Convexity

Computational and Metric Geometry
Instructor: Yury Makarychev

1 Convexity

Definition 1.1. Let V be a linear (vector) space. A set $S \subseteq V$ is convex if for every two points $x, y \in S$, the segment $[x, y] \equiv\{\lambda x+(1-\lambda) y: \lambda \in[0,1]\}$ lies in S.

Consider various examples: a circle, triangle, square, pair of circles. Are these sets convex?

Claim 1.2. Let $\left\{S_{\alpha}\right\}_{\alpha}$ be a family of convex sets. Then their intersection $T=\bigcap_{\alpha} S_{\alpha}$ is also a convex set.

Proof. Consider two points $x, y \in T$. We have $x, y \in S_{\alpha}$ for every index α. Since each set S_{α} is convex, $[x, y] \subseteq S_{\alpha}$ for every α. Therefore, $[x, y] \subseteq T$. We conclude that T is also convex.

Exercise 1. Assume that S and T are convex. Can $S \cup T$ be convex? Is it necessarily true that $S \cup T$ is convex? Can the complement of S be convex? Is it necessarily true that the complement of S is convex?

Exercise 2. Assume that S is convex. Is it necessarily connected?

2 Convex combinations

Definition 2.1. Consider a set of points $v_{1}, \ldots, v_{n} \in V$ and a set of non-negative weights $\lambda_{1}, \ldots, \lambda_{n}$ that add up to $1: \sum_{i=1}^{n} \lambda_{i}=1$. Then $\sum_{i=1}^{n} \lambda_{i}$ is a convex combination of points v_{i} with weights λ_{i}.

Note that we consider only finite convex combinations in Definition 2.1. The definition of convexity can be restated in terms of convex combinations: S is convex if and only if for every $x, y \in S$ every convex combination $\lambda_{1} x+\lambda_{2} y \in S$. In this definition, we consider only convex combinations involving two points. Can we consider arbitrary convex combinations instead? Obviously if every convex combination of points in S is in S, then so is every combination of two points, and thus S is convex. Now we show that if S is convex that all convex combinations of points from S are in S.

Claim 2.2. Consider a convex set S. Let $u=\sum \lambda_{i} v_{i}$ be a convex combination of points v_{1}, \ldots, v_{n} in S. Then $u \in S$.

Proof. We prove by induction on n. For $n=1$, the claim is trivial, as $u=v_{1} \in S$. Assuming that the claim holds for $n-1$ points, we prove it for n points.

Let $\mu_{i}=\lambda_{i} /\left(\lambda_{1}+\cdots+\lambda_{n-1}\right)=\lambda_{i} /\left(1-\lambda_{n}\right)$ for $i \in[n-1]$. Note that $\sum_{i=1}^{n-1} \mu_{i}=1$ and all $\mu_{i} \geq 0$. Thus,

$$
u^{\prime}=\sum_{i=1}^{n-1} \mu_{i} v_{i}
$$

is a convex combination of $n-1$ points in S and thus belongs to S, by the induction hypothesis. We have that both u^{\prime} and v_{n} are in S. By the definition of convexity, segment $\left[u^{\prime}, v_{n}\right]$ lies in S. We conclude that $u=\left(1-\lambda_{n}\right) u^{\prime}+\lambda_{n} v_{n} \in\left[u^{\prime}, v_{n}\right] \subseteq S$, as required.

3 Convex hull

Now consider an arbitrary (not necessarily convex) subset S of V. We define the convex hull $\operatorname{conv}(S)$ of S as the "smallest" convex set that contains S.

Definition 3.1. Consider a set $S \subseteq V$. Define its convex hull as

$$
\operatorname{conv}(S)=\bigcap_{\substack{T: S \subseteq T \\ T \text { is convex }}} T .
$$

Exercise 3. Prove that

1. $\operatorname{conv}(S)$ is convex for every set S
2. $\operatorname{conv}(S) \subseteq T$ for every convex set T that contains S
3. $\operatorname{conv}(S)=S$ if S is convex
4. $\operatorname{conv}\left(S^{\prime}\right) \subseteq \operatorname{conv}(S)$ if $S^{\prime} \subseteq S$

The following claim provides an alternative characterization of $\operatorname{conv}(S)$.

