Algorithms for instance-stable and perturbation-resilient problems

Haris Angelidakis, TTIC Konstantin Makarychev, Northwestern <mark>Yury Makarychev, TTIC</mark> Aravindan Vijayaraghavan, Northwestern

> QTW on Beyond Worst-Case Analysis Northwestern, May 24, 2017

Motivation

- Practice: Need to solve clustering and combinatorial optimization problems.
- Theory:
 - Many problems are NP-hard. Cannot solve them exactly.
 - Design approximation algorithms for worst case.

Can we get better algorithms for real-world instances than for worst-case instances?

Motivation

• Answer: Yes!

When we solve problems that arise in practice, we often get much better approximation than it is theoretically possible for worst case instances.

• Want to design algorithms with provable performance guarantees for solving real-world instances.

Motivation

- •Need a model for real-world instances.
- Many different models have been proposed.
- It's unrealistic that one model will capture all instances that arise in different applications.

This work

- Assumption: instances are stable/perturbationresilient
- Consider several problems:
 - k-means
 - *k*-median
 - Max Cut
 - Multiway Cut
- •Get exact polynomial-time algorithms

k-means and k-median

Given a set of points X, distance $d(\cdot, \cdot)$ on X, and k

Partition X into k clusters C_1, \ldots, C_k and find a "center" C_i in each C_i so as to minimize

$$\sum_{i=1}^{k} \sum_{u \in C_{i}} d(u, c_{i}) \quad (k\text{-median})$$

$$\sum_{i=1}^{k} \sum_{u \in C_{i}} d(u, c_{i})^{2} \quad (k\text{-means})$$

Multiway Cut

Given

- a graph G = (V, E, w)
- a set of terminals t_1, \ldots, t_k

Find a partition of V into sets $S_1, ..., S_k$ that minimizes the weight of cut edges s.t. $t_i \in S_i$.

Instance-stability & perturbationresilience

 \succ Consider an instance \mathcal{I} of an optimization or clustering problem.

> \mathcal{I}' is a γ -perturbation of \mathcal{I} if it can be obtained from \mathcal{I} by "perturbing the parameters" multiplying each parameter by a number from 1 to γ .

- $w(e) \le w'(e) \le \gamma \cdot w(e)$
- $d(u,v) \leq d'(u,v) \leq \gamma \cdot d(u,v)$

Instance-stability & perturbationresilience

An instance \mathcal{I} of an optimization or clustering problem is *perturbation-resilient/instance-stable* if the optimal solution remains the same when we perturb the instance:

every γ -perturbation \mathcal{I}' has the same optimal solution as $\mathcal I$

Instance-stability & perturbationresilience

Every $\gamma\text{-}perturbation \ensuremath{\mathcal{I}}'$ has the same optimal solution as $\ensuremath{\mathcal{I}}$

- In practice, we are interested in solving instances where the optimal solution "stands out" among all solutions [Bilu, Linial]
- Objective function is an approximation to the "true" objective function.
- "Practically interesting instance" \Rightarrow it is stable

Instance-stability & perturbation-resilience was introduced

in discrete optimization: by Bilu and Linial `10 in clustering: by Awasthi, Blum, and Sheffet `12

Results (clustering)

$\gamma \geq 3$	k-center, k-means, k-median	[Awasthi, Blum, Sheffet `12]
$\gamma \ge 1 + \sqrt{2}$	k-center, k-means, k-median	[Balcan, Liang `13]
$\gamma \ge 2$	sym. /asym. <i>k</i> -center	[Balcan, Haghtalab, White `16]
$\gamma \ge 2$	k-means, k-median	[AMM `17]

Results (optimization)

$\gamma \ge cn$	Max Cut	[Bilu, Linial `10]
$\gamma \ge c\sqrt{n}$	Max Cut	[Bilu, Daniely, Linial, Saks `13]
$\gamma \ge c\sqrt{\log n}\log\log n$	Max Cut	[MMV `13]
$\gamma \geq 4$	Multiway	[MMV `13]
$\gamma \ge 2 - 2/k$	Multiway	[AMM `17]

Results (optimization)

Our algorithms are robust.

- Find the optimal solution, if the instance is stable.
- Find an optimal solution or detects that the instance is not stable, otherwise.
- Never output an incorrect answer.

