Convexity

Computational and Metric Geometry

Instructor: Yury Makarychev

1 Convexity

Definition 1.1. Let V be a linear (vector) space. A set $S \subseteq V$ is convex if for every two points $x, y \in S$, the segment $[x, y] \equiv \{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\}$ lies in S.

Consider various examples: a circle, triangle, square, pair of circles. Are these sets convex?

Claim 1.2. Let $\{S_{\alpha}\}_{\alpha}$ be a family of convex sets. Then their intersection $T = \bigcap_{\alpha} S_{\alpha}$ is also a convex set.

Proof. Consider two points $x, y \in T$. We have $x, y \in S_{\alpha}$ for every index α . Since each set S_{α} is convex, $[x, y] \subseteq S_{\alpha}$ for every α . Therefore, $[x, y] \subseteq T$. We conclude that T is also convex.

Exercise 1. Assume that S and T are convex. Can $S \cup T$ be convex? Is it necessarily true that $S \cup T$ is convex? Can the complement of S be convex? Is it necessarily true that the complement of S is convex?

Exercise 2. Assume that S is convex. Is it necessarily connected?

2 Convex combinations

Definition 2.1. Consider a set of points $v_1, \ldots, v_n \in V$ and a set of non-negative weights $\lambda_1, \ldots, \lambda_n$ that add up to 1: $\sum_{i=1}^n \lambda_i = 1$. Then $\sum_{i=1}^n \lambda_i$ is a convex combination of points v_i with weights λ_i .

Note that we consider only finite convex combinations in Definition 2.1. The definition of convexity can be restated in terms of convex combinations: S is convex if and only if for every $x, y \in S$ every convex combination $\lambda_1 x + \lambda_2 y \in S$. In this definition, we consider only convex combinations involving two points. Can we consider arbitrary convex combinations instead? Obviously if every convex combination of points in S is in S, then so is every combination of two points, and thus S is convex. Now we show that if S is convex that all convex combinations of points from S are in S.

Claim 2.2. Consider a convex set S. Let $u = \sum \lambda_i v_i$ be a convex combination of points v_1, \ldots, v_n in S. Then $u \in S$.

Proof. We prove by induction on n. For n = 1, the claim is trivial, as $u = v_1 \in S$. Assuming that the claim holds for n - 1 points, we prove it for n points.

Let $\mu_i = \lambda_i/(\lambda_1 + \dots + \lambda_{n-1}) = \lambda_i/(1 - \lambda_n)$ for $i \in [n-1]$. Note that $\sum_{i=1}^{n-1} \mu_i = 1$ and all $\mu_i \geq 0$. Thus,

$$u' = \sum_{i=1}^{n-1} \mu_i v_i$$

is a convex combination of n-1 points in S and thus belongs to S, by the induction hypothesis. We have that both u' and v_n are in S. By the definition of convexity, segment $[u', v_n]$ lies in S. We conclude that $u = (1 - \lambda_n)u' + \lambda_n v_n \in [u', v_n] \subseteq S$, as required. \square

3 Convex hull

Now consider an arbitrary (not necessarily convex) subset S of V. We define the convex hull conv(S) of S as the "smallest" convex set that contains S.

Definition 3.1. Consider a set $S \subseteq V$. Define its convex hull as

$$conv(S) = \bigcap_{\substack{T: S \subseteq T \\ T \text{ is convex}}} T.$$

Exercise 3. Prove that

- 1. conv(S) is convex for every set S
- 2. $\operatorname{conv}(S) \subseteq T$ for every convex set T that contains S
- 3. conv(S) = S if S is convex
- 4. $\operatorname{conv}(S') \subseteq \operatorname{conv}(S)$ if $S' \subseteq S$

The following claim provides an alternative characterization of conv(S).

Claim 3.2.

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^{n} \lambda_i v_i : v_1, \dots, v_n \in S \text{ where } n \ge 1 \text{ and } \sum_{i=1}^{n} \lambda_i = 1, \ \forall i : \lambda_i \ge 0 \right\}$$

Proof. Define T = conv(S) and

$$T' = \left\{ \sum_{i=1}^{n} \lambda_i v_i : v_1, \dots, v_n \in S \text{ where } n \ge 1 \text{ and } \sum_{i=1}^{n} \lambda_i = 1, \ \forall i : \lambda_i \ge 0 \right\}.$$

First, we show that $T' \subseteq T$. Indeed, consider a convex combination $u = \sum_{i=1}^{n} \lambda_i v_i$. We have, $v_i \in S \subseteq T$ for all i. Since T is convex, any convex combination of points in T is in T. In particular, $u = \sum_{i=1}^{n} \lambda_i v_i \in T$. We conclude that $T' \subseteq T$.

