ in terms of m and n (in particular, m′ might be significantly greater than m+n).
Indeed, we can assume without loss of generality that ∥f∥Lip = 1 and ∥f(x) − f(y)∥ ≥
∥x − y∥/D for all x, y ∈ S. Then dub(x, y) ≥ ∥x − y∥/D. Thus for the outer extension f̃

from Theorem 4 (say with ε = 1/2), we have Ω(∥x− y∥/D) ≤ ∥f̃(x) − f̃(y)∥ ≤ 3/2∥x− y∥;
that is, f̃ has distortion at most O(D).

Summary

In this paper, we prove a two-sided variant of the Kirszbraun theorem. The theorem
guarantees that there is a Lipschitz outer extension f̃ that contracts the distance of every pair
of points less than any other extension (up to a constant factor) and that has asymptotically
optimal parameters. Unlike the standard Kirszbraun theorem, our theorem provides a simple
approximate formula for distances ∥f̃(x) − f̃(y)∥. Additionally, we show an application of
our theorem to the Euclidean metric update problem.

Organization. In Section 2, we introduce some notation and relevant results as well as
formally state the Kirszbraun theorem. In Section 3, we prove Theorem 4. In Section 4, we
prove Theorem 5. Finally, in Section 5, we prove Theorem 7.

2 Preliminaries

In this paper, ℓn
2 denotes the n-dimensional Euclidean space equipped with the standard

Euclidean norm ∥ · ∥, when n < ∞; ℓ∞
2 = ℓ2 denotes the infinite dimensional separable

Hilbert space. For m < m′, we identify ℓm
2 with the m-dimensional subspace of ℓm′

2 spanned
by the first m standard basis vectors (in other words, we identify vectors (x1, . . . , xm) ∈ ℓm

2
and (x1, . . . , xm, 0, . . . , 0) ∈ ℓm′

2 ).
We will need the following theorem proved by Mendel and Naor [17].

▶ Theorem 9 (Lemma 5.2 in [17], restated). Consider space ℓn
2 (where n is finite or infinite).

For every r > 0, there exists a map ψr : ℓn
2 → ℓ2 such that4√

e− 1
e

min(∥x− y∥,
√

2 r) ≤ ∥ψr(x) − ψr(y)∥ ≤ min(∥x− y∥,
√

2 r)

∥ψr(x)∥ = r

for all x, y ∈ ℓn
2 .

We will consider maps h from R to Hilbert space ℓ2 equipped with the L2 norm:

∥h∥2
L2

=
∫ +∞

−∞
∥h(t)∥2dt.

4 The specific constants e−1
e and

√
2 do not appear in the statement of Lemma 5.2 in [17], but can be

easily deduced from the proof. Note that there is a typo on the last line of the proof of Lemma 5.2
in [17]: D should be replaced with

√
2D both in the lower and upper bounds for ∥F (x) − F (y)∥2.
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As standard, we denote the set of all such functions whose L2-norm is finite by L2(R, ℓ2).
We note that Hilbert space L2(R, ℓ2) is isometrically isomorphic to ℓ2.

In the proof, we will use a “bump function” λ:

λ(t) =

{
e

− 1
1−t2 , if t ∈ (−1, 1)

0, otherwise
−1 0 1

1/e

We will need the following easily verifiable properties of λ(t). Function λ is zero outside of
(−1, 1). It is non-negative and upper bounded by 1/e. Function λ is everywhere differenti-
able, and its derivative λ′(t) is bounded by 1 in absolute value. Finally, λ(t) > 1/4 when
t ∈ (−1/2, 1/2) and λ(t) > 1/7 when t ∈ (−2/3, 2/3).

▶ Definition 10 (Metric Closure). Consider a finite set of points X. Let d be a distance
function on X that does not necessarily satisfy the triangle inequality (we do assume that
for all x, y ∈ X: (i) d(x, y) = 0 if and only if x = y and (ii) d(x, y) = d(y, x)). Denote the
complete graph on X with edge lengths d(·, ·) by K(X, d). The metric closure of d is the
shortest path distance in K(X, d).

