Convexity

Computational and Metric Geometry

Instructor: Yury Makarychev

1 Convexity

Definition 1.1. Let V' be a linear (vector) space. A set S C 'V is convez if for every two
points x,y € S, the segment [x,y] = { z+ (1 — Ny : X € [0,1]} lies in S.

Consider various examples: a circle, triangle, square, pair of circles. Are these sets
convex”?

Claim 1.2. Let {Sa}a be a family of convex sets. Then their intersection T = (), Sa is also
a conver set.

Proof. Consider two points x,y € T. We have z,y € S, for every index a. Since each set
Sq is convex, [z,y] C S, for every a. Therefore, [z,y] C T. We conclude that T is also
convex. [

Exercise 1. Assume that S and T are convex. Can SUT be convex? Is it necessarily true
that SUT s convex? Can the complement of S be convex? Is it necessarily true that the
complement of S is convex?

Exercise 2. Assume that S is convex. Is it necessarily connected?

2 Convex combinations

Definition 2.1. Consider a set of points vy, ...,v, € V and a set of non-negative weights
Ay ooy Ay that add up to 1: Y7 N = 1. Then > | X\; is a convex combination of points
v; with weights \;.

Note that we consider only finite convex combinations in Definition 2.1. The definition
of convexity can be restated in terms of convex combinations: S is convex if and only if for
every x,y € S every convex combination \jx + Aoy € S. In this definition, we consider only
convex combinations involving two points. Can we consider arbitrary convex combinations
instead? Obviously if every convex combination of points in S is in 5, then so is every
combination of two points, and thus S is convex. Now we show that if S is convex that all
convex combinations of points from S are in S.



Claim 2.2. Consider a conver set S. Let u = Y. \v; be a convexr combination of points
Vi,...,0, i S. Thenu € S.

Proof. We prove by induction on n. For n = 1, the claim is trivial, as u = v; € S. Assuming
that the claim holds for n — 1 points, we prove it for n points.
Let g = X/ + -+ Au1) = Ai/(1 = \,) for i € [n—1]. Note that 37— p; = 1 and

all p; > 0. Thus,
n—1
u = Z HiV;
i=1

is a convex combination of n — 1 points in S and thus belongs to S, by the induction
hypothesis. We have that both u’ and v,, are in S. By the definition of convexity, segment
[u, v,] lies in S. We conclude that u = (1 — \,)u’ + A\, € [0/, v,] € 5, as required. O

3 Convex hull

Now consider an arbitrary (not necessarily convex) subset S of V. We define the convex hull
conv(S) of S as the “smallest” convex set that contains S.

Definition 3.1. Consider a set S C V. Define its convex hull as

conv(S) = ﬂ T.

T:SCT
T is convex

Exercise 3. Prove that
S) is convex for every set S
2. conv(S) C T for every convex set T that contains S
) =S if S is convex
S") Cconv(S) if ' C S
The following claim provides an alternative characterization of conv(.S).
Claim 3.2.
conv(S) = {Z/\ivi SV, ..., U, €S wheren > 1 and Z)\i =1, Vi: \; > 0}
=1 i=1
Proof. Define T' = conv(S) and

:{Zx\ivi:vl,...,vneSWherenZ1and Z)‘izl’ Vi /\iZO}.
i=1

i=1



First, we show that 7 C T'. Indeed, consider a convex combination u = Y., A\;v;. We have,
v; € S C T for all 4. Since T is convex, any convex combination of points in 7" is in 7. In
particular, u = > " \v; € T. We conclude that 7" C T

Now we prove that 7' C T”. As T is a minimal convex set that contains S, it is sufficient
to verify that 7" contains S and is convex. By the definition of 7", 7" contains a trivial
convex combination 1-u = u for every u € S. Thus, S C T’. Now consider two convex
combinations in 7. By introducing, zero coefficients if necessary, we may assume that both
combinations use the same points vy, ..., v,.

n
Uy = E HiVi
i=1
n
U9 = E V;0;.
i=1

We want to prove that Auj 4+ (1 — N)ug € T" for every A € [0, 1]. We have,

n

Mg+ (1= Nug = )\Z/MU@' +(1=X) Z Vv = Z(Aui + (1 = Ny,
i=1 i=1

i=1
which is a convex combination of points vy, ..., v, with weights A\u; + (1 — )\)yi.l O

Example 3.1. The convex hull of k > 1 points in R? is a convex polygon with at most k
vertices or a segment.