Now we prove that $T \subseteq T'$. As T is a minimal convex set that contains S, it is sufficient to verify that T' contains S and is convex. By the definition of T', T' contains a trivial convex combination $1 \cdot u = u$ for every $u \in S$. Thus, $S \subseteq T'$. Now consider two convex combinations in T'. By introducing, zero coefficients if necessary, we may assume that both combinations use the same points v_1, \ldots, v_n .

$$u_1 = \sum_{i=1}^n \mu_i v_i$$
$$u_2 = \sum_{i=1}^n \nu_i v_i.$$

We want to prove that $\lambda u_1 + (1 - \lambda)u_2 \in T'$ for every $\lambda \in [0, 1]$. We have,

$$\lambda u_1 + (1 - \lambda)u_2 = \lambda \sum_{i=1}^n \mu_i v_i + (1 - \lambda) \sum_{i=1}^n \nu_i v_i = \sum_{i=1}^n (\lambda \mu_i + (1 - \lambda)\nu_i)v_i,$$

which is a convex combination of points v_1, \ldots, v_n with weights $\lambda \mu_i + (1 - \lambda)\nu_i$.

Example 3.1. The convex hull of k > 1 points in \mathbb{R}^2 is a convex polygon with at most k vertices or a segment.

Exercise 4. Is it true that the convex hull of a closed set necessarily closed? Is it true that the convex hull of a compact set is necessarily compact? Is it true that the convex hull of an open set is necessarily open? Does it matter if the space is finite or infinite dimensional?

4 Theorems about convex hulls

Theorem 4.1 (Radon's Theorem). Consider $S \subseteq \mathbb{R}^d$ with $|S| \ge d+2$. Then there exist disjoint sets A and B with $conv(A) \cap conv(B) \ne \emptyset$.

Proof. To simplify the notation, we prove the theorem when S is finite. If S is infinite, we can choose an arbitrary subset $S' \subseteq S$ of size d+2 and apply the theorem to it, obtaining desired sets A and B. Let v_1, \ldots, v_n be the points in S (where $n \ge d+2$). Define $v_i' = v_i \oplus 1 \in \mathbb{R}^{d+1}$. We have at least d+2 points v_1', \ldots, v_n' in a d+1 dimensional space. The points must be linearly dependent. That is, we must have

$$\sum_{i=1}^{n} \lambda_i v_i' = 0$$

¹Exercise: verify that $\sum_{i=1}^{n} \lambda \mu_i + (1-\lambda)\nu_i = 1$.

for some coefficients λ_i , some of which are non-zero. (Note that now coefficients λ_i are not necessarily positive. $\sum_i \lambda_i v_i$ is not a convex combination!) Rewrite this equation in terms of the original vectors v_i .

$$\sum_{i=1}^{n} \lambda_i v_i = 0$$

$$\sum_{i=1}^{n} \lambda_i = 0$$

Let $A = \{v_i : \lambda_i > 0\}$ and $B = \{v_i : \lambda_i < 0\}$. Then

$$u \equiv \sum_{v_i \in A} \lambda_i v_i = \sum_{v_i \in B} (-\lambda_i) v_i$$
$$\Lambda \equiv \sum_{v_i \in A} \lambda_i = \sum_{v_i \in B} (-\lambda_i)$$

Note that in each of the two expressions for Λ all the terms are positive. In particular, $\Lambda > 0$. Let $\alpha_i = \lambda_i/\Lambda$ for $v_i \in A$ and $\beta_i = -\lambda_i/\Lambda$ for $v_i \in B$. We have, $\sum_{v_i \in A} \alpha_i = \sum_{v_i \in B} \beta_i = 1$, all coefficients α_i and β_i are positive. Therefore,

$$u = \sum_{i:v_i \in A} \alpha_i v_i \in \text{conv}(A)$$
 and $u = \sum_{i:v_i \in B} \beta_i v_i \in \text{conv}(B)$.

We conclude that $conv(A) \cap conv(B) \neq \emptyset$.

Theorem 4.2 (Caratheódory's Theorem). Consider $S \subseteq \mathbb{R}^d$. Then every point $u \in \text{conv}(S)$ is a convex combination of at most d+1 points in S.

Proof. Consider a convex combination for u with the smallest number of points:

$$u = \sum_{i=1}^{n} \mu_i v_i$$

where all $v_i \in S$. If $n \leq d+1$, then we are done. So we assume that n > d+1 and then get a contradiction by providing another convex combination for u with a smaller number of terms.

