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A NEW CLASS OF NON-SHANNON-TYPE INEQUALITIES FOR
ENTROPIES∗

KONSTANTIN MAKARYCHEV† , YURY MAKARYCHEV†, ANDREI ROMASHCHENKO‡ ,

AND NIKOLAI VERESHCHAGIN§

Abstract. In this paper we prove a countable set of non-Shannon-type linear information

inequalities for entropies of discrete random variables, i.e., information inequalities which cannot be

reduced to the “basic” inequality I(X : Y |Z) ≥ 0. Our results generalize the inequalities of Z. Zhang

and R. Yeung (1998) who found the first examples of non-Shannon-type information inequalities.

1. Introduction. A central notion of information theory is Shannon’s entropy1.
Given a set of jointly distributed random variables x1, . . . , xn, we can consider en-
tropies of all random variables H(xi), entropies of all pairs H(xi, xj), etc. (2n − 1
entropy values for all nonempty subsets of {x1, . . . , xn}). For every n-tuple of ran-
dom variables we get a point in R2n−1, representing entropies of the given distribution.
Following [10] we call a point in R2n−1 constructible if it represents entropy values of
some collection of n random variables. The set of all constructible points is denoted
by Γ?

n.

It is hard to characterize Γ?
n for an arbitrary n (for n ≥ 3, it is not even closed [9]).

A more feasible (but also highly non-trivial) problem is to describe the closure Γ?
n of

the set Γ?
n. The set Γ?

n is a convex cone [9], and to characterize it we should describe
the class of all linear inequalities of the form

λ1H(x1) + . . . + λnH(xn) + λ1,2H(x1, x2) + . . . +

λ1,2,3H(x1, x2, x3) + . . . + λ1,2,...,nH(x1, . . . , xn) ≥ 0,(1)

which are true for any random variables x1, . . . , xn (λW are real coefficients).

Information inequalities are widely used for proving converse coding theorems
in information theory. Recently interesting applications of information inequalities
beyond information theory were found [11, 13, 14]. So investigation of the class of all
valid information inequalities is an interesting problem. We refer the reader to [15]
for a comprehensive treatment of the subject.
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1An original paper of C. E. Shannon [1] is an excellent introduction in this field. We also

recommend to the reader who is not familiar with information theory the books [5] and [3].
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In this paper we consider only discrete random variables. We restrict ourselves
to random variables with a finite range. This restriction is not very essential: if an
inequality is true for all random variables with a finite range, it is also true for random
variables with a countable range2.

Let us give a brief review of the background. For many years only trivial inequali-
ties for entropies were known. Namely, all known inequalities were non-negative linear
combinations of Shannon’s basic inequalities, i.e., inequalities of the form

H(A ∪ C) + H(B ∪ C)−H(A ∪B ∪ C)−H(C) ≥ 0,(2)

where A,B,C are arbitrary tuples of random variables (for an empty tuple X we sup-
pose H(X) = 0). Note that using standard notation, this inequality can be rewritten
as I(A : B|C) ≥ 0.

It can be shown that for any n ≤ 3 all information inequalities that are valid
for n discrete random variables are linear combinations of the basic inequalities [4]
(see also [6][7]). In 1998 Zhang and Yeung [10] came up with a linear inequality
for entropies of 4 random variables which cannot be reduced to the basic Shannon
inequalities:

H(x, u) + H(x, v) + 3(H(u, v) + H(v, y) + H(u, y)) ≥

2H(u) + 2H(v) + H(y) + H(x, y) + H(u, v, x) + 4H(u, v, y).(3)

Using standard notation, this inequality can be rewritten as

2I(u : v) ≤ I(x : y) + I(y : uv) + 3I(u : v|y) + I(u : v|x).

In the same paper (by the same arguments) Zhang and Yeung proved a more general
inequality (for any n ≥ 1):

H(x1x2 . . . xn) + nI(u : v : x1) ≤
n∑

j=1

H(xj) +
n∑

j=1

I(u : v|xj) + I(uv : x1).(4)

Here we use the notation I(u : v : x1). Let us remind the reader that the mutual
information of three random variables I(a : b : c) is defined as

I(a : b : c) = H(a) + H(b) + H(c)−H(ab)−H(ac)−H(bc) + H(abc).

Note that the former inequality is obtained from the latter one by letting n = 2,
x1 = y, and x2 = x.

It should be noted that a year earlier the same authors found in [9] a constrained
inequality for entropies which cannot be deduced from the basic inequalities:

If I(x1 : x2) = I(x1 : x2|x3) = 0 then

I(x3 : x4) ≤ I(x3 : x4|x1) + I(x3 : x4|x2).(5)

2This fact can be easily proved by approximation of a distribution with a countable range by

distributions with a finite range. We do not know if the same is true for constrained inequalities

(that is, for inequalities which are true assuming another inequality).
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(This result gives a new bound for the set Γ?
4, but not for Γ?

4.)
A large collection of non-Shannon-type constrained inequalities was proved in [12]

based on the unconstrained inequality (3).
In the present paper we exhibit a new countable family of unconstrained inequal-

ities for Shannon entropy.
Theorem 1. For any random variables u, v, z, x1, . . . , xn

H(x1, . . . , xn) + n · I(u : v : z) ≤
n∑

i=1

I(u : v|xi) +
n∑

i=1

H(xi) + I(uv : z).

Note that the inequality in Theorem 1 implies that of Zhang and Yeung. In fact,
by letting z = x1, we get (4).