▶ Theorem 11 (Kirszbraun Extension Theorem). Consider a subset S of Euclidean space ℓn
2 ,

its superset T ⊂ ℓn
2 , and an L-Lipschitz map f : S → ℓm

2 . Then there exists an L-Lipschitz
extension f̃ : T → ℓm

2 . Dimensions m and n can be finite or infinite.

3 Two-sided Kirszbraun

In this section, we prove Theorem 4. We start with proving a simple geometric inequality
(Lemma 12) and then the main lemma (Lemma 13). Theorem 4 will easily follow from
Lemma 13.

Without loss of generality, we assume that set S is closed. If it is not, we let S′ be the
closure of S and extend f continuously to S′; then we apply the theorem to set S′. If ε = 0,
the theorem immediately follows from the standard Kirszbraun theorem, so we assume that
ε > 0. Let Rx = d(x, S) = miny∈S ∥x− y∥.

▶ Lemma 12. Let u, v ∈ ℓ2 be two vectors of length r and a ≥ b ≥ 0. Then

max((a− b)r, b∥u− v∥) ≤ ∥au− bv∥ ≤ (a− b)r + b∥u− v∥.

Proof. First, by the triangle inequality, ∥au− bv∥ ≤ ∥au− bu∥ + ∥bu− bv∥ = (a− b)∥u∥ +
b∥u− v∥ = (a− b)r + b∥u− v∥. Then ∥au− bv∥ ≥ ∥au∥ − ∥bv∥ = (a− b)r. Finally, observe
that ⟨u − v, u⟩ = r2 − r2 cosα ≥ 0, where α is the angle between u and v. Therefore,
⟨bu− bv, au− bu⟩ ≥ 0. We have ∥au− bv∥2 = ∥(bu− bv) + (au− bu)∥2 = ∥bu− bv∥2 + ∥au−
bu∥2 + 2⟨bu− bv, au− bu⟩ ≥ ∥bu− bv∥2. ◀

▶ Lemma 13. There is a map h : ℓn
2 → L2(R, ℓ2) such that

1. h maps S to 0,
2. ∥h(x) − h(y)∥L2 = Θ(min(∥x− y∥, Rx +Ry)) for all x, y ∈ ℓn

2 .

Proof. Let ψ be as in Theorem 9 and λ be the bump function defined in Section 2. Define
h : ℓn

2 → L2(R, ℓ2) as follows:

h(x)(t) = λ(lnRx − t)ψet(x).

Here, we assume that ln 0 = −∞ and λ(−∞) = 0; in other words, h(x)(t) = 0 if Rx = 0.

SoCG 2021



13:8 Two-Sided Kirszbraun Theorem

Let Ix = (lnRx − 1, lnRx + 1) for x /∈ S and Ix = ∅ for x ∈ S. We have the following
h(x)(t) = 0 when t /∈ Ix (since λ is supported on (−1, 1)).
∥h(x)(t)∥ = λ(lnRx − t)∥ψet(x)∥ = λ(lnRx − t)et < eRx when t ∈ Ix (since ∥λ∥∞ < 1
and ∥ψet(x)∥ = et).

We verify the first condition: If x ∈ S, then Rx = 0 and thus h(x) = 0, as required. Now
we verify the second condition. Below, we assume without loss of generality that Rx ≥ Ry.

First, we prove the desired upper bound on ∥h(x) − h(y)∥L2 for x, y ∈ ℓn
2 . Note that if

t /∈ Ix ∪ Iy, then ∥h(x)(t) − h(y)(t)∥ = 0. Further, the measure of Ix ∪ Iy is at most 4. For
t ∈ Ix ∪ Iy, ∥h(x)(t) − h(y)(t)∥ ≤ ∥h(x)(t)∥ + ∥h(y)(t)∥ ≤ e(Rx +Ry). Thus,

∥h(x) −h(y)∥2
L2 =

∫ +∞

−∞
∥h(x)(t) −h(y)(t)∥2dt =

∫
Ix∪Iy

∥h(x)(t) −h(y)(t)∥2dt ≤ 4e2(Rx +Ry)2.