Let us apply Radon theorem to points v_1, \ldots, v_n . We get two disjoint sets $A \subseteq S$ and $B \subseteq S$ and positive weights α_i and β_i such that

$$w \equiv \sum_{v_i \in A} \alpha_i v_i = \sum_{v_i \in B} \beta_i v_i$$
$$\sum_{v_i \in A} \alpha_i = \sum_{v_i \in B} \beta_i = 1$$

Now let

$$\mu_i^t = \begin{cases} \mu_i - t\alpha_i, & \text{for } v_i \in A\\ \mu_i + t\beta_i, & \text{for } v_i \in B\\ \mu_i, & \text{otherwise} \end{cases}$$

Note that for every t,

$$\sum_{i=1}^{n} \mu_{i}^{t} v_{i} = \sum_{i=1}^{n} \mu_{i} v_{i} - t \sum_{v_{i} \in A} \alpha_{i} v_{i} + t \sum_{v_{i} \in B} \beta_{i} v_{i} = u - tw + tw = u.$$

$$\sum_{i=1}^{n} \mu_{i}^{t} = \sum_{i=1}^{n} \mu_{i} - t \sum_{v_{i} \in A} \alpha_{i} + t \sum_{v_{i} \in B} \beta_{i} = 1 - t + t = 1$$

We see that for every t, $u = \sum_{i=1}^{n} \mu_i^t v_i$ is a convex combination for u as long as all coefficients μ_i^t are non-negative. Our goal now is to choose t so that this is a valid convex combination with at most n-1 non-zero coefficients.

Question: What t should we use?

Let $t = \min_{v_i \in A} \frac{\mu_i}{\alpha_i}$. Then all $\mu_i^t \geq 0$ and at least one $\mu_i^t = 0$. We obtain a convex combination with fewer than n non-zero terms. We get a contradiction.

Theorem 4.3 (Helly's Theorem). Consider $n \geq d+1$ convex sets S_1, \ldots, S_n in \mathbb{R}^d . Assume that every d+1 of them have a non-empty intersection. Then $\bigcap_{i=1}^n S_i \neq \emptyset$.

Proof. The proof is by induction on n. The claim is trivial when n=d+1. Assume that the theorem holds for n'=n-1 and let us prove it for n>d+1. For every $j\in [n]$, define x_j as follows. Consider the intersection of all sets S_i other than S_j . It is non-empty by the induction hypothesis. Let x_j be an arbitrary point in $\bigcap_{i\neq j} S_i$. We obtain points x_1,\ldots,x_n . By construction, $x_i\in S_j$ if $i\neq j$. Observe that if $x_i\in S_i$ for some i, then we are done, since x_i lies in all sets S_i . So we assume below that $x_i\notin S_i$ for all i.

Now we apply Radon's theorem to the set of points $\{x_i\}$. We get two disjoint subsets of points A and B such that $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \emptyset$. Choose $u \in \operatorname{conv}(A) \cap \operatorname{conv}(B)$. We prove that $u \in \bigcap_{i=1}^n S_i$ or, in other words, $u \in S_i$ for every i.

Fix some i. We know that x_i cannot belong to both A and B, as A and B are disjoint. Assume without loss of generality that $x_i \notin A$. Then all points $x_j \in A$ are in S_i . Thus $u \in \text{conv}(A) \subseteq \text{conv}(S_i) = S_i$.

5 Extreme points

Consider a finite set of points in \mathbb{R}^2 . Its convex hull is a convex polygon. The polygon is uniquely determined by its vertices; thus, very informally, the vertices are the most "important" points of the polygon. In higher dimensions, we can can talk about vertices of a polyhedron. In this section, we are going to generalize the notion of a vertex to arbitrary convex sets. Specifically, we are going to define "extreme points" of a convex set.

Definition 5.1 (Minkowski's definition). We say that x is an extreme point of a convex set S if there are no distinct points $a, b \in S$ such that $x = \frac{a+b}{2}$.

Exercise 5. Check that in the definition of an extreme point, we can require that $x \notin (a, b)$ for all distinct points $a, b \in S$ (where (a, b) is the open interval between a and b).

Theorem 5.2. Let X be an arbitrary set. Then $x \in \text{conv}(X)$ is an extreme point of conv(X) if and only if $x \notin \text{conv}(X \setminus \{x\})$.