The rest of the paper is organized as follows. In Section 2 we present a pure
syntactical inference rule producing a new inequality given a constrained inequality
of a special type. The proof of this inference rule is a refinement of Zhang-Yeung’s
proof of (4). Theorem 1 will be proved by this method. In Sections 3 and 4 we prove
Theorem 1 using another method. It appeals to the idea of rate region of two random
variables introduced by R. Ahlswede and J. Körner [2, 3]. In Section 5 we prove that
an analog of our syntactical rule is valid also for Kolmogorov complexity.

In the Appendix we give some proofs omitted in the main text. We also sketch the
proof of the fact that the inequality of Theorem 1 for n = 2 does not follow from the
basic inequalities and (3), and that the inequalities of Theorem 1 for n = 2 and n = 3
are not equivalent. The full proof includes checking a huge number of conditions and
was done using a computer software.

2. A Syntactical Inference Rule for Information Inequalities and First
Proof of Theorem 1. We first give a proof for Theorem 1 and then extend the
argument to get a general inference rule.

Proof. [Proof of the theorem] First rewrite the inequality of Theorem 1 in the
following form:

H(x1 . . . xn) + nI(u : v) ≤
n∑

i=1

I(u : v|xi) + nI(u : v|z) +

n∑
i=1

H(xi) + I(uv : z).(6)

We first note that this inequality is true under the condition 〈x1, . . . , xn〉 and
z are independent given 〈u, v〉. This fact can be easily deduced from Shannon-type
inequalities (see Appendix A, Lemma 8). It remains to get rid of the assumption that
x1 . . . xn and z are independent given u, v.

Let us prove that (6) holds for any x1, . . . , xn, u, v, z. The crucial point is that
no term in (6) has any of xi’s together with z. Given x1, . . . , xn, u, v, z we construct
a new random variable z̃ such that 〈z̃, u, v〉 has the same distribution as 〈z, u, v〉 and
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such that x1 . . . xn and z̃ are independent given u, v. This is done as follows: z̃ has
the same range as z and for any z in its range

Prob[z̃ = z | 〈x1, . . . , xn, u, v〉 = 〈x1, . . . ,xn,u,v〉]

= Prob[z = z | u = u, v = v].

By definition z̃ is independent of x1, . . . , xn given u, v. Hence, by Lemma 8 the
inequality (6) holds for z replaced by z̃. But this replacement does not change any
term in the inequality (6) because for any of its terms all its variables are included
either in the set {x1, . . . , xn, u, v} or the set {u, v, z}. Obviously, the replacement
z → z̃ does not change any term of the first type. And it does not change any term
of the second type either, as 〈z̃, u, v〉 and 〈z, u, v〉 have the same distribution.

It is easy to generalize the above argument to the following rule.
Theorem 2 (Inference rule). Assume that each variable from an information

inequality S ≤ 0 is assigned to a node of a finite rooted tree so that for any term in S all
the variables of that term lie on the same branch of the tree. Assume that the inequality
S ≤ 0 is true for any tuple of random variables satisfying the following condition: for
any internal node s of the tree the variables Vt1 , . . . , Vtm are independent given Ws,
where t1, . . . , tm are all the sons of s, Ws stands for the tuple of random variables
assigned to the predecessors of s (including s) and Vt for the tuple of random variables
assigned to the successors of t (including t). Then the inequality S ≤ 0 is true for
any tuple of random variables.

In the above proof we used this rule for the tree consisting of the root and two
its sons, with u, v assigned to the root, z assigned to one son, and x1, . . . , xn assigned
to the other one.

Let us give another example of an inequality which might be derived by our rule
(unfortunately we have no other real applications of the rule except for the above
one). Let an inequality have the form

aH(xyu) + bH(yu) + cH(u) + dH(zyu) + eH(vu) ≥ 0

and assume that it holds for any x, y, z, u, v such that I(xyz : v|u) = 0 and I(x :
z|yu) = 0. Then this inequality holds for any x, y, z, u, v. Here we use a tree consisting
of 5 vertices: the root, its two sons, and two sons of the left son. The following variables
are assigned to them: u (the root), y (the left son), v (the right son), x, z (the sons
of the left son).

Proof. [Proof of the theorem] As above it suffices to show that given any random
variables x1, . . . , xn we are able to define new random variables x̃1, . . . , x̃n with the
following two properties.

• For any path in the tree let xi1 , . . . , xik
be variables assigned to all the

nodes in this path; then the tuple 〈x̃i1 , . . . , x̃ik
〉 has the same distribution

as 〈xi1 , . . . , xik
〉.
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• For any node s in the tree, Ṽt1 , . . . , Ṽtm
are independent given W̃s, where

t1, . . . , tm are all the sons of s.
We construct such x̃1, . . . , x̃n by induction. Without loss of generality, assume the

following: if xi is assigned to a vertex v, xj is assigned to a vertex w and v precedes
w in the tree then i < j.

Base of induction: let x̃i = xi for any xi assigned to the root.
Induction step. Assume that x̃1, . . . , x̃i−1 are defined. Let s denote the node xi is

assigned to. Recall that Ws denotes the tuple of all the random variables assigned to
predecessors of s (including s). Let Wsi be the tuple of those random variables from
x1, . . . , xi−1 which belong to Ws. We define x̃i so that it has the same range as xi

and for any value xi in its range let

Prob[x̃i = xi | 〈x̃1, . . . , x̃i−1〉 = 〈x1, . . . ,xi−1〉] = Prob[xi = xi | Ws = Wsi].