We have proved that ∥h(x) − h(y)∥L2 = O(Rx +Ry).
Now we show that ∥h(x) − h(y)∥L2 = O(∥x − y∥). Note that if Rx > 2Ry, then

∥x−y∥ ≥ Rx −Ry > (Rx +Ry)/3 and therefore ∥h(x)−h(y)∥L2 ≤ O(Rx +Ry) ≤ O(∥x−y∥),
and we are done. So we assume that Rx ≤ 2Ry. From Lemma 12, we get

∥h(x)(t) − h(y)(t)∥ = ∥λ(lnRx − t)ψet (x) − λ(lnRy − t)ψet (y)∥
≤ |λ(lnRx − t) − λ(lnRy − t)|et + min(λ(lnRx − t), λ(lnRy − t))∥ψet (x) − ψet (y)∥.

We upper bound the first term using the Mean Value Theorem. Using that ∥λ′∥∞ ≤ 1 and
ln a ≤ a− 1 for every a ∈ R, we get that for some ξ ∈ (lnRy − t, lnRx − t),

|λ(lnRx−t)−λ(lnRy−t)|et = |λ′(ξ)|·|(lnRx−t)−(lnRy−t)|et ≤ | ln Rx/Ry|et ≤ Rx −Ry

Ry
et.

Now we upper bound the second term. By Theorem 9,

min(λ(lnRx − t), λ(lnRy − t))∥ψet(x) − ψet(y)∥ ≤ O(min(et, ∥x− y∥)) ≤ O(∥x− y∥).

We get

∥h(x) − h(y)∥2
L2 =

∫
Ix∪Iy

∥h(x)(t) − h(y)(t)∥2dt ≤ 4
(

max
t∈Ix∪Iy

(
Rx −Ry

Ry
et

)
+O(∥x− y∥)

)2

≤ O

(
Rx −Ry

Ry
·Rx + ∥x− y∥

)2

≤ O (2(Rx −Ry) + ∥x− y∥)2 .

Since Rx −Ry ≤ ∥x− y∥, we get that ∥h(x) − h(y)∥L2 = O(∥x− y∥).
We have proved the desired upper bound on ∥h(x) − h(y)∥L2 . Now we prove the lower

bound. Consider two cases.

Case 1: Rx ≥ eRy. In this case, lnRx ≥ lnRy + 1. Let I+
x = (lnRx, lnRx + 1/2). Note

that I+
x does not intersect Iy and thus h(y)(t) = 0 for t ∈ I+

x . Also, since λ(t) ≥ 1/4 on
[−1/2, 1/2], we have

∥h(y)(t)∥2 = λ(lnRx − t)∥ψet(x)∥ ≥ et
/4 ≥ Rx/4

for t ∈ I+
x . We have,

∥h(x) − h(y)∥2
L2

≥
∫

I+
x

∥h(x)(t) − h(y)(t)∥2dt =
∫

I+
x

∥h(x)(t)∥2dt ≥ 1
2

(
Rx

4

)2
.

We conclude that ∥h(x) − h(y)∥L2 = Ω(Rx +Ry).
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Case 2: Rx < eRy. In this case, lnRy ≤ lnRx < lnRy + 1. Let J = (lnRy + 1/3, lnRy +
2/3). Then for t ∈ J , we have lnRy − t ∈ (−2/3,−1/3) and lnRx − t ∈ (−2/3, 2/3).
Therefore, λ(lnRx − t) ≥ 1/7 and λ(lnRy − t) ≥ 1/7. By Lemma 12, we have for t ∈ J ,

∥h(x)(t) − h(y)(t)∥ = ∥λ(lnRx − t)ψet(x) − λ(lnRy − t)ψet(y)∥

≥ 1
7∥ψet(x) − ψet(y)∥ ≥ Ω(min(et, ∥x− y∥))

≥ Ω(min(Rx +Ry, ∥x− y∥))

Using that the length of segment J is 1/3, we get

∥h(x) − h(y)∥2
L2

≥
∫

J

∥h(x)(t) − h(y)(t)∥2dt ≥ Ω(min(Rx +Ry, ∥x− y∥))2.

This concludes the proof of the lower bound and the lemma. ◀

Since L2(R, ℓ2) is isometrically isomorphic to ℓ2, we get the following corollary.