Solve weakly stable instances.

Assume that when we perturb the instance

- the optimal solution changes only slightly, or
- there is a core that changes only slightly.

Hardness results for center-based obejctives

[Balcan, Haghtalab, White `16] No polynomial-time algorithm for $(2 - \varepsilon)$ -perturbation-resilient instances of k-center ($NP \neq RP$).

[Ben-David, Reyzin `14] No polynomial-time algorithm for instances of k-means, k-median, k-center satisfying $(2 - \varepsilon)$ -center proximity property $(P \neq NP)$.

Hardness results for optimization problems

Set Cover, Vertex Cover, Min 2-Horn Deletion There is no robust algorithm for $O(n^{1-\varepsilon})$ -stable instances unless P = NP [AMM `17].

Provide evidence that [MMV `13, AMM `17]

• No robust algorithm for Max Cut when $\gamma < O\left(\sqrt{\log n} \log \log n\right)$

• Multiway cut is hard when $\gamma < \frac{4}{3} - O\left(\frac{1}{k}\right)$.

Algorithm for Clustering Problems

Center proximity property

[Awasthi, Blum, Sheffet `12] A clustering $C_1, ..., C_k$ with centers $c_1, ..., c_k$ satisfies the center proximity property if for every $p \in C_i$:

 $d(p,c_j) > \gamma d(p,c_i)$

Plan [AMM `17]

- i. γ -perturbation resilience $\Rightarrow \gamma$ -center proximity
- ii. 2-center proximity \Rightarrow each cluster is a subtree of the MST

iii. use single-linkage + DP to find C_1, \ldots, C_k

Perturbation resilience \Rightarrow center proximity

Perturbation resilience: the optimal clustering doesn't change when we perturb the distances.

 $d(u,v)/\gamma \le d'(u,v) \le d(u,v)$

[ABS `12] $d'(\cdot,\cdot)$ doesn't have to be a metric [AMM `17] $d'(\cdot,\cdot)$ is a metric

Metric perturbation resilience is a more natural notion.

Assume center proximity doesn't hold.

Then $d(p, c_j) \leq \gamma d(p, c_i)$.

Assume center proximity doesn't hold.

- Let $d'(p,c_j) = d(p,c_i) \ge \gamma^{-1}d(p,c_j)$.
- Don't change other distances.
- Consider the shortest-path closure.

Assume center proximity doesn't hold.

- Let $d'(p, c_j) = d(p, c_i) \ge \gamma^{-1} d(p, c_j)$.
- Don't change other distances.
- Consider the shortest-path closure.

Assume center proximity doesn't hold.

- Let $d'(p, c_i) = d(p, c_i) \ge \gamma^{-1} d(p, c_i)$.
- Don't
- Consident This is a γ -perturbation.

Distances inside clusters C_i and C_j don't change.

Consider $u, v \in C_i$.

 $d'(u,v) = \min\begin{pmatrix} d(u,v), \\ d(u,p) + d'(p,c_j) + d(c_j,v) \end{pmatrix}$

Distances inside clusters C_i and C_j don't change.

Consider $u, v \in C_i$.

 $d'(u,v) = \min\begin{pmatrix} d(u,v), \\ d(u,p) + d'(p,c_j) + d(c_j,v) \end{pmatrix}$

Since the instance is γ -stable, C_1, \ldots, C_k must be the unique optimal solution for distance d'.

Still, c_i and c_j are optimal centers for C_i and C_j .

 $d'(p,c_i) = d'(p,c_j) \Rightarrow \text{can move } p \text{ from } C_i \text{ to } C_j$

Each cluster is a subtree of MST

[ABS `12] 2-center proximity \Rightarrow every $u \in C_i$ is closer to c_i than to any $v \notin C_i$

Assume the path from $u \in C_i$ to c_i in MST, leaves C_i .

Each cluster is a subtree of MST

[ABS `12] 2-center proximity \Rightarrow every $u \in C_i$ is closer to c_i than to any $v \notin C_i$

Assume the path from $u \in C_i$ to c_i in MST, leaves C_i .

Root MST at some r. T(u) is the subtree rooted at u.

 $cost_u(j, c)$: the cost of the partitioning of T(u)

- into *j* clusters (subtrees)
- so that c is the center of the cluster containing u.