Here Wsi denotes the tuple consisting of those values from x1, . . . ,xi−1 that corre-
sponds to variables from Wsi.

It is a straightforward consequence of the construction that x̃1, . . . , x̃n qualify the
requirements.

3. A Collection of Constrained Non-Shannon-Type Inequalities. In this
section we give a short proof of one collection of constrained non-Shannon-type in-
equalities.

Corollary 3. For any random variables u, v, z, x1, . . . , xn if

I(u : z|v) = I(v : z|u) = 0

then

H(x1, . . . , xn) + (n− 1) · I(uv : z) ≤
n∑

i=1

I(u : v|xi) +
n∑

i=1

H(xi).(7)

Corollary 3 follows immediately from Theorem 1. Indeed, using the equality
I(u : v : z) = I(uv : z) − I(u : z|v) − I(v : z|u), we can rewrite the inequality in
Theorem 1 as

H(x1, . . . , xn) + (n− 1) · I(uv : z) ≤
n∑

i=1

I(u : v|xi) +
n∑

i=1

H(xi)+

n(I(u : z|v) + I(v : z|u)),

and we are done. However, we give a direct proof of Corollary 3 as an illustration
of our method. In the next section we explain how to modify this reasoning to get
another proof of Theorem 1.

Lemma 4 (Double Markov Property). Let random variables u, v, z satisfy the
condition

I(u : z|v) = I(v : z|u) = 0.

Then there exists a random variable w such that
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• H(w|u) = H(w|v) = 0,
• uv and z are independent given w (i.e., I(uv : z|w) = 0),
• H(w) ≥ I(uv : z).

This lemma was given as an exercise in [3], so we only give a sketch of the proof
here.

Sketch of proof: Let w be the conditional distribution of the variable z given
fixed values u, v. There is a finite set of different values 〈u, v〉, so w has a finite range.
Since I(u : z|v) = I(v : z|u) = 0, the conditional distributions of z given u, given v,
and given uv are the same. Hence w is a deterministic function of u and a deterministic
function of v (i.e., H(w|u) = 0 and H(w|v) = 0). The condition I(uv : z|w) = 0 is
obvious. And H(w) ≥ I(uv : z) because H(w) ≥ I(w : z) = I(uv : z). �

Let us apply the lemma above to the variables u, v, z given in the condition in
Corollary 3, and consider the joint distribution of the tuple 〈u, v, z, w〉 where w is the
variable constructed in the lemma. From [7], we have the following inequality (we
present its proof in Appendix A):

H(c|d) ≤ H(c|ad) + H(c|bd) + I(a : b|d)(8)

Letting in this inequality c = w, d = xi, a = u, and b = v, we get

H(xi|w) + H(w) = H(xi) + H(w|xi)

≤ H(xi) + H(w|uxi) + H(w|vxi) + I(u : v|xi)

≤ H(xi) + H(w|u) + H(w|v) + I(u : v|xi)

= H(xi) + I(u : v|xi).

Sum up all such inequalities for i = 1, . . . , n and add another Shannon-type inequality

H(x1, . . . , xn) ≤ H(w) +
n∑

i=1

H(xi|w).

Recall that H(w) ≥ I(uv : z), and we get the required inequality.

4. The second proof of Theorem 1. We want to generalize the proof from the
last section to get the inequality of Theorem 1. To this end we need an analog of the
lemma on the Double Markov Property. Such an analog is implied by the following
lemma (it follows immediately from Theorem 2 in [2]):

Lemma 5 (Ahlswede-Körner). Let u, v, z be random variables. For any integer
N > 0, consider N independent copies of this triple, i.e., N random variables

〈u1, v1, z1〉, 〈u2, v2, z2〉, . . . , 〈uN , vN , zN 〉,
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such that for any i the triple 〈ui, vi, zi〉 has the same distribution as 〈u, v, z〉, and the
triples 〈ui, vi, zi〉 for all i = 1, 2, . . . , N are independent. Let

U = u1, . . . , uN ,

V = v1, . . . , vN ,

Z = z1, . . . , zN .

(We omit n in the notations U, V, Z for brevity.) Then there is a random variable
W = W (N) such that

H(U |W ) ≤ H(U |Z) + o(N) = N ·H(u|z) + o(N),
H(V |W ) ≤ H(V |Z) + o(N) = N ·H(v|z) + o(N),
H(UV |W ) ≤ H(UV |Z) + o(N) = N ·H(uv|z) + o(N),
H(W ) = I(UV : Z) + o(N) = N · I(uv : z) + o(N).

The original proof of Ahlswede and Körner refers to a rather non-trivial approxi-
mation technique. For the sake of completeness we give a self-contained proof of this
lemma in Appendix B.

Remark 1. A reader familiar with the notion of rate region for two random
variables [2, 3] can easily note that both Lemmas 4 and 5 state that some point belongs
to the rate region of u and v. Below we show how to use this point to get a non-trivial
information inequality for the variables involved. Formally, we do not need here the
definition of rate region, so we omit it.

Remark 2. The inequality H(UV |W ) ≤ H(UV |Z) + o(N) implies the condition
H(W ) ≥ I(UV : Z)+o(N), so the last equality in the lemma above could be substituted
by a weaker condition H(W ) ≤ I(UV : Z) + o(N).

Let us prove that the random variable W from Lemma 5 satisfies the inequalities

H(W ) = N · I(uv : z) + o(N),
H(W |U) ≤ N · I(v : z|u) + o(N),
H(W |V ) ≤ N · I(u : z|v) + o(N).