Exercise 4. Is it true that the convexr hull of a closed set necessarily closed? Is it true that
the convex hull of a compact set is necessarily compact? Is it true that the convex hull of an
open set is necessarily open? Does it matter if the space is finite or infinite dimensional?

4 Theorems about convex hulls

Theorem 4.1 (Radon’s Theorem). Consider S C R? with |S| > d + 2. Then there exist
disjoint sets A and B with conv(A) Nconv(B) # .

Proof. To simplify the notation, we prove the theorem when S is finite. If S is infinite, we can
choose an arbitrary subset S’ C S of size d+2 and apply the theorem to it, obtaining desired
sets A and B. Let vy, ..., v, be the points in S (where n > d+2). Define v, = v; 1 € R,

/

We have at least d 4+ 2 points vy,...,v,, in a d + 1 dimensional space. The points must be

linearly dependent. That is, we must have

i=1

'Exercise: verify that Y, A + (1 — N)v; = 1.




for some coefficients \;, some of which are non-zero. (Note that now coefficients \; are not
necessarily positive. >, \;v; is not a convex combination!) Rewrite this equation in terms
of the original vectors v;.

Zn: )\ﬂ}i =0
i=1
i=1

Let A= {v; : \; >0} and B = {v; : \; < 0}. Then

U= Z A\iv; = Z(_/\i)vi

v;EA v;EB
A= =) (-\)
v;EA v,EB

Note that in each of the two expressions for A all the terms are positive. In particular, A > 0.
Let oy = A\;/A for v; € A and B; = —)\;/A for v; € B. We have, ZvieA o = ZvieBﬁi =1,
all coefficients «; and f3; are positive. Therefore,

u= Z a;v; € conv(A) and u= Z Biv; € conv(B).
v, EA i, EB

We conclude that conv(A) N conv(B) # . O

Theorem 4.2 (Caratheédory’s Theorem). Consider S C R?. Then every point u € conv(S)
s a convex combination of at most d + 1 points in S.

Proof. Consider a convex combination for v with the smallest number of points:

n
U = E i U5
i=1

where all v; € S. If n < d+ 1, then we are done. So we assume that n > d + 1 and then
get a contradiction by providing another convex combination for u with a smaller number
of terms.

Let us apply Radon theorem to points vy,...,v,. We get two disjoint sets A C S and
B C S and positive weights «; and (; such that

w= Z%‘Uz’ = Z Bivi

v;EA v, EB
v;EA v, EB



Now let
Wi — tay, foruv;, € A

i =S pi +tp;, forv; € B
Fis otherwise

Note that for every t,

iuﬁvi:imvi—tZaimetZBwi:u—tw—i-tw:u.
i=1 i=1

v;EA v,€EB
D= mi—tY ai+ty fi=1-t+t=1
i=1 i=1 v, €A v, EB

We see that for every t, uw = > | pfv; is a convex combination for u as long as all coefficients
pk are non-negative. Our goal now is to choose ¢ so that this is a valid convex combination
with at most n — 1 non-zero coefficients.

Question: What ¢ should we use?

Let ¢ = min,ea 2. Then all i > 0 and at least one pf = 0. We obtain a convex
combination with fewer than n non-zero terms. We get a contradiction. O

Theorem 4.3 (Helly’s Theorem). Consider n > d+1 convez sets Sy, ..., S, in R%. Assume
that every d+ 1 of them have a non-empty intersection. Then (;_, S; # @.

Proof. The proof is by induction on n. The claim is trivial when n = d + 1. Assume that
the theorem holds for n” = n — 1 and let us prove it for n > d + 1. For every j € [n], define
x; as follows. Consider the intersection of all sets S; other than S;. It is non-empty by the
induction hypothesis. Let x; be an arbitrary point in (), oy S;. We obtain points x4, ..., z,.
By construction, x; € S; if i # j. Observe that if z; € S; for some 7, then we are done, since
x; lies in all sets S;. So we assume below that z; ¢ S; for all 1.