Claim 3.2.

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{n} \lambda_{i} v_{i}: v_{1}, \ldots, v_{n} \in S \text { where } n \geq 1 \text { and } \sum_{i=1}^{n} \lambda_{i}=1, \forall i: \lambda_{i} \geq 0\right\}
$$

Proof. Define $T=\operatorname{conv}(S)$ and

$$
T^{\prime}=\left\{\sum_{i=1}^{n} \lambda_{i} v_{i}: v_{1}, \ldots, v_{n} \in S \text { where } n \geq 1 \text { and } \sum_{i=1}^{n} \lambda_{i}=1, \forall i: \lambda_{i} \geq 0\right\}
$$

First, we show that $T^{\prime} \subseteq T$. Indeed, consider a convex combination $u=\sum_{i=1}^{n} \lambda_{i} v_{i}$. We have, $v_{i} \in S \subseteq T$ for all i. Since T is convex, any convex combination of points in T is in T. In particular, $u=\sum_{i=1}^{n} \lambda_{i} v_{i} \in T$. We conclude that $T^{\prime} \subseteq T$.

Now we prove that $T \subseteq T^{\prime}$. As T is a minimal convex set that contains S, it is sufficient to verify that T^{\prime} contains S and is convex. By the definition of T^{\prime}, T^{\prime} contains a trivial convex combination $1 \cdot u=u$ for every $u \in S$. Thus, $S \subseteq T^{\prime}$. Now consider two convex combinations in T^{\prime}. By introducing, zero coefficients if necessary, we may assume that both combinations use the same points v_{1}, \ldots, v_{n}.

$$
\begin{aligned}
& u_{1}=\sum_{i=1}^{n} \mu_{i} v_{i} \\
& u_{2}=\sum_{i=1}^{n} \nu_{i} v_{i}
\end{aligned}
$$

We want to prove that $\lambda u_{1}+(1-\lambda) u_{2} \in T^{\prime}$ for every $\lambda \in[0,1]$. We have,

$$
\lambda u_{1}+(1-\lambda) u_{2}=\lambda \sum_{i=1}^{n} \mu_{i} v_{i}+(1-\lambda) \sum_{i=1}^{n} \nu_{i} v_{i}=\sum_{i=1}^{n}\left(\lambda \mu_{i}+(1-\lambda) \nu_{i}\right) v_{i}
$$

which is a convex combination of points v_{1}, \ldots, v_{n} with weights $\lambda \mu_{i}+(1-\lambda) \nu_{i} .{ }^{1}$
Example 3.1. The convex hull of $k>1$ points in \mathbb{R}^{2} is a convex polygon with at most k vertices or a segment.

Exercise 4. Is it true that the convex hull of a closed set necessarily closed? Is it true that the convex hull of a compact set is necessarily compact? Is it true that the convex hull of an open set is necessarily open? Does it matter if the space is finite or infinite dimensional?

4 Theorems about convex hulls

Theorem 4.1 (Radon's Theorem). Consider $S \subseteq \mathbb{R}^{d}$ with $|S| \geq d+2$. Then there exist disjoint sets A and B with $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \varnothing$.

Proof. To simplify the notation, we prove the theorem when S is finite. If S is infinite, we can choose an arbitrary subset $S^{\prime} \subseteq S$ of size $d+2$ and apply the theorem to it, obtaining desired sets A and B. Let v_{1}, \ldots, v_{n} be the points in S (where $n \geq d+2$). Define $v_{i}^{\prime}=v_{i} \oplus 1 \in \mathbb{R}^{d+1}$. We have at least $d+2$ points $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ in a $d+1$ dimensional space. The points must be linearly dependent. That is, we must have

$$
\sum_{i=1}^{n} \lambda_{i} v_{i}^{\prime}=0
$$

[^0]for some coefficients λ_{i}, some of which are non-zero. (Note that now coefficients λ_{i} are not necessarily positive. $\sum_{i} \lambda_{i} v_{i}$ is not a convex combination!) Rewrite this equation in terms of the original vectors v_{i}.
\[

$$
\begin{aligned}
\sum_{i=1}^{n} \lambda_{i} v_{i} & =0 \\
\sum_{i=1}^{n} \lambda_{i} & =0
\end{aligned}
$$
\]