The first inequality above is implied by the lemma. To prove the second inequality,
note that

H(W |U) = H(U |W ) + H(W )−H(U)
≤ N · (H(u|z) + I(uv : z)−H(u)) + o(N)
= N · I(v : z|u) + o(N).

The third inequality is proved in a similar way.
Let us fix a positive integer N and consider N independent copies of the tuple

〈u, v, z, x1, . . . , xn〉, i.e., N independent tuples

〈u1, v1, z1, x1
1, . . . , x

1
n〉, 〈u2, v2, z2, x2

1, . . . , x
2
n〉, . . . , 〈uN , vN , zN , xN

1 , . . . , xN
n 〉,

where each 〈ui, vi, zi, xi
1, . . . , x

i
n〉 has the same joint distribution as the collection of

random variables 〈u, v, z, x1, . . . , xn〉.
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Let

U = u1, u2, . . . , uN ,

V = v1, v2, . . . , vN ,

Z = z1, z2, . . . , zN ,

X1 = x1
1, x

2
1, . . . , x

N
1 ,

. . . . . .

Xn = x1
n, x2

n, . . . , xN
n .

Note that H(U) = NH(u), H(V ) = NH(v), etc.
Repeat the proof of Corollary 3 for 〈U, V, Z,X1, . . . , Xn〉 in place of the tuple

〈u, v, z, x1, . . . , xn〉 and use Lemma 5 instead of the lemma on the Double Markov
property. Instead of the equalities H(w|u) = H(w|v) = 0, we have the inequalities
H(W |U) ≤ N · I(v : z|u) + o(N) and H(W |V ) ≤ N · I(u : z|v) + o(N). Therefore, we
obtain the inequality

N · (H(x1, . . . , xn) + (n− 1) · I(uv : z)) + o(N) ≤

N · (
n∑

i=1

I(u : v|xi) +
n∑

i=1

H(xi) + n(I(v : z|u) + I(u : z|v))) + o(N)

instead of (7). As this inequality holds for any N , we have

H(x1, . . . , xn) + (n− 1) · I(uv : z) ≤
n∑

i=1

I(u : v|xi) +
n∑

i=1

H(xi)+

n(I(v : z|u) + I(u : z|v)),

so the proof is completed. �

5. An Inference Rule for Deducing New Linear Inequalities for Kol-
mogorov Complexity. In this section, we assume that the reader is familiar with
plain Kolmogorov complexity K(x); unfamiliar readers can consult [8]. We will
present an inference rule to prove inequalities for Kolmogorov complexity of binary
strings and their tuples. This rule is an analog of the rule from the previous section.

We consider inequalities of the form S(x1, . . . , xn) ≤ 0 in variables x1, . . . , xn

ranging over binary strings whose left hand side is a sum of terms of the form
K(〈xi1 , . . . , xim

〉). The inference rule allows one to prove that such an inequality
is valid up to an additive term logarithmic in the complexity of x1, . . . , xn. That
is, for some constant c and for any strings x1, . . . , xn, S(x1, . . . , xn) ≤ c log k holds,
where k = K(x1) + · · ·+ K(xn).

The rule will be defined in terms of infinite sequences of strings. It is easy to
see that an inequality S ≤ 0 holds up to an additive O(log k) term if and only
if for any sequences xi

1, . . . , x
i
n of strings, S(xi

1, . . . , x
i
n) ≤ O(log ki) holds, where

ki = K(xi
1)+· · ·+K(xi

n). Indeed, the “only if” part is evident. To prove the “if” part,
assume that for any c there are xc

1, . . . , x
c
n such that S(xc

1, . . . , x
c
n) > c log(K(xc

1)+· · ·+
K(xc

n)). Then for the sequence xc
1, . . . , x

c
n, c = 1, 2, . . . , the inequality S(xc

1, . . . , x
c
n) ≤

O(log kc) is not true.
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For sequences ui
1, . . . , u

i
m, vi of strings we say that ui

1, . . . , u
i
m are independent

given vi if K(ui
1|vi)+ · · ·+K(ui

m|vi) ≤ K(ui
1, . . . , u

i
m|vi)+O(log ki), where ki denotes

the sum of the complexities of all ui
1, . . . , u

i
m, vi.

Theorem 6 (Inference rule for Kolmogorov complexity). Assume that each vari-
able from S is assigned to a node of a finite rooted tree so that for any term from
S, all its variables lie on the same branch of the tree. Assume that the inequality
S(xi

1, . . . , x
i
n) ≤ O(log ki) holds for any sequences xi

1, . . . , x
i
n with the following prop-

erty: for any internal node s in the tree, the sequences ui
1, . . . , u

i
m are independent

given wi, where ui
j denotes the tuple consisting of all the variables assigned to all

the successors of the jth son of s (including the son itself), and wi denotes the tuple
consisting of all the variables assigned to all the predecessors of s (including s). Then
for some c and for any string S, the inequality S ≤ c log k holds.

Remark 3. A theorem from [7] states that an unconstrained Kolmogorov com-
plexity inequality S ≤ 0 is true up to an additive logarithmic term if and only if the
inequality S′ ≤ 0 which is obtained from it by replacing all the strings by random
variables and all the Kolmogorov complexities by Shannon entropies is true. So one
can try to reduce the inference rule for Kolmogorov complexity to that for Shannon
entropy. However, it is not clear how to do this: we do not know whether an analogy
of the theorem from [7] is true for constrained inequalities.