Now we apply Radon’s theorem to the set of points {x;}. We get two disjoint subsets
of points A and B such that conv(A) N conv(B) # &. Choose u € conv(A) N conv(B). We
prove that u € (), S; or, in other words, u € .S; for every i.

Fix some 7. We know that x; cannot belong to both A and B, as A and B are disjoint.
Assume without loss of generality that z; ¢ A. Then all points z; € A are in S;. Thus
u € conv(A) C conv(S;) = S;. O

5 Extreme points

Consider a finite set of points in R% Its convex hull is a convex polygon. The polygon is
uniquely determined by its vertices; thus, very informally, the vertices are the most “im-
portant” points of the polygon. In higher dimensions, we can can talk about vertices of a
polyhedron. In this section, we are going to generalize the notion of a vertex to arbitrary
convex sets. Specifically, we are going to define “extreme points” of a convex set.



Definition 5.1 (Minkowski’s definition). We say that x is an extreme point of a convex set
S if there are no distinct points a,b € S such that v = “T“’

Exercise 5. Check that in the definition of an extreme point, we can require that x ¢ (a,b)
for all distinct points a,b € S (where (a,b) is the open interval between a and b).

Theorem 5.2. Let X be an arbitrary set. Then x € conv(X) is an extreme point of conv(X)
if and only if x ¢ conv(X \ {z}).?2

Proof. First, assume that x € conv(X \ {z}). We shall prove that x is not an extreme
point of conv(X). That is, we show that there exist a and b such that z € (a,b). Since
z € conv(X \ {z}), we have a convex combination x = ) . , oz, where all z; < X \ {z}
and all o, are positive. Because all ; # x, we must have n > 1. Let a = Y~ 11 o4 %y and
b= x,. Clearly, a,b € conv(X \ {z}). Then x = (1 — ay,)a + a,,b € (a,b), as desired.

Now, assume that = is not an extreme point of conv(X); that is, z = “TH’ for some
a,b € conv(X). Since a,b € conv(X), each of them is a convex combination of points in X.
We may assume that the same points participate in both convex combinations (but possibly

some coefficients are 0):

n n
a= g ;X and b= g Bix;
i—1 i=1

If x is not among points x4, ..., x, then

n

_a+b Z +6»L

is a convex combination of points in X \ {x}. Thus, x € conv(X \ {z}), as required. Now
assume that one of the points z; is x. Without loss of generality, x,, = x. Note that a,, < 1
and 8, < 1, since a # = and b # x, respectively. Therefore, we may write new convex
combinations for a and b that do not involve x:

n—1
@
a = Z;
l—qa,
i=1
n—1
Bi
b= i
D
Now the same argument as above shows that x € conv(X \ {z}). O

Exercise 6. Answer the following questions.

1. What is the set of extreme points of the closed unit disc {x € R? : ||z|ls < 1}7

2In particular, x must be in X, as otherwise z € conv(X) = conv(X \ {z}).



2. What is the set of extreme points of the open unit disc {x € R? : ||z||; < 1} 2

3. What is the set of extreme points of a line in R?.

Exercise 7. Recall the definition of the boundary 0X of a set X:
0X ={x € X :B.(x)\ X # @ for alle >0} where B.(x) ={y: ||xr —y|l2 < e}
Prove that all extreme points of a convex set X lie on the boundary of X.

Exercise 8. A polygon is uniquely determined by the set of its vertices. However, show that
the extreme points of a convex set S do not determine S.

Theorem 5.3 (Minkowski, Krein-Milman). Assume that S is a compact® convex set in RY,
then S = conv(X) where X is the set of extreme points of S.

Before we proceed with the proof, we need some auxiliary definitions. For a point z € X,
let L, ={v:x+eveSandxz—cves for some e > 0}.

Lemma 5.4. L, is a linear subspace.

Proof. 1t is clear from the definition that if v € L, than so is —v. It is also clear that if
v € L, then av € L, for every a. Now we verify that if u,v € L, then u+v € L,.