▶ Corollary 14. Let T ⊂ ℓn
2 . There is a map h : T → ℓ∆

2 , where ∆ = O(log |T \ S|) (∆ is
infinite if |T \ S| is infinite) such that
1. h maps S to 0,
2. cmin(∥x− y∥, Rx +Ry) ≤ ∥h(x) − h(y)∥ ≤ min(∥x− y∥, Rx +Ry) for all x, y ∈ ℓn

2 and
some absolute constant c > 0.

Proof. We start with a map h0 : ℓn
2 → L(R, ℓ2) from Lemma 13. Since L2(R, ℓ2) is

isometrically isomorphic to ℓ2, there is a map h1 : ℓn
2 → ℓ2 satisfying the conditions in

Lemma 13. Now if T \ S is finite, we apply Johnson-Lindenstrauss dimension reduction
πJL with distortion at most 3/2 to h1(T ) [8]. Note that h1 maps all points in S to 0;
hence, |h1(T )| ≤ 1 + |h1(T \ S)| ≤ 1 + |T \ S|. Therefore, πJL maps h1(T \ S) to ℓ∆

2 with
∆ = O(log |T \ S|). Without loss of generality, we assume that πJL(0) = 0. We get map
h2 = πJL ◦ h1. If T \ S is infinite, we simply let h2 = h1. Finally, we rescale h2 so that the
obtained map h satisfies the desired inequality:

cmin(∥x− y∥, Rx +Ry) ≤ ∥h(x) − h(y)∥ ≤ min(∥x− y∥, Rx +Ry). ◀

We are ready to prove Theorem 4. Let g be the standard Kirszbraun extension of f
(Theorem 11) and h be the map provided by Corollary 14. Note that the second condition in
Corollary 14 guarantees that h is 1-Lipschitz. Define f̃(x) = g(x) ⊕ (

√
εL)h(x) ∈ ℓm

2 ⊕ ℓ∆
2 .

For x ∈ S, we have f̃(x) = f(x) ⊕ 0; thus f̃ is an outer extension of f . Since g is
L-Lipschitz and h is 1-Lipschitz,

∥f̃∥Lip ≤
√

∥g∥2
Lip + (

√
εL)2∥h∥2

Lip ≤
√

1 + εL ≤ (1 + ε)L.

Finally, consider arbitrary x, y ∈ ℓn
2 . If n is finite, let x′ and y′ be points in S closest to x and

y, respectively (such points exist, since S is closed). Then ∥x− x′∥ = Rx and ∥y − y′∥ = Ry.
If n is infinite, let x′ and y′ be points in S such that ∥x− x′∥ ≤ 2Rx and ∥y − y′∥ ≤ 2Ry.

Note that ∥g(x) − g(y)∥ ≥ ∥f(x′) − f(y′)∥ − ∥g(x) − f(x′)∥ − ∥g(y) − f(y′)∥ ≥ ∥f(x′) −
f(y′)∥ − 2L(Rx +Ry). We have,

∥f̃(x) − f̃(y)∥ =
√

∥g(x) − g(y)∥2 + εL2∥h(x) − h(y)∥2

≥ max(∥g(x) − g(y)∥,
√
εL∥h(x) − h(y)∥)

≥ max(∥f(x′) − f(y′)∥ − 2L(Rx +Ry), c
√
εLmin(∥x− y∥, Rx +Ry)).
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If ∥x− y∥ ≤ Rx +Ry, then we get that ∥f̃(x) − f̃(y)∥ ≥ c
√
εL∥x− y∥ ≥ c

√
ε dub(x, y) and

we are done. So we assume now that ∥x− y∥ ≥ Rx +Ry. Note that

dub(x, y) ≤ inf
a,b∈S

(L∥x− a∥ + ∥f(a) − f(b)∥ + L∥x− a∥)

≤ L∥x− x′∥ + ∥f(x′) − f(y′)∥ + L∥y′ − y∥
≤ ∥f(x′) − f(y′)∥ + 2L(Rx +Ry).