Proof. Given a sequence of strings x1, . . . , xn [and a string y] define its complex-
ity vector [conditional on y] to be the sequence of 2n − 1 integers consisting of the
complexities of the strings x1, . . . , xn, their pairs, their triples, etc. [conditional on y].

Without loss of generality, we may assume that the number of nodes in the tree
is equal to the number of variables and the assignment of variables to nodes is one-to-
one: if this is not the case, replace a node to which more than one variable is assigned
by a sequence of nodes. Therefore, we will identify variables by nodes.

It suffices to show that for some c and for any strings x1, . . . , xn, there are strings
x′1, . . . , x

′
n such that the following holds.

• For any path xi1 , . . . , xim
in the tree, the complexity vectors of the tuples

xi1 , . . . , xim
and x′i1 , . . . , x

′
im

differ by c log k in each component.
• For any internal node s,

K(u′1|w′) + · · ·+ K(u′m|w′)−K(u′1 . . . u′m|w′) ≤ c log k′

(here u1, . . . , um, w are those tuples from the statement of the theorem; u′

denotes the tuple obtained from u by replacing xi by x′i).
This statement is proved by induction on the height of the tree. To prove the

induction step we need to strengthen the statement: we will assume that all the
complexities are conditional on some string y. So the conditional version proved by
induction is as follows: for some c and for any strings x1, . . . , xn, y, there are strings
x′1, . . . , x

′
n such that for any path xi1 , . . . , xim

in the tree, the complexity vectors of
xi1 , . . . , xim and x′i1 , . . . , x

′
im

conditional on y differ by O(log k) in each component,
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and for any internal node s, K(u′1|w′, y) + · · · + K(u′m|w′, y) − K(u′1 . . . u′m|w′, y) ≤
c log k.

Base of induction: for trees of height 0 (consisting of the root only) the statement
is trivial.

Induction step. To prove the induction step we need to invoke the main tool
of [7], the “typization” argument. For some c depending only on n given variables
x1, . . . , xn, we can define a set M of at least 2K(x1,...,xn)−c log k n-tuples of strings
such that the complexity vector of any tuple in M differs from that of x1, . . . , xn by
at most c log n in every component. This is done as follows. Let M ′ consist of all
n-tuples of strings 〈x′1, . . . , x′n〉 such that for any i1, . . . , im and any j1, . . . , jl (where
m ≥ 1, l ≥ 0),

K(x′i1 , . . . , x
′
im
|x′j1 , . . . , x

′
jl

) ≤ K(xi1 , . . . , xim |xj1 , . . . , xjl
).

This set is large: for some constant c1, log |M ′| ≥ K(x1, . . . , xn)−c1 log k (because the
tuple x1, . . . , xn can be described by its index in the enumeration of this set and by
the extra O(log k) bits describing the set itself). By the construction, the complexity
vector of any point in M ′ is not larger than that of x1, . . . , xn. The inverse, however,
is not true: M ′ does contain points with low complexity vector. But an easy counting
argument shows that the fraction of points in M ′ such that

K(x′i1 , . . . , x
′
im
|x′j1 , . . . , x

′
jl

) < K(xi1 , . . . , xim
|xj1 , . . . , xjl

)− c2 log k

for some i1, . . . , im, j1, . . . , jl is small (for appropriate c2). Let M be the set of all
points in M ′ which do not satisfy this inequality.

We will use a conditional version of this construction which has a similar proof:
for any x1, . . . , ym and y there is a set M of cardinality at least 2K(x1,...,xn|y)−O(log k)

such that for any i1, . . . , im and any j1, . . . , jl,

|K(x′i1 , . . . , x
′
im
|x′j1 , . . . , x

′
jl

, y)−K(xi1 , . . . , xim
|xj1 , . . . , xjl

, y)| = O(log k).

Now we are in the position to prove the induction step. Regard our tree as a col-
lection of subtrees rooted at the sons of the root. Without loss of generality, assume
that the string x1 is assigned to the root, the strings x2, . . . , xl are assigned to the
nodes of the subtree rooted at the leftmost son of the root, the strings xl+1, . . . , xm

are assigned to the nodes of the tree rooted at the next son of the root, etc. Apply
the induction hypothesis to the leftmost subtree, to the sequence of strings x2, . . . , xl,
and to 〈x1, y〉 as condition. We get some strings x′2, . . . , x

′
l. The complexity vec-

tor of this tuple has the desired property that the complexity vectors of the tuples
x1, x

′
2, . . . , x

′
l and x1, x2, . . . , xl conditional on y are the same (up to a O(log k) term).

Repeat the same steps for the other subtrees and gather together all the strings ob-
tained. We get strings x′2, . . . , x

′
n such that the sequence x1, x

′
2, . . . , x

′
n satisfies all

but one of the the requirements: K(x′2, . . . , x
′
n|x1, y) may be much less than the

sum K(x′2, . . . , x
′
l|x1, y) + K(x′l+1, . . . , x

′
m|x1, y) + . . . (the sum is over all subtrees).
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To overcome this difficulty, we use typization. We apply typization to the tuple
〈x′2, . . . , x′l〉 conditional on 〈x1, y〉 and repeat the same steps for all the subtrees.
We thus get sets M1,M2, . . . . For at least one tuple in their Cartesian product,
K(x′2, . . . , x

′
n|x1, y) ≥ log |M1| + log |M2| + . . . holds, and these sets are big enough:

log |M1|+ · · ·+ log |Mm| ≥ K(x′2, . . . , x
′
l|x1, y) + K(x′l+1, . . . , x

′
m|x1, y) + . . .