Let $A=\left\{v_{i}: \lambda_{i}>0\right\}$ and $B=\left\{v_{i}: \lambda_{i}<0\right\}$. Then

$$
\begin{aligned}
& u \equiv \sum_{v_{i} \in A} \lambda_{i} v_{i}=\sum_{v_{i} \in B}\left(-\lambda_{i}\right) v_{i} \\
& \Lambda \equiv \sum_{v_{i} \in A} \lambda_{i}=\sum_{v_{i} \in B}\left(-\lambda_{i}\right)
\end{aligned}
$$

Note that in each of the two expressions for Λ all the terms are positive. In particular, $\Lambda>0$. Let $\alpha_{i}=\lambda_{i} / \Lambda$ for $v_{i} \in A$ and $\beta_{i}=-\lambda_{i} / \Lambda$ for $v_{i} \in B$. We have, $\sum_{v_{i} \in A} \alpha_{i}=\sum_{v_{i} \in B} \beta_{i}=1$, all coefficients α_{i} and β_{i} are positive. Therefore,

$$
u=\sum_{i: v_{i} \in A} \alpha_{i} v_{i} \in \operatorname{conv}(A) \quad \text { and } \quad u=\sum_{i: v_{i} \in B} \beta_{i} v_{i} \in \operatorname{conv}(B)
$$

We conclude that $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \varnothing$.
Theorem 4.2 (Caratheódory's Theorem). Consider $S \subseteq \mathbb{R}^{d}$. Then every point $u \in \operatorname{conv}(S)$ is a convex combination of at most $d+1$ points in S.

Proof. Consider a convex combination for u with the smallest number of points:

$$
u=\sum_{i=1}^{n} \mu_{i} v_{i}
$$

where all $v_{i} \in S$. If $n \leq d+1$, then we are done. So we assume that $n>d+1$ and then get a contradiction by providing another convex combination for u with a smaller number of terms.

Let us apply Radon theorem to points v_{1}, \ldots, v_{n}. We get two disjoint sets $A \subseteq S$ and $B \subseteq S$ and positive weights α_{i} and β_{i} such that

$$
\begin{array}{r}
w \equiv \sum_{v_{i} \in A} \alpha_{i} v_{i}=\sum_{v_{i} \in B} \beta_{i} v_{i} \\
\sum_{v_{i} \in A} \alpha_{i}=\sum_{v_{i} \in B} \beta_{i}=1
\end{array}
$$

Now let

$$
\mu_{i}^{t}= \begin{cases}\mu_{i}-t \alpha_{i}, & \text { for } v_{i} \in A \\ \mu_{i}+t \beta_{i}, & \text { for } v_{i} \in B \\ \mu_{i}, & \text { otherwise }\end{cases}
$$

Note that for every t,

$$
\begin{aligned}
\sum_{i=1}^{n} \mu_{i}^{t} v_{i} & =\sum_{i=1}^{n} \mu_{i} v_{i}-t \sum_{v_{i} \in A} \alpha_{i} v_{i}+t \sum_{v_{i} \in B} \beta_{i} v_{i}=u-t w+t w=u . \\
\sum_{i=1}^{n} \mu_{i}^{t} & =\sum_{i=1}^{n} \mu_{i}-t \sum_{v_{i} \in A} \alpha_{i}+t \sum_{v_{i} \in B} \beta_{i}=1-t+t=1
\end{aligned}
$$

We see that for every $t, u=\sum_{i=1}^{n} \mu_{i}^{t} v_{i}$ is a convex combination for u as long as all coefficients μ_{i}^{t} are non-negative. Our goal now is to choose t so that this is a valid convex combination with at most $n-1$ non-zero coefficients.