We have

∥f̃(x) − f̃(y)∥ ≥ max(∥f(x′) − f(y′)∥ − 2L(Rx +Ry), c
√
εL(Rx +Ry))

≥ (c
√
ε/4) · (∥f(x′) − f(y′)∥ − 2L(Rx +Ry)) + 1 · (c

√
εL(Rx +Ry))

c
√
ε/4 + 1

= c
√
ε

4 + c
√
ε

(∥f(x′) − f(y′)∥ + 2L(Rx +Ry)) ≥ c
√
ε

4 + c
√
ε
dub(x, y).

4 Proof of Theorem 5

In this section, we prove Theorem 5. To prove item 1, consider 4 points in the plane:
x = (0, 0), y = (0,

√
2), u = (1, 0), and v = (1,

√
2). Let f be the map that sends x,y,u, and

v to x′ = (0, 0), y′ = (1, 1), u′ = (1, 0), and v′ = (0, 1). It is easy to see that f is 1-Lipschitz.
Now let z1 = (x + y)/2 and z2 = (u + v)/2. Note that ∥x − z1∥ = ∥y − z1∥ = ∥u − z2∥ =
∥v − z2∥ =

√
2/2 and dub(z1, z2) = 1.

x

y

z1

u

v

z2

x′

y′

u′

v′
f−→

Consider a (1 + ε)-Lipschitz proper or outer extension f̃ of f to {x, y, u, v, z1, z2}. Let
z′

1 = f̃(z1) and z′
2 = f̃(z2). Since f̃ is (1 + ε)-Lipschitz, we have ∥x′ − z′

1∥2 ≤ (1 + ε)2/2 and
∥y′ − z′

1∥2 ≤ (1 + ε)2/2. Hence∥∥∥∥x′ + y′

2 − z′
1

∥∥∥∥2

= ∥x′ − z′
1∥2 + ∥y′ − z′

1∥2

2 − ∥x′ − y′∥2

4 ≤ (1 + ε)2/2 + (1 + ε)2/2
2 − 1

2 = ε+ ε2

2

Therefore,
∥∥∥ x′+y′

2 − z′
1

∥∥∥ = O(
√
ε). Similarly,

∥∥∥ u′+v′

2 − z′
2

∥∥∥ = O(
√
ε). Since x′+y′

2 = u′+v′

2 ,
we have ∥z′

1 − z′
2∥ = O(

√
ε) = O(

√
ε dub(z′

1, z
′
2)), as required.

Now we prove item 2. Consider sets S = {κe1 : 1 ≤ κ ≤ N} and S′ = {(κ+ 1/2)e1 : 1 ≤
κ ≤ N} in ℓn

2 (where e1 is the first standard basis vector in ℓn
2 ). Let T = S ∪ S′.

1 2 3 4 5

0 ∈ ℓm
2

f
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Consider map f that sends S to 0 in ℓm
2 . Trivially, map f is 1-Lipschitz. We have,

dub(x, y) = min(∥x − y∥, 1/2 + 0 + 1/2) = 1 for every distinct x, y ∈ S′. Consider an L-
Lipschitz extension f̃ : T → ℓm′

2 such that ∥f̃(x) − f̃(y)∥ ≥ cdub(x, y). Since every point x
in S′ is at distance 1/2 from some point in S, f̃ maps all points in S′ to a ball of radius L/2

around 0 in ℓm′

2 . The distance between the images of every two points is at least cdub(x, y) = c.
Therefore, f̃(S′) is a c-separated set in a ball of radius L/2 in ℓm′

2 . We apply a standard
argument to bound the size of f(S′). Ball of radius c/2 around points in f̃(S′) are mutually
disjoint and lie in a ball of radius (L+c)/2. Thus, the number of points in f̃(S′) by the ratio
of the volumes of balls of radius (L+c)/2 and c/2. That is,

N = |f̃(S′)| ≤
(
L+ c

c

)m′

.

It follows that m′ ≥ loge N
loge(L/c+1) , as required.

Finally, observe that item 3 follows from item 2 if we let N = ∞.

5 Proof of Theorem 7

In this section, we prove Theorem 7.

Proof of part I. We first assume that C = 1 and then consider the general case when C ≥ 1
is arbitrary. Let g and h be embeddings of (X, dX) and (Y, dY ) into Euclidean spaces ℓn

2 and
ℓm

2 with distortions at most DX and DY , respectively. Without loss of generality, we may
assume that g and h are 1-Lipschitz and that they do not contract distances by more than
DX and DY , respectively. Define map h′ as h′(y) = h(y)/DX . Let S = g(Y ) and T = g(X).
Consider map f that sends u ∈ S to h′(g−1(u)).

