Dimension Reduction

Computational and Metric Geometry

Instructor: Yury Makarychev

1 Dimension Reduction

Theorem 1.1 (Johnson-Lindenstruass Lemma). Consider a finite metric subspace $X \subset$ ℓ_{2}^{N}. Let $\varepsilon \in(0,1), n=|X|$, and $d>C \ln n / \varepsilon^{2}$ (where C is a sufficiently large absolute constant). Then there exists an embedding φ of X into ℓ_{2}^{d} s.t.

$$
\begin{equation*}
(1-\varepsilon) \leq \frac{\|\varphi(x)-\varphi(y)\|}{\|x-y\|_{2}} \leq(1+\varepsilon) . \tag{1}
\end{equation*}
$$

(that is, the embedding φ is "almost" isometric). Moreover, we can find such embedding in randomized polynomial time.

Proof. We show that the algorithm presented below finds the desired embedding with probability that tends to 1 as n tends to ∞.

Dimension Reduction Algorithm

Input: A metric space $X \subset \ell_{2}^{N}$.
Output: An embedding φ of X into ℓ_{2}^{d}.

1. Choose a random $d \times N$ matrix $\Gamma=\left(\gamma_{i j}\right)$, whose entries $\gamma_{i j}$ are i.i.d. standard Gaussian random variables, $\gamma_{i j} \sim \mathcal{N}(0,1)$.
2. Define $\varphi(x)=\frac{1}{\sqrt{d}} \Gamma x$ for every $x \in X$.
3. Return embedding φ.

Consider a pair of points x and y in X. Our plan is to prove that

$$
p_{x y} \equiv \operatorname{Pr}(\text { Inequality }(1) \text { does not hold for } x \text { and } y) \leq 1 / n^{4} .
$$

Once we establish this bound, the theorem will follow since the probability that Inequality (1) does not hold for some pair $x, y \in X$ is at most $\sum_{x, y \in X} p_{x y} \leq n^{2} \cdot\left(1 / n^{4}\right)=1 / n^{2}$ by the union bound.

We now prove that $p_{x y} \leq 1 / n^{4}$. Denote $z=(x-y) /\|x-y\|_{2}$. We have,

$$
\begin{aligned}
\|\varphi(x)-\varphi(y)\|_{2}^{2} & =\frac{\|\Gamma x-\Gamma y\|_{2}^{2}}{d}=\frac{\|\Gamma(x-y)\|_{2}^{2}}{d}=\frac{\|x-y\|^{2}\|\Gamma z\|_{2}^{2}}{d} \\
& =\frac{\|x-y\|^{2}}{d} \sum_{i=1}^{d}\left(\sum_{j=1}^{N} \gamma_{i j} z_{j}\right)^{2}=\frac{\sum_{i=1}^{d} g_{i}^{2}}{d}\|x-y\|^{2}
\end{aligned}
$$

where $g_{i}=\sum_{j=1}^{N} z_{j} \gamma_{i j}$. Therefore,

$$
\frac{\|\varphi(x)-\varphi(y)\|_{2}^{2}}{\|x-y\|^{2}}=\frac{\sum_{i=1}^{d} g_{i}^{2}}{d}
$$

Note that each g_{i} is a sum of scaled Gaussian random variables, and hence g_{i} is a Gaussian random variable. Let us compute the mean and variance of g_{i}.

$$
\begin{aligned}
\mathbb{E} g_{i} & =\mathbb{E}\left[\sum_{j=1}^{N} z_{j} \gamma_{i j}\right]=\sum_{j=1}^{N} z_{j} \mathbb{E}\left[\gamma_{i j}\right]=0, \\
\operatorname{Var}\left[g_{i}\right] & =\operatorname{Var}\left[\sum_{j=1}^{N} z_{j} \gamma_{i j}\right]=\sum_{j=1}^{N} z_{j}^{2} \operatorname{Var}\left[\gamma_{i j}\right]=\sum_{j=1}^{N} z_{j}^{2}=\|z\|_{2}^{2}=1 .
\end{aligned}
$$

That is, g_{1}, \ldots, g_{d} are i.i.d. random variables distributed as $\mathcal{N}(0,1)$.
It remains to prove the following lemma (note that $1-\varepsilon>(1-\varepsilon)^{2}$ and $\left.1+\varepsilon<(1+\varepsilon)^{2}\right)$.
Lemma 1.2. Let g_{1}, \ldots, g_{d} be i.i.d. standard Gaussian random variables, where $d>C \ln n / \varepsilon^{2}$. Then

$$
\operatorname{Pr}\left(-\varepsilon d \leq \sum_{i=1}^{d} g_{i}^{2}-d \leq \varepsilon d\right) \geq 1-1 / n^{4}
$$

Exercise 1. The random variable $\sum_{i=1}^{d} g_{i}^{2}$ has the chi-square distribution with d degrees of freedom, with density $\frac{1}{2^{d / 2} \Gamma(d / 2)} x^{d / 2-1} e^{-x / 2}$ (where $\Gamma(t)$ is the gamma function). Use this fact to directly estimate the desired probability and prove the lemma.