6. Conclusion. In the present paper we have proved a family of new non-
Shannon-type inequalities. We have used two different methods to prove the main
result. The first method (Section 2) uses an inference rule which allows us to deduce
new unconstrained inequalities given constrained inequalities of a certain type. The
second method (Sections 3 and 4) appeals to the idea of rate region of Ahlswede and
Körner. In Section 5 we prove that an analog of our inference rule can be applied to
inequalities for Kolmogorov complexity.

The method in Section 2 is based on the ideas of Zhang and Yeung [10]. So
it is not surprising that our inequalities are very similar to (4). It is perhaps more
surprising that the method in Section 4 gives the same results. Probably there is
a relation between these two methods, and an interesting problem is to reveal this
relation. Another question is whether any other new inequality can be proved by
using our methods.

Here are a few other open questions.
• Are all the inequalities in Theorem 1 independent? We can only prove that

inequality (3) together with the basic inequalities do not imply the inequality
of Theorem 1 for n = 2, and that our inequalities for n = 2 and n = 3 are
not equivalent modulo the basic inequalities (see Appendix C).

• Obviously, inequalities of Zhang and Yeung (4) are implied by Theorem 1.
Is the converse true? Namely does all the family of inequalities of type (4)
(n = 1, 2, . . .) imply Theorem 1?

• Inequalities of Corollary 3 are implied by corresponding non-constraint in-
equalities of Theorem 1. Is there any true constraint inequality

(S1 ≤ 0 ∧ S2 ≤ 0 ∧ . . . Sn ≤ 0) ⇒ S ≤ 0

for entropies for which its non-constraint analog

S ≤ C · (S1 + . . . + Sn)

is false for any positive constant C? In particular, is the inequality

I(x3 : x4) ≤ I(x3 : x4|x1) + I(x3 : x4|x2) + C · I(x1 : x2) + C · I(x1 : x2|x3)

true for some C (the non-constraint analog of (5))?
• Does any constraint inequality which is valid for random variables with a

finite range but not valid for random variables with a countable range exist?
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7. Appendix.

A. The proof of some useful Shannon-type inequalities

Lemma 7. For any random variables a, b, c, d the inequality

H(c|d) ≤ H(c|ad) + H(c|bd) + I(a : b|d)

holds.
Proof. This inequality is an easy consequence of the basic inequality

H(a, b, d) + H(c, d) ≤ H(a, b, c, d) + H(c, d) ≤ H(a, c, d) + H(b, c, d).

Subtracting 2H(d) from both sides, we obtain

H(a, b|d) + H(c|d) ≤ H(a, c|d) + H(b, c|d).

Hence,

H(c|d) ≤ H(c|ad) + H(c|bd) + (H(a|d) + H(b|d)−H(a, b|d)),

and we get the inequality to be proved.
Lemma 8. The inequality (6) is true provided 〈x1, . . . , xn〉 and z are independent

given 〈u, v〉.
Proof. For any a, b, c, d, we first show that

(9) I(a : b) ≤ I(a : b|c) + I(a : b|d) + I(c : d) + I(c : d|ab).

Consider the mutual information in a, b, c, d defined as

I(a : b : c : d) = I(a : b : c)− I(a : b : c|d).

It is easy to verify that it is symmetric: just rewrite it as an algebraic sum of the
entropies of a, b, c, d, their pairs, their triples, etc, to get the symmetric expression

I(a : b : c : d) = H(a) + H(b) + H(c) + H(d)
−H(ab)−H(ac)− · · · −H(cd)
+H(abc) + · · ·+ H(bcd)
−H(abcd).

To prove (9), we first consider

I(a : b : c : d) = I(a : b : c)− I(a : b : c|d)

= I(a : b)− I(a : b|c)− I(a : b|d) + I(a : b|cd)

≥ I(a : b)− I(a : b|c)− I(a : b|d).
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On the other hand, we have

I(a : b : c : d) = I(c : d)− I(c : d|a)− I(c : d|b) + I(c : d|ab)
≤ I(c : d) + I(c : d|ab).

Combining these two inequalities, we get (9). Let a = u, b = v, c = xi, and d = z in
this inequality. Then we get

I(u : v) ≤ I(u : v|xi) + I(u : v|z) + I(xi : z) + I(xi : z|uv)

= I(u : v|xi) + I(u : v|z) + I(xi : z).

Note that the last equality holds as xi and z are independent given u and v. Summing
these inequalities over all i, we obtain

nI(u : v) ≤
n∑

i=1

I(u : v|xi) + nI(u : v|z) +
n∑

i=1

I(xi : z).

So to get (6) it remains to show that

H(x1 . . . xn) +
n∑

i=1

I(xi : z) ≤
n∑

i=1

H(xi) + I(uv : z),

or equivalently

H(x1 . . . xn) ≤
n∑

i=1

H(xi|z) + I(uv : z).

This can be proven as follows:

H(x1 . . . xn) = H(x1 . . . xn|z) + I(x1 . . . xn : z)

≤
n∑

i=1

H(xi|z) + I(x1 . . . xn : z) ≤
n∑

i=1

H(xi|z) + I(uv : z),

where the last inequality is true because x1, . . . , xn and z are independent given u

and v.

B. The proof of Lemma 5

In this section we prove Lemma 5. We use in our proof the method of typical
sequences. We omit the tiresome technical details and refer the reader to [3] for an
introduction to the standard technique of typical sequences.