Since u € L,, the segment [x — equ,z + €ju] is in S for some ; > 0. Since v € L,, the
segment [x — 90, T + 90| is in S for some £ > 0. Since S is convex, the parallelogram II
(including its interior points) with vertices x4e,u and xte9v liesin S. Let €3 = min(ey, £2)/2.
Then x + e3(u+v) € I € S. We conclude that u+ v € L. O

We define rank x = dim L,. Note that if y is not an extreme point then y belongs to some
interval (a,b) with distinct endpoints a,b € S. Thus, vector a — b € L, and consequently
rankz = dim L, > 1. Thus, rankz = 0 only if z is an extreme point of S.

Proof of Theorem 5.3. Clearly, conv(X) C conv(S) = S. So we need to prove that S C
conv(X). That is, for every point y € S we need to show that y € conv(X). We are going
to prove that by induction on ranky. If ranky = 0, then y is an extreme point. That is,
x € X C conv(X), as required.

Now assume that the induction hypothesis holds for points y with ranky < k — 1 and
prove it for y with ranky = k. Since y is not an extreme point, y = %’ for some distinct
a,b € S. Consider the line ¢ that goes through a and b. Note that that £ N S is a closed
(bounded) segment, since S is compact and convex. Denote the endpoints of this segment by
y1 and yo. Then = € (a,b) C (y1,y2). We show that ranky; < k and similarly rank y, < k.

Lemma 5.5. We hawve,

o L, CL,.

3Recall that X C R? is compact if and only if it is closed and bounded.
4In fact, rank z = 0 if and only if = is an extreme point.
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d yl_y?eLm\Ly-

Proof. 1. Consider v € L,,. We have that y; £ev € S for some small enough € > 0. We also
have that y, € S. Since S is convex, the entire triangle A with vertices y; + ev, y1 — v, yo
lies in S. Note that point y lies on the segment (cevian) [y, ys], which in turn is inside A.
We get that

B VS P Rl y2:y+(uy—y2u )
1 — val| lly1 — vo| llyr — yal|

is a convex combination of y; + ev and y, and thus lies inside A. Similarly,

o ( ly — el )
p2=Y elwv
[
lies inside A. It follows that p;,p, € S and hence v € L,.
IT. Recall that a,b € S and y = “TH’ Therefore, a — b € L,. Now, y; — y, and a — b are

colinear so y; — y2 € L, as well. On the other hand, ¥, is an endpoint of the segment SN £.
Therefore, y; + e(y; — y2) ¢ S for every € > 0. We conclude that y; — y2 & Ly,. ]

We have proved that L,, is a proper subset of L,. Thus, ranky; = dimL,, < dimL, =
rank y. Similarly, rankys < ranky. By the induction hypothesis, y;,ys € conv(X). Since
conv(X) is convex, y € [y1,ys2] C conv(X), as required. ]

6 Separating Hyperplanes

Definition 6.1. Consider two sets A and B in a linear space. We say that an affine
hyperplane H strictly separates A and B if A and B lie on different sides of H (and ANH =
@, BNH =@). We will say that H is a (strict) separating hyperplane.

Theorem 6.2. Let p € R? be a point and C C R? be a non-empty closed convex set. Assume
that p ¢ C. Then there is a (strict) separating hyperplane H between p and C.

Proof. First, we find point ¢ closest to p in C. Why does it exist? Consider function
f(z) = ||z — p|l2 on C. Note that f is continuous. Assume first that C' is compact, then f
attains its minimum on C, so we simply define ¢ = argmin,, f(z). If C' is not compact, let
A =inf,cc ||z — pll2 and define C' = CN{z : ||z — p|| < A+ 1}. As an intersection of two
closed sets, C' and a closed ball of radius A + 1, C" is closed. Since the ball is bounded, so is
C'. We conclude that C" is compact. Now we apply the argument above to C’ and get the
desired point ¢ at distance A for p.