Proof of Lemma 1.2. Denote $T=\sum_{i=1}^{d} g_{i}^{2}-d$. Consider the random variable $e^{\left(1-\alpha^{2}\right) T / 2}$ (where $\alpha>0$ is some number). Note that

$$
\begin{aligned}
\mathbb{E}\left[e^{\left(1-\alpha^{2}\right) g_{i}^{2} / 2}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\left(1-\alpha^{2}\right) t^{2} / 2} e^{-t^{2} / 2} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\alpha^{2} t^{2} / 2} d t \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{(\alpha t)^{2} / 2} \frac{d(\alpha t)}{\alpha}=\frac{1}{\alpha}
\end{aligned}
$$

Therefore,

$$
\mathbb{E}\left[e^{\left(1-\alpha^{2}\right) T / 2}\right]=\mathbb{E}\left[e^{\frac{1-\alpha^{2}}{2} \sum_{i=1}^{d} g_{i}^{2}}\right] \cdot e^{-d\left(1-\alpha^{2}\right) / 2}=e^{-d\left(1-\alpha^{2}\right) / 2} \prod_{i=1}^{d} \mathbb{E}\left[e^{\left(1-\alpha^{2}\right) g_{i}^{2} / 2}\right]=\frac{e^{-d\left(1-\alpha^{2}\right) / 2}}{\alpha^{d}}
$$

Let $\alpha=1+\delta$, where $\delta \in(-1 / 2,1 / 2)$ (we will fix δ later). Then

$$
\mathbb{E}\left[e^{\left(1-\alpha^{2}\right) T / 2}\right]=\frac{e^{-d\left(1-\alpha^{2}\right) / 2}}{\alpha^{d}}=e^{\delta d+d \delta^{2} / 2-d \ln (1+\delta)}
$$

By Taylor's theorem, $\ln (1+\delta)=\delta+R_{1}(\delta)$, where $\left|R_{1}(\delta)\right| \leq \frac{|\delta|^{2}}{2} \cdot \max _{t \in(-1 / 2,1 / 2) \mid}\left|(\ln (1+t))^{\prime \prime}\right|=$ $\frac{|\delta|^{2}}{2} \max _{t \in(-1 / 2,1 / 2)} \frac{1}{(1+t)^{2}}=2 \delta^{2}$ for all $\delta \in(-1 / 2,1 / 2)$. Therefore,

$$
\mathbb{E}\left[e^{\left(1-\alpha^{2}\right) T / 2}\right] \leq e^{3|\delta|^{2} d}
$$

We now use the Chebyshev inequality to bound $\operatorname{Pr}(T>\varepsilon d)$. For $\delta<0$ and $\alpha<1$, we have

$$
\mathbb{E}\left[e^{\left(1-\alpha^{2}\right) T / 2}\right] \geq e^{\left(1-\alpha^{2}\right) \varepsilon d / 2} \cdot \operatorname{Pr}(T>\varepsilon d)
$$

Therefore,

$$
\operatorname{Pr}(T>\varepsilon d) \leq e^{3 \delta^{2} d} e^{\delta \varepsilon d+\delta^{2} \varepsilon d / 2}=e^{\varepsilon \delta d(1+\delta / 2+3 \delta / \varepsilon)}
$$

We let $\delta=-\varepsilon / 6$ and get $\operatorname{Pr}(T>\varepsilon d) \leq e^{-\varepsilon^{2} d / 18}<1 /\left(2 n^{4}\right)$ if $C>90$ (recall that $\left.d>\frac{C \ln n}{\varepsilon^{2}}\right)$. Similarly, we bound $\operatorname{Pr}(T<-\varepsilon d)$. For $\delta>0$ and $\alpha>1$, we have

$$
\mathbb{E}\left[e^{\left(1-\alpha^{2}\right) T / 2}\right] \geq e^{\left(\alpha^{2}-1\right) \varepsilon d / 2} \cdot \operatorname{Pr}(T<-\varepsilon d)
$$

Therefore,

$$
\operatorname{Pr}(T<-\varepsilon d) \leq e^{3 \delta^{2} d} e^{-\delta \varepsilon d-\delta^{2} \varepsilon d / 2} \leq e^{-\varepsilon \delta d(1-3 \delta / \varepsilon)}
$$

We let $\delta=\varepsilon / 6$ and get $\operatorname{Pr}(T<-\varepsilon d) \leq e^{-\varepsilon^{2} d / 12}<1 /\left(2 n^{4}\right)$ if $C>60$. We conclude that $\operatorname{Pr}(|T|>\varepsilon d)<1 / n^{4}$ if $C>90$.

Remark 1.3. The algorithm we presented in this note runs in polynomial time but is relatively slow. In fact, the embedding φ can be computed very efficiently using the Fast Johnson-Lindenstrauss Transform, which was introduced recently by Ailon and Chazelle. For more information, see N. Ailon and B. Chazelle. Faster dimension reduction. Commun. ACM 53(2): 97-104 (2010) and N. Ailon, E. Liberty. Almost optimal unrestricted fast Johnson-Lindenstrauss transform. CoRR, abs/1005.5513.