We will use U,V,Z to denote n-vectors of i.i.d. copies of the random variables
U, V, Z, respectively. Let us consider typical values of the triple 〈U,V,Z〉, i.e., the
triples 〈U,V,Z〉 such that frequencies of all the values in the triple is close to its
probability for the distribution u, v, z. More precisely, we say that U,V,Z is a typical
triple if for the number N(α, β, γ) of places i such that 〈Ui,Vi,Zi〉 = 〈α, β, γ〉, we
have

|N(α, β, γ)−N · Prob[u = α ∧ v = β ∧ z = γ]| ≤
√

N log N
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(for every triple 〈α, β, γ〉).
Remark 4. The choice of the bound for the difference between probability and

frequency is not very important here. We can get here any function θ(N) such that

θ(N)
N

→ 0 and
θ(N)√

N
→∞ as N →∞

instead of
√

N log N . Only the following properties of typical sequences are required:
• the number of typical values 〈U,V,Z〉 is equal to 2N ·H(u,v,w)+o(N)

• Prob[〈U, V, Z〉 is typical ] → 1 as N →∞.
Both properties can be proved by standard counting arguments (see Chapter 1 in [3]).

Now let us consider the projection of the set of all typical triples 〈U,V,W〉 onto
the first two coordinates. We call this projection the set of typical pairs 〈U,V〉.
Analogously, we consider the projection of the set of all typical triples onto the third
coordinate and call it the set of all typical Z.

We use the following additional properties of typical values which can also be
proved by a standard counting technique (see detailed proof in Chapter 1 of [3] or in
Section 5.3 of [15]):

(*) There are 2H(U,V )+o(N) typical pairs 〈U,V〉 and 2H(Z)+o(N) typical Z.
(**) For every typical Z such that 〈U′,V′,Z〉 is typical for some U′,V′, there are

2H(U,V |Z)+o(N) pairs 〈U,V〉 such that the triple 〈U,V,Z〉 is typical.
(***) For every typical pair 〈U,V〉 such that 〈U,V,Z′〉 is typical for some Z′, there

are 2H(Z|U,V )+o(N) different Z such that the triple 〈U,V,Z〉 is typical.
Our first goal is to cover the set of all typical pairs 〈U,V〉 by some collection of

sets such that
1. the number of covering sets is not larger then 2I(UV :Z)+o(N),
2. the projections of each covering set onto the first and the second coordinates

are not larger then 2H(U |Z)+o(N) and 2H(V |Z)+o(N) respectively,
3. the size of each covering set is not larger then 2H(UV |Z)+o(N).

Let us choose an arbitrary typical Z. Consider the set of all pairs U,V which
form together with the fixed Z a typical triple. This set satisfies the second and the
third conditions above (see (*) and (**)).

So we have candidates for the covering sets (one set for each typical Z). If Z and
〈U, V 〉 are independent, we have got the required collection of covering sets. But in
the general case there are too many candidates: we have 2H(Z)+o(N) different typical
Z, and only 2I(UV :Z)+o(N) sets should be in a covering family. Now we explain how to
choose an appropriate number of candidates satisfying all the three conditions above.

Let k = 2I(UV :Z)+ε. Choose at random k typical Z and get k corresponding sets
of typical pairs 〈U,V〉. For an appropriate ε (to be specified later), we will choose a
collection of sets which covers all typical 〈U,V〉 with a high probability. Specifically,
let us fix a typical pair 〈U,V〉 and consider a random variable

ξ(U,V) =

{
1, if the triple 〈U,V,Z〉 is typical for randomly chosen Z
0, otherwise.
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Then by (*) and (**), for each typical pair 〈U,V〉,

Prob[ξ(U,V) = 1] =
2H(UV |Z) + o(n)

2H(U,V )+o(n)
= 2−I(UV :Z)+o(n).

Let us note that for different typical pairs 〈U,V〉, the probabilities of the event
“ξ(U,V) = 1” differ from each other only by the factor 2o(n).

Now introduce another random variable

ξ̃(U,V) =


1, if the triple 〈U,V,Zi〉 is typical for at least one of k

randomly chosen Zi (i = 1, . . . , k)
0, otherwise.

Obviously,

Prob[ξ̃(U,V) = 1] = 1− (1− Prob[ξ̃(U,V) = 1])k = 1− (1− 2−I(UV :Z)+o(n))k.

Hence, the expectation of the number of typical pairs 〈U,V〉 covered by at least one
of k randomly chosen sets is equal to

E(
∑
U,V

ξ̃(U,V)) =
∑
U,V

E(ξ̃(U,V)) = 2H(U,V )+o(n) · (1− (1− 2−I(UV :Z)+o(n))k).

Now we can choose ε such that

k = 2I(UV :Z)+o(n) ·H(U, V ) ·O(1),

and the expectation of the number of typical pairs 〈U,V〉 which are not covered is
less than 1. This means that a collection of k sets covering all the pairs 〈U,V〉 does
exist, and that is the collection we are looking for.

In fact, we have proved that there are lots of covering collections satisfying all our
requirements, but we need only one such collection. Let us fix any one of them. Now
we want to make the covering sets disjunctive. This can be achieved by reducing the
sizes of the covering sets in the collection so that every typical pair 〈U,V〉 belongs
to exactly one covering set in the collection. Then we get the collection of all the
reduced covering sets with one additional set: the set of all non-typical pairs 〈U,V〉.