Question: What t should we use?
Let $t=\min _{v_{i} \in A} \frac{\mu_{i}}{\alpha_{i}}$. Then all $\mu_{i}^{t} \geq 0$ and at least one $\mu_{i}^{t}=0$. We obtain a convex combination with fewer than n non-zero terms. We get a contradiction.

Theorem 4.3 (Helly's Theorem). Consider $n \geq d+1$ convex sets S_{1}, \ldots, S_{n} in \mathbb{R}^{d}. Assume that every $d+1$ of them have a non-empty intersection. Then $\bigcap_{i=1}^{n} S_{i} \neq \varnothing$.
Proof. The proof is by induction on n. The claim is trivial when $n=d+1$. Assume that the theorem holds for $n^{\prime}=n-1$ and let us prove it for $n>d+1$. For every $j \in[n]$, define x_{j} as follows. Consider the intersection of all sets S_{i} other than S_{j}. It is non-empty by the induction hypothesis. Let x_{j} be an arbitrary point in $\bigcap_{i \neq j} S_{i}$. We obtain points x_{1}, \ldots, x_{n}. By construction, $x_{i} \in S_{j}$ if $i \neq j$. Observe that if $x_{i} \in S_{i}$ for some i, then we are done, since x_{i} lies in all sets S_{i}. So we assume below that $x_{i} \notin S_{i}$ for all i.

Now we apply Radon's theorem to the set of points $\left\{x_{i}\right\}$. We get two disjoint subsets of points A and B such that $\operatorname{conv}(A) \cap \operatorname{conv}(B) \neq \varnothing$. Choose $u \in \operatorname{conv}(A) \cap \operatorname{conv}(B)$. We prove that $u \in \bigcap_{i=1}^{n} S_{i}$ or, in other words, $u \in S_{i}$ for every i.

Fix some i. We know that x_{i} cannot belong to both A and B, as A and B are disjoint. Assume without loss of generality that $x_{i} \notin A$. Then all points $x_{j} \in A$ are in S_{i}. Thus $u \in \operatorname{conv}(A) \subseteq \operatorname{conv}\left(S_{i}\right)=S_{i}$.

5 Extreme points

Consider a finite set of points in \mathbb{R}^{2}. Its convex hull is a convex polygon. The polygon is uniquely determined by its vertices; thus, very informally, the vertices are the most "important" points of the polygon. In higher dimensions, we can can talk about vertices of a polyhedron. In this section, we are going to generalize the notion of a vertex to arbitrary convex sets. Specifically, we are going to define "extreme points" of a convex set.

Definition 5.1 (Minkowski's definition). We say that x is an extreme point of a convex set S if there are no distinct points $a, b \in S$ such that $x=\frac{a+b}{2}$.

Exercise 5. Check that in the definition of an extreme point, we can require that $x \notin(a, b)$ for all distinct points $a, b \in S$ (where (a, b) is the open interval between a and b).

Theorem 5.2. Let X be an arbitrary set. Then $x \in \operatorname{conv}(X)$ is an extreme point of $\operatorname{conv}(X)$ if and only if $x \notin \operatorname{conv}(X \backslash\{x\}) .{ }^{2}$

Proof. First, assume that $x \in \operatorname{conv}(X \backslash\{x\})$. We shall prove that x is not an extreme point of $\operatorname{conv}(X)$. That is, we show that there exist a and b such that $x \in(a, b)$. Since $x \in \operatorname{conv}(X \backslash\{x\})$, we have a convex combination $x=\sum_{i=1}^{n} \alpha_{i} x_{n}$ where all $x_{i} \in X \backslash\{x\}$ and all α_{i} are positive. Because all $x_{i} \neq x$, we must have $n>1$. Let $a=\sum_{i=1}^{n-1} \frac{\alpha_{i}}{1-\alpha_{n}} x_{n}$ and $b=x_{n}$. Clearly, $a, b \in \operatorname{conv}(X \backslash\{x\})$. Then $x=\left(1-\alpha_{n}\right) a+\alpha_{n} b \in(a, b)$, as desired.