Fill out the DP table bottom-up.

 u, u_1, u_2 lie in the same cluster

$$\label{eq:cost} \begin{split} \cos t_u(j,c) &= d(u,c) + \cos t_{u_1}(j_1,c) + \cos t_{u_2}(j_2,c) \\ \text{where } j_1 + j_2 &= j+1 \end{split}$$

 u, u_1, u_2 lie in different clusters $\cot_u(j, c) = d(u, c) + \cot_{u_1}(j_1, c_1) + \cot_{u_2}(j_2, c_2)$ where $j_1 + j_2 = j - 1$, $c_1 \in T(u_1)$, $c_2 \in T(u_2)$

 u, u_1 lie in the same clusters, u_2 in a different $\operatorname{cost}_u(j, c) = d(u, c) + \operatorname{cost}_{u_1}(j_1, c) + \operatorname{cost}_{u_2}(j_1, c_2)$ where $j_1 + j_2 = j$, $c_2 \in T(u_2)$ Algorithms for Max Cut and Multiway Cut

Algorithms for Max Cut and Multiway Cut [MMV `13]

Write an SDP or LP relaxation for the problem. Show that it is integral if the instance is γ -stable.

solve the relaxation if the SDP/LP solution is integral return the solution else return that the instance is not γ-stable

The algorithm is *robust*: it *never* returns an incorrect answer.

Multiway Cut

Write the relaxation for Multiway Cut by Călinescu, Karloff, and Rabani [CKR `98]

To get an α -approximation, we would design a rounding scheme with

 $\Pr[(u, v) \text{ is cut}] \leq \alpha d(u, v)$

Then

 $\mathbb{E}[\text{weight of cut edges}] \le \alpha \sum_{(u,v)\in E} w_{uv} d(u,v)$

Multiway Cut: complementary objective

If we want to maximize the weight of uncut edges, we would we would design a rounding scheme with

 $Pr[(u, v) \text{ is not cut}] \ge \beta (1 - d(u, v))$

Then

$$\mathbb{E}[\text{wt. of uncut edges}] \ge \beta \sum_{(u,v)\in E} w_{uv}(1 - d(u,v))$$

General approach to solving stable instances of graph partitioning

Write an LP or SDP relaxation for the problem.

Design a rounding procedure s.t.

 $\Pr[(u, v) \text{ is cut}] \le \alpha \, d(u, v) \qquad \text{minimization}$ $\Pr[(u, v) \text{ is not cut}] \ge \rho(1 - d(v, v))$

 $\Pr[(u, v) \text{ is not cut}] \ge \beta (1 - d(u, v))$

or

 $Pr[(u, v) \text{ is cut}] \ge \beta d(u, v) \qquad \text{maximization}$ $Pr[(u, v) \text{ is not cut}] \le \alpha (1 - d(u, v))$

Then the relaxation for γ -stable instances is integral, when $\gamma \geq \alpha/\beta$

Solving Max Cut [MMV `13]

Use the Goemans–Williamson SDP relaxation with ℓ_2^2 -triangle inequalities.

Design a rounding procedure with

$$\frac{\alpha}{\beta} = O\left(\sqrt{\log n} \log \log n\right),\,$$

which is a combination of two algorithms:

- the algorithm for Sparsest Cut with Nonuniform Demands by Arora, Lee, and Naor `08,
- the algorithm for Min Uncut by Agarwal, Charikar, Makarychev, M `05

Solving Multiway Cut [AMM `17]

Rounding procedures for Multiway Cut by

- Sharma and Vondrák `14
- Buchbinder, Schwartz, and Weizman `17 are highly non-trivial.

Show: need a rounding procedure only for LP solutions that are almost integral.

Design a simple rounding procedure with

$$\frac{\alpha}{\beta}=2-\frac{2}{k}$$
.

Summary

- Algorithms for 2-perturbation-resilient instances of problems with a natural center based objective: *k*-means, *k*-median, facility location
- Robust algorithms for $O\left(\sqrt{\log n} \log \log n\right)$ -stable instance of Max Cut and $\left(2 \frac{2}{k}\right)$ -stable instances of Multiway Cut.
- Negative results for stable instances of Max Cut, Multiway Cut, Max k-Cut, Multi Cut, Set Cover, Vertex Cover, Min 2-Horn Deletion.