Proof. First, assume that $x \in \operatorname{conv}(X \setminus \{x\})$. We shall prove that x is not an extreme point of $\operatorname{conv}(X)$. That is, we show that there exist a and b such that $x \in (a,b)$. Since $x \in \operatorname{conv}(X \setminus \{x\})$, we have a convex combination $x = \sum_{i=1}^n \alpha_i x_n$ where all $x_i \in X \setminus \{x\}$ and all α_i are positive. Because all $x_i \neq x$, we must have n > 1. Let $a = \sum_{i=1}^{n-1} \frac{\alpha_i}{1-\alpha_n} x_n$ and $b = x_n$. Clearly, $a, b \in \operatorname{conv}(X \setminus \{x\})$. Then $x = (1 - \alpha_n)a + \alpha_n b \in (a, b)$, as desired.

Now, assume that x is not an extreme point of $\operatorname{conv}(X)$; that is, $x = \frac{a+b}{2}$ for some $a, b \in \operatorname{conv}(X)$. Since $a, b \in \operatorname{conv}(X)$, each of them is a convex combination of points in X. We may assume that the same points participate in both convex combinations (but possibly some coefficients are 0):

$$a = \sum_{i=1}^{n} \alpha_i x_i$$
 and $b = \sum_{i=1}^{n} \beta_i x_i$

If x is not among points x_1, \ldots, x_n then

$$x = \frac{a+b}{2} = \sum_{i=1}^{n} \frac{\alpha_i + \beta_i}{2} x_i$$

is a convex combination of points in $X \setminus \{x\}$. Thus, $x \in \text{conv}(X \setminus \{x\})$, as required. Now assume that one of the points x_i is x. Without loss of generality, $x_n = x$. Note that $\alpha_n < 1$ and $\beta_n < 1$, since $a \neq x$ and $b \neq x$, respectively. Therefore, we may write new convex combinations for a and b that do not involve x:

$$a = \sum_{i=1}^{n-1} \frac{\alpha_i}{1 - \alpha_n} x_i$$

$$b = \sum_{i=1}^{n-1} \frac{\beta_i}{1 - \beta_n} x_i$$

Now the same argument as above shows that $x \in \text{conv}(X \setminus \{x\})$.

Exercise 6. Answer the following questions.

1. What is the set of extreme points of the closed unit disc $\{x \in \mathbb{R}^2 : ||x||_2 \leq 1\}$?

²In particular, x must be in X, as otherwise $x \in \text{conv}(X) = \text{conv}(X \setminus \{x\})$.

- 2. What is the set of extreme points of the open unit disc $\{x \in \mathbb{R}^2 : ||x||_2 < 1\}$?
- 3. What is the set of extreme points of a line in \mathbb{R}^2 .

Exercise 7. Recall the definition of the boundary ∂X of a set X:

$$\partial X = \{x \in X : B_{\varepsilon}(x) \setminus X \neq \emptyset \text{ for all } \varepsilon > 0\} \text{ where } B_{\varepsilon}(x) = \{y : ||x - y||_2 < \varepsilon\}.$$

Prove that all extreme points of a convex set X lie on the boundary of X.

Exercise 8. A polygon is uniquely determined by the set of its vertices. However, show that the extreme points of a convex set S do not determine S.

Theorem 5.3 (Minkowski, Krein–Milman). Assume that S is a compact³ convex set in \mathbb{R}^d , then S = conv(X) where X is the set of extreme points of S.

Before we proceed with the proof, we need some auxiliary definitions. For a point $x \in X$, let $L_x = \{v : x + \varepsilon v \in S \text{ and } x - \varepsilon v \in S \text{ for some } \varepsilon > 0\}.$

Lemma 5.4. L_x is a linear subspace.

Proof. It is clear from the definition that if $v \in L_x$ than so is -v. It is also clear that if $v \in L_x$ then $\alpha v \in L_x$ for every α . Now we verify that if $u, v \in L_x$ then $u + v \in L_x$.

Since $u \in L_x$, the segment $[x - \varepsilon_1 u, x + \varepsilon_1 u]$ is in S for some $\varepsilon_1 > 0$. Since $v \in L_x$, the segment $[x - \varepsilon_2 v, x + \varepsilon_2 v]$ is in S for some $\varepsilon_2 > 0$. Since S is convex, the parallelogram Π (including its interior points) with vertices $x \pm \varepsilon_1 u$ and $x \pm \varepsilon_2 v$ lies in S. Let $\varepsilon_3 = \min(\varepsilon_1, \varepsilon_2)/2$. Then $x \pm \varepsilon_3 (u + v) \in \Pi \subseteq S$. We conclude that $u + v \in L_x$.