Now, assume that x is not an extreme point of $\operatorname{conv}(X)$; that is, $x=\frac{a+b}{2}$ for some $a, b \in \operatorname{conv}(X)$. Since $a, b \in \operatorname{conv}(X)$, each of them is a convex combination of points in X. We may assume that the same points participate in both convex combinations (but possibly some coefficients are 0):

$$
a=\sum_{i=1}^{n} \alpha_{i} x_{i} \quad \text { and } \quad b=\sum_{i=1}^{n} \beta_{i} x_{i}
$$

If x is not among points x_{1}, \ldots, x_{n} then

$$
x=\frac{a+b}{2}=\sum_{i=1}^{n} \frac{\alpha_{i}+\beta_{i}}{2} x_{i}
$$

is a convex combination of points in $X \backslash\{x\}$. Thus, $x \in \operatorname{conv}(X \backslash\{x\})$, as required. Now assume that one of the points x_{i} is x. Without loss of generality, $x_{n}=x$. Note that $\alpha_{n}<1$ and $\beta_{n}<1$, since $a \neq x$ and $b \neq x$, respectively. Therefore, we may write new convex combinations for a and b that do not involve x :

$$
\begin{aligned}
a & =\sum_{i=1}^{n-1} \frac{\alpha_{i}}{1-\alpha_{n}} x_{i} \\
b & =\sum_{i=1}^{n-1} \frac{\beta_{i}}{1-\beta_{n}} x_{i}
\end{aligned}
$$

Now the same argument as above shows that $x \in \operatorname{conv}(X \backslash\{x\})$.
Exercise 6. Answer the following questions.

1. What is the set of extreme points of the closed unit disc $\left\{x \in \mathbb{R}^{2}:\|x\|_{2} \leq 1\right\}$?

[^1]2. What is the set of extreme points of the open unit disc $\left\{x \in \mathbb{R}^{2}:\|x\|_{2}<1\right\}$?
3. What is the set of extreme points of a line in \mathbb{R}^{2}.

Exercise 7. Recall the definition of the boundary ∂X of a set X :

$$
\partial X=\left\{x \in X: B_{\varepsilon}(x) \backslash X \neq \varnothing \text { for all } \varepsilon>0\right\} \quad \text { where } B_{\varepsilon}(x)=\left\{y:\|x-y\|_{2}<\varepsilon\right\} .
$$

Prove that all extreme points of a convex set X lie on the boundary of X.
Exercise 8. A polygon is uniquely determined by the set of its vertices. However, show that the extreme points of a convex set S do not determine S.

Theorem 5.3 (Minkowski, Krein-Milman). Assume that S is a compact ${ }^{3}$ convex set in \mathbb{R}^{d}, then $S=\operatorname{conv}(X)$ where X is the set of extreme points of S.

Before we proceed with the proof, we need some auxiliary definitions. For a point $x \in X$, let $L_{x}=\{v: x+\varepsilon v \in S$ and $x-\varepsilon v \in S$ for some $\varepsilon>0\}$.

Lemma 5.4. L_{x} is a linear subspace.
Proof. It is clear from the definition that if $v \in L_{x}$ than so is $-v$. It is also clear that if $v \in L_{x}$ then $\alpha v \in L_{x}$ for every α. Now we verify that if $u, v \in L_{x}$ then $u+v \in L_{x}$.