Note that ||p—g¢||2 > 0 because p ¢ C'. Now let H be the bisector hyperplane for segment
[p, q]; in other words, H = {z : ||z — p|l2 = ||z — ¢|]2}. Clearly, the distance from p to H
is |[p — ¢ll2/2 > 0. Thus, p ¢ H. We claim that H does not intersect C. Assume to the
contrary that there exists r € C'N H. Consider the triangle with vertices p, ¢, and r. Since



re€ H, |[p—r| =|qg—r|. Therefore, the triangle is isosceles and thus Zpgr < /2. Since
g, € C, we have [¢,7] C C and thus z; = ¢+ t(r —q) € C for t € [0,1]. Now

Ip—zl|* = llp—qll> + r —qll*> =2t - lp— ql| - [|r — q| - cos Zpgr
= [lp = x:ll* =2t - lp = ql| - [Ir — ql| - cos Zpgr +O(t?)

-~

>0

We have, ||p — 2|2 < ||[p — ¢||2 for small enough ¢ > 0. That contradicts to the fact that ¢
is the closest to p point in C.

We conclude that p ¢ H and Cs lies on one side of H. Since the segment [p, ¢| intersects
H, point p and set C' lie on opposite sides of H. n

Theorem 6.3. Let C; C R? be a compact convex set and Cy C R be a closed convex set.
Assume that Cy N Cy = & and both sets are not empty. Then there is a (strict) separating
hyperplane H between Cy and Cs.

Proof sketch. Let f(x) = inf,ec, ||z — y|| be the distance from = € Cy to Cy. Function f(x)
is continuous (and, in fact, 1-Lipschitz) and thus attains its minimum on compact set Cj.
Let p be the point where it attains its minimum. We use Theorem 6.2 to find a separating
hyperplane H between p and C5. Now the same argument as in Theorem 6.2 shows that C
does not intersect H. O

Exercise 9. Is Theorem 6.3 true if we only require that Cy and Cy be closed convex sets
(that is, we no longer require that Cy be compact).

7 Polar Set

The Krein—Milman theorem says that a compact convex body is determined by its extreme
points. This is analogous to defining a polygon or polyhedron by specifying its vertices.
However, we can define a polygon or polyhedron by specifying its facets instead of vertices.
In fact, this is the approach we use to define the feasible polytope when we write a linear
program. Let us generalize this approach to arbitrary convex sets. Consider all closed affine
half-spaces H that contain a given convex set S and their intersection

ﬂ H.
H:SCH

Q: Is this intersection equal to S?
A: The intersection of closed affine half-spaces is a closed set. So if S is not closed, then the
intersection is not equal to S.

Claim 7.1. If S is a closed convez set, then S = (\y.qcp H-

Proof. Since all H in the intersection contain S, so does their intersection. On the other
hand, if p ¢ S, then by Theorem 6.2, there is a separating hyperplane P that separates p
and C. Hyperplane P defines a half-space that contains C' but not p. We conclude that

pé ﬁH:ng H. O



Note that a half-space H can be written as {x : (¢, z) < b} for some vector ¢ and scalar
b. Assume for a moment that S contains the origin. Then if H contains S, it also contains
0, and thus b > (¢,0) = 0. Further, it is easy to see that Claim 7.1 holds for S even if we
exclude half-spaces with b = 0, since all hyperplanes from Theorem 6.2 strictly separate p
and S and thus do not go through the origin. The formula for a half-space H with b > 0
can be simplified: H = H, = {z : (y,x) < 1} where y = ¢/b. That is,

S = ﬂ H, (1)

y:Hy,CS

here we may assume that H, = R? also participates in the intersection, even though Hy is
not a half-space.

We conclude that the set {y : S C H,} uniquely defines a closed convex set S that
contains 0. We call this set the polar set of S. In the following definition of the polar set,
we use that S C H, if and only if (z,y) <1 for all z € S.

Definition 7.2. Consider an arbitrary set S in Euclidean space R%. The polar set of S is
SC={y:SCH,} ={y:(x,y) <1 forallx € S}.

Note that we defined S° for all sets S. However, the definition is mostly useful when S
is a closed convex set containing the origin.

Exercise 10. Find the polar sets of the following sets.
e Bpg, be the closed Fuclidean ball of radius R centered at the origin
o {z} where x € R?
® a half-space H,
e P a reqular polygon centered at the original
e a cube centered at the origin
Exercise 11. Prove that 0 € S° for every set S.