We define rank $x = \dim L_x$. Note that if y is not an extreme point then y belongs to some interval (a, b) with distinct endpoints $a, b \in S$. Thus, vector $a - b \in L_x$ and consequently rank $x = \dim L_x \ge 1$. Thus, rank x = 0 only if x is an extreme point of S.⁴

Proof of Theorem 5.3. Clearly, $\operatorname{conv}(X) \subseteq \operatorname{conv}(S) = S$. So we need to prove that $S \subseteq \operatorname{conv}(X)$. That is, for every point $y \in S$ we need to show that $y \in \operatorname{conv}(X)$. We are going to prove that by induction on rank y. If $\operatorname{rank} y = 0$, then y is an extreme point. That is, $x \in X \subseteq \operatorname{conv}(X)$, as required.

Now assume that the induction hypothesis holds for points y with rank $y \leq k-1$ and prove it for y with rank y = k. Since y is not an extreme point, $y = \frac{a+b}{2}$ for some distinct $a, b \in S$. Consider the line ℓ that goes through a and b. Note that that $\ell \cap S$ is a closed (bounded) segment, since S is compact and convex. Denote the endpoints of this segment by y_1 and y_2 . Then $x \in (a, b) \subseteq (y_1, y_2)$. We show that rank $y_1 < k$ and similarly rank $y_2 < k$.

Lemma 5.5. We have,

 $\bullet \ L_{y_1} \subseteq L_y.$

³Recall that $X \subseteq \mathbb{R}^d$ is compact if and only if it is closed and bounded.

⁴In fact, rank x = 0 if and only if x is an extreme point.

$$\bullet \ y_1 - y_2 \in L_{y_1} \setminus L_y.$$

Proof. I. Consider $v \in L_{y_1}$. We have that $y_1 \pm \varepsilon v \in S$ for some small enough $\varepsilon > 0$. We also have that $y_2 \in S$. Since S is convex, the entire triangle Δ with vertices $y_1 + \varepsilon v, y_1 - \varepsilon v, y_2$ lies in S. Note that point y lies on the segment (cevian) $[y_1, y_2]$, which in turn is inside Δ . We get that

$$p_1 = \frac{\|y - y_2\|}{\|y_1 - y_2\|} (y_1 + \varepsilon v) + \frac{\|y - y_1\|}{\|y_1 - y_2\|} y_2 = y + \left(\frac{\|y - y_2\|}{\|y_1 - y_2\|} \varepsilon\right) v$$

is a convex combination of $y_1 + \varepsilon v$ and y_2 and thus lies inside Δ . Similarly,

$$p_2 = y - \left(\frac{\|y - y_2\|}{\|y_1 - y_2\|}\varepsilon\right)v$$

lies inside Δ . It follows that $p_1, p_2 \in S$ and hence $v \in L_y$.

II. Recall that $a, b \in S$ and $y = \frac{a+b}{2}$. Therefore, $a-b \in L_y$. Now, $y_1 - y_2$ and a-b are colinear so $y_1 - y_2 \in L_y$ as well. On the other hand, y_1 is an endpoint of the segment $S \cap \ell$. Therefore, $y_1 + \varepsilon(y_1 - y_2) \notin S$ for every $\varepsilon > 0$. We conclude that $y_1 - y_2 \notin L_{y_1}$.

We have proved that L_{y_1} is a proper subset of L_y . Thus, rank $y_1 = \dim L_{y_1} < \dim L_y = \operatorname{rank} y$. Similarly, rank $y_2 < \operatorname{rank} y$. By the induction hypothesis, $y_1, y_2 \in \operatorname{conv}(X)$. Since $\operatorname{conv}(X)$ is $\operatorname{convex}, y \in [y_1, y_2] \subseteq \operatorname{conv}(X)$, as required.

6 Separating Hyperplanes

Definition 6.1. Consider two sets A and B in a linear space. We say that an affine hyperplane H strictly separates A and B if A and B lie on different sides of H (and $A \cap H = \emptyset$). We will say that H is a (strict) separating hyperplane.

Theorem 6.2. Let $p \in \mathbb{R}^d$ be a point and $C \subseteq \mathbb{R}^d$ be a non-empty closed convex set. Assume that $p \notin C$. Then there is a (strict) separating hyperplane H between p and C.