Since $u \in L_{x}$, the segment $\left[x-\varepsilon_{1} u, x+\varepsilon_{1} u\right]$ is in S for some $\varepsilon_{1}>0$. Since $v \in L_{x}$, the segment $\left[x-\varepsilon_{2} v, x+\varepsilon_{2} v\right]$ is in S for some $\varepsilon_{2}>0$. Since S is convex, the parallelogram Π (including its interior points) with vertices $x \pm \varepsilon_{1} u$ and $x \pm \varepsilon_{2} v$ lies in S. Let $\varepsilon_{3}=\min \left(\varepsilon_{1}, \varepsilon_{2}\right) / 2$. Then $x \pm \varepsilon_{3}(u+v) \in \Pi \subseteq S$. We conclude that $u+v \in L_{x}$.

We define $\operatorname{rank} x=\operatorname{dim} L_{x}$. Note that if y is not an extreme point then y belongs to some interval (a, b) with distinct endpoints $a, b \in S$. Thus, vector $a-b \in L_{x}$ and consequently $\operatorname{rank} x=\operatorname{dim} L_{x} \geq 1$. Thus, $\operatorname{rank} x=0$ only if x is an extreme point of $S .{ }^{4}$

Proof of Theorem 5.3. Clearly, $\operatorname{conv}(X) \subseteq \operatorname{conv}(S)=S$. So we need to prove that $S \subseteq$ $\operatorname{conv}(X)$. That is, for every point $y \in S$ we need to show that $y \in \operatorname{conv}(X)$. We are going to prove that by induction on $\operatorname{rank} y$. If $\operatorname{rank} y=0$, then y is an extreme point. That is, $x \in X \subseteq \operatorname{conv}(X)$, as required.

Now assume that the induction hypothesis holds for points y with rank $y \leq k-1$ and prove it for y with rank $y=k$. Since y is not an extreme point, $y=\frac{a+b}{2}$ for some distinct $a, b \in S$. Consider the line ℓ that goes through a and b. Note that that $\ell \cap S$ is a closed (bounded) segment, since S is compact and convex. Denote the endpoints of this segment by y_{1} and y_{2}. Then $x \in(a, b) \subseteq\left(y_{1}, y_{2}\right)$. We show that rank $y_{1}<k$ and similarly rank $y_{2}<k$.
Lemma 5.5. We have,

$$
L_{y_{1}} \subseteq L_{y}
$$

[^2]- $y_{1}-y_{2} \in L_{y_{1}} \backslash L_{y}$.

Proof. I. Consider $v \in L_{y_{1}}$. We have that $y_{1} \pm \varepsilon v \in S$ for some small enough $\varepsilon>0$. We also have that $y_{2} \in S$. Since S is convex, the entire triangle Δ with vertices $y_{1}+\varepsilon v, y_{1}-\varepsilon v, y_{2}$ lies in S. Note that point y lies on the segment (cevian) [y_{1}, y_{2}], which in turn is inside Δ. We get that

$$
p_{1}=\frac{\left\|y-y_{2}\right\|}{\left\|y_{1}-y_{2}\right\|}\left(y_{1}+\varepsilon v\right)+\frac{\left\|y-y_{1}\right\|}{\left\|y_{1}-y_{2}\right\|} y_{2}=y+\left(\frac{\left\|y-y_{2}\right\|}{\left\|y_{1}-y_{2}\right\|} \varepsilon\right) v
$$

is a convex combination of $y_{1}+\varepsilon v$ and y_{2} and thus lies inside Δ. Similarly,

$$
p_{2}=y-\left(\frac{\left\|y-y_{2}\right\|}{\left\|y_{1}-y_{2}\right\|} \varepsilon\right) v
$$

lies inside Δ. It follows that $p_{1}, p_{2} \in S$ and hence $v \in L_{y}$.
II. Recall that $a, b \in S$ and $y=\frac{a+b}{2}$. Therefore, $a-b \in L_{y}$. Now, $y_{1}-y_{2}$ and $a-b$ are colinear so $y_{1}-y_{2} \in L_{y}$ as well. On the other hand, y_{1} is an endpoint of the segment $S \cap \ell$. Therefore, $y_{1}+\varepsilon\left(y_{1}-y_{2}\right) \notin S$ for every $\varepsilon>0$. We conclude that $y_{1}-y_{2} \notin L_{y_{1}}$.