Now observe that (1) can be written as follows for closed convex sets containing 0:
S= ) Hy
yeSse

On the other hand (for every S),

S°={y:(r,y) <lforalzeS}= m{y:<x,y>§1}: ﬂHx.

z€eS €S

We see the duality between S and S°. Thus, we have proved the following theorem.
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Theorem 7.3. If S is a closed convex set containing 0, then S°° = §.
Let us now prove some other basic properties of S°.
Claim 7.4. The following properties hold.
1. Set S° is a convex closed set for every S.
2. If S CT then S° D T°.
3. (SuT)ye=8°NT°.
4. More generally, let {Sa}a be a family of sets in RY. Then (U, Sa)° =1, S.

Proof. 1. We have, S° =, .4 H, is an intersection of closed convex sets and thus is a closed
convex set itself.

2. We need to prove that (,.q¢ Hy 2 (e Hz. This inclusion holds since each half-space
that participates in the intersection on the left also participates in one on the right.

3.
(suTr = H_(ﬂH) (ﬂ H,)=$°nT°.
zeSUT €T
4. The proof is essentially identical to that of item 3. m

Claim 7.5. Assume that S and T are closed convex sets containing the origin. Then

(SNT)° = conv(S°UT°)

Here A denotes the closure of set A. Note that S°UT® is generally speaking a non-convex
set. We will study polar sets of non-convex sets in the next section and then prove Claim 7.5.

8 Polar sets of arbitrary sets

As we discussed above, polar sets are particularly useful when S is a closed convex set
containing 0. Many properties hold only for such sets (e.g. S = S°° only for such sets). In
this section, we give some properties of polar sets of arbitrary sets.

Claim 8.1. Consider a set S C R%. Then
o S°=(SU{0})°
e S° = conv(S)°
e S°=(9)°

In particular, S° = (conv(S U {0}))O

11



Proof. Since S C SU{0}, S C conv(S), and S C S, from Claim 7.4, we get S° D (SU{0})°,
5° D conv(S)°, and S° D 5°. So we need to prove that S° C (SU{0})°, S° C conv(S)°, and
S°CS.
First, (SU{0})° = S°N{0}° = S°NR? = S°. Then, since H, is convex, if S C H, then
conv(S) C H,. Thus,
S°={y:SCH,} C{y:conv(S) C H,} = conv(S)°.
Finally, since H,, is closed, if S C H, then S C H,, as above we get

S°={y:SCH,} C{y:SCH,} =5

Claim 8.2. Let S be an arbitrary set in R%. Then S°° = conv(S U {0}).

Proof. Define § = conv(S) U{0}. By Claim 8.1, S° = S°. Now S is a closed convex set
containing 0. Thus, S°° = 5. We get,

§o° — (Svo)o _ Svoo _ Sv’
as required. N
Proof of Claim 7.5. We apply Claim 7.4, item 3, to sets S° and 7°. We get

(S°UT°)° =S°NT* =5NT.

Thus, (SNT)° = (S°UT°)* = conv(S°UT°). Here we used that S° U T*° contains the
origin. 0

Exercise 12. Prove that

(SNT)° # conv(S°UT?)
for the following sets S and T':
o S={(z,y):x>0, y>0} and T = {(z,y) :x <0, y >0}
e S={(L,y):yeR} and T ={(z,1) : 2 € R}

Claim 8.3. Let P be a linear subspace of R? and m be the orthogonal projection on P. Let
S Cc R Then

(rS)°NP=S°NP
if S is a closed convex set containing 0 then
(SNP)’NP=m(S)

12



Proof. 1t is straightforward to verify these identities directly using the definition of the polar
set. However, we will prove them using polar set properties we established above. Consider
P the orthogonal complement to P. Note that P° = P*. Observe that for every set A

conv(mAU PL) =conv(AUPL) = 1A+ Pt = {2’ +2" 2’ € 1A, 2" € P} (2)
=A+Pr={d+2" 2 €A 2’ e P} (3)

Therefore, (tAU P+)° = (AU P+)° = 7A + P+, We start with proving the first identity.
We apply the statement we just proved with A = S.

(7S)° NP = (xS)° N (PL)° = (xS U P € (SU PP = 5°n (P = S° N P,

Now we prove the second identity. Here, we let A = S°.

(SN PPN P =conv(8°UP) NP Z (x(S°) + PHYn P = n(5°).
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