ℓn
2 ⊃ S = g(Y )

⊂
��

f=h′◦g−1

))
Y

goo

⊂
��

h′= h
DX // h′(Y ) ⊂ ℓm

2

⊂
��

ℓn
2 ⊃ T = g(X)

f̃

55X
goo Φ // ℓm′

2

Note that f is 1-Lipschitz, since

∥f(u) − f(v)∥ = ∥h′(g−1(u)) − h′(g−1(u))∥ ≤ ∥h′∥Lip · dY (g−1(u), g−1(v))

≤ ∥h∥Lip

DX
· dX(g−1(u), g−1(v)) ≤ 1

DX
·DX∥u− v∥ = ∥u− v∥.

Consider x, y ∈ X. We show that du(x,y)
DX DY

≤ dub(g(x), g(y)) ≤ du(x, y) where du is the
updated metric on X, and dub is with respect to the map f . We have,

dub(g(x), g(y)) = min(∥g(x) − g(y)∥, inf
a,b∈Y

(∥g(x) − g(a)∥ + ∥h′(a) − h′(b)∥ + ∥g(b) − g(y)∥))

≤ min(dX(x, y), inf
a,b∈Y

(dX(x, a) + dY (a, b)
DX

+ dX(b, y)))

≤ min(dc(x, y), inf
a,b∈Y

(dc(x, a) + dc(a, b) + dc(b, y))) = du(x, y)

SoCG 2021
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where to get the last inequality, we need to do case analysis on the four cases given by
whether x ∈ Y or x /∈ Y ; and y ∈ Y or y /∈ Y . The last equality follows by considering the
shortest path in dc between x and y (of weight du(x, y)), and doing simple case analysis
using the fact that C = 1. Then

dub(g(x), g(y)) = min(∥g(x) − g(y)∥, inf
a,b∈Y

(∥g(x) − g(a)∥ + ∥h′(a) − h′(b)∥ + ∥g(b) − g(y)∥))

≥ min
(
dX(x, y)
DX

, inf
a,b∈Y

(
dX(x, a)
DX

+ dY (a, b)
DY DX

+ dX(b, y)
DY

))
≥ du(x, y)

DXDY
.

By Theorem 4, there exists an 3/2-Lipschitz extension f̃ : T → ℓm′

2 of f such that
∥f̃(u) − f̃(v)∥ = Θ(dub(u, v)) for u, v ∈ T . Consider Φ = f̃ ◦ g, which maps X to ℓm′

2 . We
obtain

Ω
(
du(x, y)
DXDY

)
≤ ∥Φ(x) − Φ(y)∥ ≤ O(du(x, y)).

We conclude that X equipped with the updated metric du embeds into ℓm′

2 with distortion
at most O(DXDY ).

To get the result for an arbitrary C ≥ 1, we consider metric d′
Y defined by d′

Y (x, y) =
dY (x, y)/C. Note that d′

Y is also DY -Euclidean. Additionally, d′
Y (x, y) ≤ dX(x, y) for every

x, y ∈ Y . Thus the updated metric d′
u for dX and d′

Y is O(DXDY )-Lipschitz. Finally, we note
that d′

u(x, y) ≤ du(x, y) ≤ Cd′
u(x, y) and hence metric du is O(C DXDY )-Euclidean. ◀

Proof of part II. Let p be the largest prime number such that 2p ≤ N . We construct
an expander G = (V,E) on p vertices, which is a union of two Hamiltonian paths (the
paths are not necessarily disjoint). We note that any such expander will work, but we will
describe one to be more specific. Let V = Z/pZ, E1 = {(i, i + 1) : i ∈ {0, . . . , p − 2}, and
E′

2 = {(i, j) : i · j = 1, i ≠ j where i, j ∈ Z/pZ} (where the product i · j is computed in
Z/pZ). Observe that E′

2 is a partial matching, so we can choose a set of edges E′′
2 such that

E′
2 ∪E′′

2 is a path visiting all vertices in V once. Now, G = (V,E1 ∪E′
2 ∪E′′

2 ); P1 and P2 are
Hamiltonian paths with edge sets E1 and E2 = E′

2 ∪E′′
2 , respectively. Graph (V,E1 ∪E′

2) is
an expander (see [13] or Construction 4.26 in [18]) and thus so is G. Denote the shortest
path distance in G by dG.