We have proved that $L_{y_{1}}$ is a proper subset of L_{y}. Thus, $\operatorname{rank} y_{1}=\operatorname{dim} L_{y_{1}}<\operatorname{dim} L_{y}=$ rank y. Similarly, $\operatorname{rank} y_{2}<\operatorname{rank} y$. By the induction hypothesis, $y_{1}, y_{2} \in \operatorname{conv}(X)$. Since $\operatorname{conv}(X)$ is convex, $y \in\left[y_{1}, y_{2}\right] \subseteq \operatorname{conv}(X)$, as required.

6 Separating Hyperplanes

Definition 6.1. Consider two sets A and B in a linear space. We say that an affine hyperplane H strictly separates A and B if A and B lie on different sides of H (and $A \cap H=$ $\varnothing, B \cap H=\varnothing)$. We will say that H is a (strict) separating hyperplane.

Theorem 6.2. Let $p \in \mathbb{R}^{d}$ be a point and $C \subseteq \mathbb{R}^{d}$ be a non-empty closed convex set. Assume that $p \notin C$. Then there is a (strict) separating hyperplane H between p and C.

Proof. First, we find point q closest to p in C. Why does it exist? Consider function $f(x)=\|x-p\|_{2}$ on C. Note that f is continuous. Assume first that C is compact, then f attains its minimum on C, so we simply define $q=\operatorname{argmin}_{x} f(x)$. If C is not compact, let $\Delta=\inf _{x \in C}\|x-p\|_{2}$ and define $C^{\prime}=C \cap\{x:\|x-p\| \leq \Delta+1\}$. As an intersection of two closed sets, C and a closed ball of radius $\Delta+1, C^{\prime}$ is closed. Since the ball is bounded, so is C^{\prime}. We conclude that C^{\prime} is compact. Now we apply the argument above to C^{\prime} and get the desired point q at distance Δ for p.

Note that $\|p-q\|_{2}>0$ because $p \notin C$. Now let H be the bisector hyperplane for segment $[p, q]$; in other words, $H=\left\{x:\|x-p\|_{2}=\|x-q\|_{2}\right\}$. Clearly, the distance from p to H is $\|p-q\|_{2} / 2>0$. Thus, $p \notin H$. We claim that H does not intersect C. Assume to the contrary that there exists $r \in C \cap H$. Consider the triangle with vertices p, q, and r. Since
$r \in H,\|p-r\|=\|q-r\|$. Therefore, the triangle is isosceles and thus $\angle p q r<\pi / 2$. Since $q, r \in C$, we have $[q, r] \subset C$ and thus $x_{t} \equiv q+t(r-q) \in C$ for $t \in[0,1]$. Now

$$
\begin{aligned}
\left\|p-x_{t}\right\|^{2} & =\|p-q\|^{2}+t^{2}\|r-q\|^{2}-2 t \cdot\|p-q\| \cdot\|r-q\| \cdot \cos \angle p q r \\
& =\left\|p-x_{t}\right\|^{2}-2 t \cdot \underbrace{\|p-q\| \cdot\|r-q\| \cdot \cos \angle p q r}_{>0}+O\left(t^{2}\right)
\end{aligned}
$$

We have, $\left\|p-x_{t}\right\|_{2}<\|p-q\|_{2}$ for small enough $t>0$. That contradicts to the fact that q is the closest to p point in C.

We conclude that $p \notin H$ and C_{2} lies on one side of H. Since the segment $[p, q]$ intersects H, point p and set C lie on opposite sides of H.
Theorem 6.3. Let $C_{1} \subseteq \mathbb{R}^{d}$ be a compact convex set and $C_{2} \subseteq \mathbb{R}^{d}$ be a closed convex set. Assume that $C_{1} \cap C_{2}=\varnothing$ and both sets are not empty. Then there is a (strict) separating hyperplane H between C_{1} and C_{2}.
Proof sketch. Let $f(x)=\inf _{y \in C_{2}}\|x-y\|$ be the distance from $x \in C_{1}$ to C_{2}. Function $f(x)$ is continuous (and, in fact, 1-Lipschitz) and thus attains its minimum on compact set C_{1}. Let p be the point where it attains its minimum. We use Theorem 6.2 to find a separating hyperplane H between p and C_{2}. Now the same argument as in Theorem 6.2 shows that C_{1} does not intersect H.