Proof. First, we find point q closest to p in C. Why does it exist? Consider function $f(x) = \|x - p\|_2$ on C. Note that f is continuous. Assume first that C is compact, then f attains its minimum on C, so we simply define $q = \operatorname{argmin}_x f(x)$. If C is not compact, let $\Delta = \inf_{x \in C} \|x - p\|_2$ and define $C' = C \cap \{x : \|x - p\| \le \Delta + 1\}$. As an intersection of two closed sets, C and a closed ball of radius $\Delta + 1$, C' is closed. Since the ball is bounded, so is C'. We conclude that C' is compact. Now we apply the argument above to C' and get the desired point q at distance Δ for p.

Note that $||p-q||_2 > 0$ because $p \notin C$. Now let H be the bisector hyperplane for segment [p,q]; in other words, $H = \{x : ||x-p||_2 = ||x-q||_2\}$. Clearly, the distance from p to H is $||p-q||_2/2 > 0$. Thus, $p \notin H$. We claim that H does not intersect C. Assume to the contrary that there exists $r \in C \cap H$. Consider the triangle with vertices p, q, and r. Since

 $r \in H$, ||p-r|| = ||q-r||. Therefore, the triangle is isosceles and thus $\angle pqr < \pi/2$. Since $q, r \in C$, we have $[q, r] \subset C$ and thus $x_t \equiv q + t(r-q) \in C$ for $t \in [0, 1]$. Now

$$||p - x_t||^2 = ||p - q||^2 + t^2 ||r - q||^2 - 2t \cdot ||p - q|| \cdot ||r - q|| \cdot \cos \angle pqr$$

$$= ||p - x_t||^2 - 2t \cdot \underbrace{||p - q|| \cdot ||r - q|| \cdot \cos \angle pqr}_{>0} + O(t^2)$$

We have, $||p - x_t||_2 < ||p - q||_2$ for small enough t > 0. That contradicts to the fact that q is the closest to p point in C.

We conclude that $p \notin H$ and C_2 lies on one side of H. Since the segment [p,q] intersects H, point p and set C lie on opposite sides of H.

Theorem 6.3. Let $C_1 \subseteq \mathbb{R}^d$ be a compact convex set and $C_2 \subseteq \mathbb{R}^d$ be a closed convex set. Assume that $C_1 \cap C_2 = \emptyset$ and both sets are not empty. Then there is a (strict) separating hyperplane H between C_1 and C_2 .

Proof sketch. Let $f(x) = \inf_{y \in C_2} ||x - y||$ be the distance from $x \in C_1$ to C_2 . Function f(x) is continuous (and, in fact, 1-Lipschitz) and thus attains its minimum on compact set C_1 . Let p be the point where it attains its minimum. We use Theorem 6.2 to find a separating hyperplane H between p and C_2 . Now the same argument as in Theorem 6.2 shows that C_1 does not intersect H.

Exercise 9. Is Theorem 6.3 true if we only require that C_1 and C_2 be closed convex sets (that is, we no longer require that C_1 be compact).

7 Polar Set

The Krein-Milman theorem says that a compact convex body is determined by its extreme points. This is analogous to defining a polygon or polyhedron by specifying its vertices. However, we can define a polygon or polyhedron by specifying its facets instead of vertices. In fact, this is the approach we use to define the feasible polytope when we write a linear program. Let us generalize this approach to arbitrary convex sets. Consider all closed affine half-spaces H that contain a given convex set S and their intersection

$$\bigcap_{H:S\subseteq H}H.$$

Q: Is this intersection equal to S?

A: The intersection of closed affine half-spaces is a closed set. So if S is not closed, then the intersection is not equal to S.

Claim 7.1. If S is a closed convex set, then $S = \bigcap_{H:S \subseteq H} H$.

Proof. Since all H in the intersection contain S, so does their intersection. On the other hand, if $p \notin S$, then by Theorem 6.2, there is a separating hyperplane P that separates p and C. Hyperplane P defines a half-space that contains C but not p. We conclude that $p \notin \bigcap_{H:S \subseteq H} H$.

Note that a half-space H can be written as $\{x : \langle c, x \rangle \leq b\}$ for some vector c and scalar b. Assume for a moment that S contains the origin. Then if H contains S, it also contains 0, and thus $b \geq \langle c, 0 \rangle = 0$. Further, it is easy to see that Claim 7.1 holds for S even if we exclude half-spaces with b = 0, since all hyperplanes from Theorem 6.2 strictly separate p and S and thus do not go through the origin. The formula for a half-space H with b > 0 can be simplified: $H = H_y = \{x : \langle y, x \rangle \leq 1\}$ where y = c/b. That is,

$$S = \bigcap_{y: H_y \subseteq S} H_y \tag{1}$$

here we may assume that $H_0 = \mathbb{R}^d$ also participates in the intersection, even though H_0 is not a half-space.