Now, for every i ∈ V , we create two points ui and u′
i. Let X = {ui, u

′
i : i ∈ V } and

Y = {u′
i : i ∈ V }. Consider path P2 and one of its endpoints. Let π(i) be the distance from

vertex ui to this endpoint along P2. Let ε = 1/p. Now we define distances dX and dY :

dX(ui, uj) = dX(u′
i, u

′
j) = |i− j| and dX(ui, u

′
j) =

√
|i− j|2 + ε2,

dY (u′
i, u

′
j) = |π(i) − π(j)|.

Here, the value of |i− j| is computed in Z, not in Z/pZ. Observe that (X, dX) and (Y, dY )
embed into ℓ2

2 and ℓ1
2 = R isometrically. Indeed, the map that sends ui to (i, 0) and u′

i to
(i, ε) is an isometric embedding of X into the Euclidean plane; the map that sends u′

i to
π(i) ∈ R is an isometric embedding of Y into the real line. Now consider the combined and
updated metrics, dc and du, on X. We have,

dc(ui, uj) = dX(ui, uj) = |i− j| ≥ dG(i, j);
dc(ui, u

′
j) = dX(ui, u

′
j) =

√
|i− j|2 + ε2 > dG(i, j)

dc(u′
i, u

′
j) = dY (u′

i, u
′
j) = |π(i) − π(j)| ≥ dG(i, j).
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Let us derive lower and upper bounds on du(ui, uj) in terms of dG(i, j). Fix some i and j.
Denote the complete graph on X with edge lengths dc(·, ·) by K(X, dc); denote the complete
graph on V with edge lengths dG(·, ·) by K(V, dG). Note that the shortest path distance in
K(V, dG) equals dG.

By definition, du(ui, uj) is the shortest path distance between ui and uj in K(X, dc).
Consider a shortest path between ui and uj in K(X, dc) and its “projection” to K(V, dG),
which we obtain as follows. We replace each vertex on the path with a corresponding vertex
in V : namely, we replace ua and u′

a with a. We get a path from i to j in K(V, dG); its length
is at least dG(i, j). Since dc(ua, ub), dc(u′

a, ub), and dc(u′
a, u

′
b) are all greater than or equal

to dG(a, b), the length of the projected path in K(V, dG) is at most the length of the path
between ui and uj in K(X, dc). Therefore, the shortest path distance between ui and uj in
K(X, dc) is at least dG(i, j). We conclude that du(ui, uj) ≥ dG(i, j).

Now consider a shortest path P between i and j in G. We “lift” it to K(X, dc) as
follows. We replace each edge (a, b) ∈ E1 of P with edge (ua, ub) in K(X, dc) and each edge
(a, b) ∈ E2 \ E1 with edge (u′

a, u
′
b). Note that this transformation preserves edge lengths; all

of these edges have length 1. We obtain a sequence of edges in K(X, dc), which does not
necessarily form a path, since it may happen that one edge ends at ua and the next one starts
at u′

a (or vice versa). We transform it to a path between ui and uj in K(X, dc) by adding
edges of the form (ua, u

′
a) where necessary. The length of the lifted path equals the length of

P , which is dG(i, j), plus the length of all the additional edges (ua, u
′
a). Each of the additional

edges has length ε and there are at most p of them. We conclude that there is a path of
length at most dG(i, j) + 1 between ui and uj in K(X, dc). Thus du(ui, uj) ≤ dG(i, j) + 1.

We proved that du(ui, uj) = Θ(dG(i, j)). Because G is an expander, every embedding of
(V, dG) into Euclidean space requires distortion Ω(logN) [11]. Therefore, every embedding of
(X \Y, du) and, consequently, of (X, du) into ℓ2 also requires distortion at least Ω(logN). ◀
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