The collection of covering sets has been constructed, and we now define the
random variable W to be the covering set corresponding to the value of the ran-
dom pair 〈U, V 〉. It is easy to check that W satisfies all the requirements of the
lemma. In fact, the number of values of W is k. Hence, its entropy is not larger then
log k = I(UV : Z) + o(N). Further,

H(UV |W ) =
∑

H(UV |W = w) · Prob[W = w]

(the sum is over all values w of W ). Every w is a covering set from the constructed
collection. If w is a set of typical pairs 〈U,V〉, then it contains at most 2H(UV |Z)+o(N)

values, and H(UV |W = w) ≤ H(UV |Z) + o(N). If w is the set of all non-typical
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pairs 〈U,V〉, then it contains much more elements (about cN , where c is the number
of all values 〈u, v〉). This means that the entropy H(UV |W = w) may be very large
(about N log c). But the probability of the event “W is the set of all non-typical pairs”
tends to zero as N → ∞. So after averaging we get H(UV |W ) ≤ H(UV |Z) + o(N).
Analogously H(U |W ) ≤ H(U |Z) + o(N) and H(V |W ) ≤ H(V |Z) + o(N). �

Remark 5. Let u1, . . . , un, z be (n + 1) random variables. Denote by Ui a se-
quence of N i.i.d. variables, each of them having the same distribution as ui. Then a
straightforward generalization of our proof of the Lemma 5 shows that there exists a
random variable W such that

H(W ) ≤ N · I(u1 . . . un : z) + o(N)

and

H(Ui1 . . . Uik
|W ) ≤ N ·H(ui1 . . . uik

|z) + o(N)

for any 1 ≤ i1 < . . . < ik ≤ n.

Question: Can we use the generalization above to prove a new non Shannon type
information inequality (with the method from Section 4)?

Table 1

tuple of r.v. entropy of a tuple

u 2
v 4
z 2
x1 3
x2 3
u, v 5
u, z 3
v, z 5
u, x1 4
u, x2 4
z, x1 4
z, x2 4
v, x1 5
v, x2 5
x1, x2 6

tuple of r.v. entropy of a tuple
u, x1, x2 6
v, x1, x2 6
z, x1, x2 6
u, v, x1 6
u, v, x2 6
u, z, x1 4.8
u, z, x2 4.8
v, z, x1 6
v, z, x2 5.2
u, v, z 6

u, v, x1, x2 6
u, z, x1, x2 6
v, v, x1, x2 6
u, v, z, x1 6
u, v, z, x2 6

u, v, z, x1, x2 6
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Table 2

tuple of r.v. entropy of a tuple

u 3
v 3
z 3
x1 2
x2 2
x3 2
u, v 4.5
u, z 4.5
v, z 4.5
u, x1 4
u, x2 4
u, x3 4
v, x1 4
v, x2 4
v, x3 4
z, x1 4
z, x2 4
z, x3 4
x1, x2 3.5
x1, x3 3.5
x2, x3 3.5

u, x1, x2 5
v, x1, x2 5
z, x1, x2 5
u, x1, x3 5
v, x1, x3 5
z, x1, x3 5
u, x2, x3 5
v, x2, x3 5
z, x2, x3 5
u, v, x1 5.5

tuple of r.v. entropy of a tuple
u, z, x1 5.5
v, z, x1 5.5
u, v, x2 5.5
u, z, x2 5.5
v, z, x2 5.5
u, v, x3 5.5
u, z, x3 5.5
v, z, x3 5.5
u, v, z 6

x1, x2, x3 5
u, x1, x2, x3 6
v, x1, x2, x3 6
z, x1, x2, x3 6
u, v, x1, x2 6
u, z, x1, x2 6
v, z, x1, x2 6
u, v, x1, x3 6
u, z, x1, x3 6
v, z, x1, x3 6
u, v, x2, x3 6
u, z, x2, x3 6
v, z, x2, x3 6
u, v, z, x1 6
u, v, z, x2 6
u, v, z, x3 6

u, v, x1, x2, x3 6
u, z, x1, x2, x3 6
v, z, x1, x2, x3 6
u, v, z, x1, x2 6
u, v, z, x1, x3 6
u, v, z, x2, x3 6

u, v, z, x1, x2, x3 6

C. Why are the new inequalities non-trivial?

We give here an explanation why the inequalities in Theorem 1 are not implied
by (3), and why the inequalities in Theorem 1 for n = 2 and n = 3 are not equivalent.
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Inequalities in Theorem 1 for n = 2 are not implied by inequalities of type (3) and
the basic inequalities.. Let In denote the n-th inequality in Theorem 1 (with (n + 3)
random variables). We show that inequalities of type (3) together with the basic
inequalities do not imply I2. We consider specific values of the entropy function: it
should satisfy all basic inequalities and all inequalities of type (3) but not inequality I2.
We provide values of entropies in Table 1 (e.g. H(u) = 2, H(v) = 4, . . ., H(z, x1) = 4,
etc.)

It is easy to check that for such entropy values I2 is not satisfied. Checking that
the basic inequalities and inequalities of type (3) are true is not so easy. We have
used a computer program to verify this.

Inequalities in Theorem 1 for n = 2 and for n = 3 are not equivalent.. As in the
cases above, we consider specific values of the entropy function (see Table 2) which
satisfy all inequalities of type I2 and all the basic inequalities, but not the inequality
I3.

It is not hard to check that these entropy values do not satisfy the inequality I3.
To prove that these entropy values satisfy all the basic inequalities and all inequalities
of type I2, we need to check an enormous number of inequalities. We have verified
this by a computer program.
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