We conclude that the set $\{y: S \subseteq H_y\}$ uniquely defines a closed convex set S that contains 0. We call this set the polar set of S. In the following definition of the polar set, we use that $S \subseteq H_y$ if and only if $\langle x, y \rangle \leq 1$ for all $x \in S$.

Definition 7.2. Consider an arbitrary set S in Euclidean space \mathbb{R}^d . The polar set of S is

$$S^{\circ} = \{y : S \subseteq H_y\} = \{y : \langle x, y \rangle \le 1 \text{ for all } x \in S\}.$$

Note that we defined S° for all sets S. However, the definition is mostly useful when S is a closed convex set containing the origin.

Exercise 10. Find the polar sets of the following sets.

- B_R , be the closed Euclidean ball of radius R centered at the origin
- $\{x\}$ where $x \in \mathbb{R}^d$
- a half-space H_y
- P a regular polygon centered at the original
- a cube centered at the origin

Exercise 11. Prove that $0 \in S^{\circ}$ for every set S.

Now observe that (1) can be written as follows for closed convex sets containing 0:

$$S = \bigcap_{y \in S^{\circ}} H_y.$$

On the other hand (for every S),

$$S^{\circ} = \{y : \langle x, y \rangle \le 1 \text{ for all } x \in S\} = \bigcap_{x \in S} \{y : \langle x, y \rangle \le 1\} = \bigcap_{x \in S} H_x.$$

We see the duality between S and S° . Thus, we have proved the following theorem.

Theorem 7.3. If S is a closed convex set containing 0, then $S^{\circ \circ} = S$.

Let us now prove some other basic properties of S° .

Claim 7.4. The following properties hold.

- 1. Set S° is a convex closed set for every S.
- 2. If $S \subseteq T$ then $S^{\circ} \supset T^{\circ}$.
- 3. $(S \cup T)^{\circ} = S^{\circ} \cap T^{\circ}$.
- 4. More generally, let $\{S_{\alpha}\}_{\alpha}$ be a family of sets in \mathbb{R}^d . Then $(\bigcup_{\alpha} S_{\alpha})^{\circ} = \bigcap_{\alpha} S_{\alpha}^{\circ}$.

Proof. 1. We have, $S^{\circ} = \bigcap_{x \in S} H_x$ is an intersection of closed convex sets and thus is a closed convex set itself.

2. We need to prove that $\bigcap_{x \in S} H_x \supseteq \bigcap_{x \in T} H_x$. This inclusion holds since each half-space that participates in the intersection on the left also participates in one on the right.

3.

$$(S \cup T)^{\circ} = \bigcap_{x \in S \cup T} H_x = \left(\bigcap_{x \in S} H_x\right) \cap \left(\bigcap_{x \in T} H_x\right) = S^{\circ} \cap T^{\circ}.$$

4. The proof is essentially identical to that of item 3.

Claim 7.5. Assume that S and T are closed convex sets containing the origin. Then

$$(S \cap T)^{\circ} = \overline{\operatorname{conv}(S^{\circ} \cup T^{\circ})}$$

Here \overline{A} denotes the closure of set A. Note that $S^{\circ} \cup T^{\circ}$ is generally speaking a non-convex set. We will study polar sets of non-convex sets in the next section and then prove Claim 7.5.

8 Polar sets of arbitrary sets

As we discussed above, polar sets are particularly useful when S is a closed convex set containing 0. Many properties hold only for such sets (e.g. $S = S^{\circ \circ}$ only for such sets). In this section, we give some properties of polar sets of arbitrary sets.

Claim 8.1. Consider a set $S \subseteq \mathbb{R}^d$. Then

- $S^{\circ} = (S \cup \{0\})^{\circ}$
- $S^{\circ} = \operatorname{conv}(S)^{\circ}$
- $S^{\circ} = (\overline{S})^{\circ}$

In particular, $S^{\circ} = \left(\overline{\operatorname{conv}(S \cup \{0\})}\right)^{\circ}$.

Proof. Since $S \subseteq S \cup \{0\}$, $S \subseteq \operatorname{conv}(S)$, and $S \subseteq \overline{S}$, from Claim 7.4, we get $S^{\circ} \supseteq (S \cup \{0\})^{\circ}$, $S^{\circ} \supseteq \operatorname{conv}(S)^{\circ}$, and $S^{\circ} \supseteq \overline{S}^{\circ}$. So we need to prove that $S^{\circ} \subseteq (S \cup \{0\})^{\circ}$, $S^{\circ} \subseteq \operatorname{conv}(S)^{\circ}$, and $S^{\circ} \subseteq \overline{S}^{\circ}$.

First, $(S \cup \{0\})^{\circ} = S^{\circ} \cap \{0\}^{\circ} = S^{\circ} \cap \mathbb{R}^{d} = S^{\circ}$. Then, since H_{y} is convex, if $S \subseteq H_{y}$ then $\operatorname{conv}(S) \subseteq H_{y}$. Thus,

$$S^{\circ} = \{y : S \subseteq H_y\} \subseteq \{y : \operatorname{conv}(S) \subseteq H_y\} = \operatorname{conv}(S)^{\circ}.$$

Finally, since H_y is closed, if $S \subseteq H_y$ then $\bar{S} \subseteq H_y$, as above we get

$$S^{\circ} = \{y : S \subseteq H_y\} \subseteq \{y : \bar{S} \subseteq H_y\} = \bar{S}^{\circ}.$$

Claim 8.2. Let S be an arbitrary set in \mathbb{R}^d . Then $S^{\circ \circ} = \overline{\operatorname{conv}(S \cup \{0\})}$.

Proof. Define $\hat{S} = \overline{\text{conv}(S) \cup \{0\}}$. By Claim 8.1, $S^{\circ} = \hat{S}^{\circ}$. Now \hat{S} is a closed convex set containing 0. Thus, $\hat{S}^{\circ \circ} = \hat{S}$. We get,

$$S^{\circ\circ} = (\hat{S}^{\circ})^{\circ} = \hat{S}^{\circ\circ} = \hat{S},$$

as required. \Box

Proof of Claim 7.5. We apply Claim 7.4, item 3, to sets S° and T° . We get

$$(S^{\circ} \cup T^{\circ})^{\circ} = S^{\circ \circ} \cap T^{\circ \circ} = S \cap T.$$

Thus, $(S \cap T)^{\circ} = (S^{\circ} \cup T^{\circ})^{\circ \circ} = \overline{\operatorname{conv}(S^{\circ} \cup T^{\circ})}$. Here we used that $S^{\circ} \cup T^{\circ}$ contains the origin.

Exercise 12. Prove that

$$(S \cap T)^{\circ} \neq \overline{\operatorname{conv}(S^{\circ} \cup T^{\circ})}$$

for the following sets S and T:

- $S = \{(x,y) : x > 0, y > 0\}$ and $T = \{(x,y) : x < 0, y > 0\}$
- $S = \{(1, y) : y \in \mathbb{R}\} \text{ and } T = \{(x, 1) : x \in \mathbb{R}\}$

Claim 8.3. Let P be a linear subspace of \mathbb{R}^d and π be the orthogonal projection on P. Let $S \subset \mathbb{R}^d$. Then

$$(\pi S)^{\circ} \cap P = S^{\circ} \cap P$$

if S is a closed convex set containing 0 then

$$(S\cap P)^{\circ}\cap P=\pi(S^{\circ})$$

Proof. It is straightforward to verify these identities directly using the definition of the polar set. However, we will prove them using polar set properties we established above. Consider P^{\perp} , the orthogonal complement to P. Note that $P^{\circ} = P^{\perp}$. Observe that for every set A

$$\overline{\operatorname{conv}(\pi A \cup P^{\perp})} = \overline{\operatorname{conv}(A \cup P^{\perp})} = \pi A + P^{\perp} \equiv \{x' + x'' : x' \in \pi A, \ x'' \in P^{\perp}\}$$
 (2)

$$= A + P^{\perp} \equiv \{ x' + x'' : x' \in A, \ x'' \in P^{\perp} \}.$$
 (3)

Therefore, $(\pi A \cup P^{\perp})^{\circ} = (A \cup P^{\perp})^{\circ} = \pi A + P^{\perp}$. We start with proving the first identity. We apply the statement we just proved with A = S.

$$(\pi S)^{\circ} \cap P = (\pi S)^{\circ} \cap (P^{\perp})^{\circ} = (\pi S \cup P^{\perp})^{\circ} \stackrel{(2)}{=} (S \cup P^{\perp})^{\circ} = S^{\circ} \cap (P^{\perp})^{\circ} = S^{\circ} \cap P.$$

Now we prove the second identity. Here, we let $A = S^{\circ}$.

$$(S \cap P)^{\circ} \cap P = \overline{\operatorname{conv}(S^{\circ} \cup P^{\circ})} \cap P \stackrel{(2)}{=} (\pi(S^{\circ}) + P^{\perp}) \cap P = \pi(S^{\circ}).$$