Exercise 9. Is Theorem 6.3 true if we only require that C_{1} and C_{2} be closed convex sets (that is, we no longer require that C_{1} be compact).

7 Polar Set

The Krein-Milman theorem says that a compact convex body is determined by its extreme points. This is analogous to defining a polygon or polyhedron by specifying its vertices. However, we can define a polygon or polyhedron by specifying its facets instead of vertices. In fact, this is the approach we use to define the feasible polytope when we write a linear program. Let us generalize this approach to arbitrary convex sets. Consider all closed affine half-spaces H that contain a given convex set S and their intersection

Q: Is this intersection equal to S ?
A: The intersection of closed affine half-spaces is a closed set. So if S is not closed, then the intersection is not equal to S.
Claim 7.1. If S is a closed convex set, then $S=\bigcap_{H: S \subseteq H} H$.
Proof. Since all H in the intersection contain S, so does their intersection. On the other hand, if $p \notin S$, then by Theorem 6.2, there is a separating hyperplane P that separates p and C. Hyperplane P defines a half-space that contains C but not p. We conclude that $p \notin \bigcap_{H: S \subseteq H} H$.

Note that a half-space H can be written as $\{x:\langle c, x\rangle \leq b\}$ for some vector c and scalar b. Assume for a moment that S contains the origin. Then if H contains S, it also contains 0 , and thus $b \geq\langle c, 0\rangle=0$. Further, it is easy to see that Claim 7.1 holds for S even if we exclude half-spaces with $b=0$, since all hyperplanes from Theorem 6.2 strictly separate p and S and thus do not go through the origin. The formula for a half-space H with $b>0$ can be simplified: $H=H_{y}=\{x:\langle y, x\rangle \leq 1\}$ where $y=c / b$. That is,

$$
\begin{equation*}
S=\bigcap_{y: H_{y} \subseteq S} H_{y} \tag{1}
\end{equation*}
$$

here we may assume that $H_{0}=\mathbb{R}^{d}$ also participates in the intersection, even though H_{0} is not a half-space.

We conclude that the set $\left\{y: S \subseteq H_{y}\right\}$ uniquely defines a closed convex set S that contains 0 . We call this set the polar set of S. In the following definition of the polar set, we use that $S \subseteq H_{y}$ if and only if $\langle x, y\rangle \leq 1$ for all $x \in S$.

Definition 7.2. Consider an arbitrary set S in Euclidean space \mathbb{R}^{d}. The polar set of S is

$$
S^{\circ}=\left\{y: S \subseteq H_{y}\right\}=\{y:\langle x, y\rangle \leq 1 \text { for all } x \in S\}
$$

Note that we defined S° for all sets S. However, the definition is mostly useful when S is a closed convex set containing the origin.

Exercise 10. Find the polar sets of the following sets.

- B_{R}, be the closed Euclidean ball of radius R centered at the origin
- $\{x\}$ where $x \in \mathbb{R}^{d}$
- a half-space H_{y}
- P a regular polygon centered at the original
- a cube centered at the origin

Exercise 11. Prove that $0 \in S^{\circ}$ for every set S.
Now observe that (1) can be written as follows for closed convex sets containing 0 :

$$
S=\bigcap_{y \in S^{\circ}} H_{y} .
$$

On the other hand (for every S),

$$
S^{\circ}=\{y:\langle x, y\rangle \leq 1 \text { for all } x \in S\}=\bigcap_{x \in S}\{y:\langle x, y\rangle \leq 1\}=\bigcap_{x \in S} H_{x}
$$

We see the duality between S and S°. Thus, we have proved the following theorem.

Theorem 7.3. If S is a closed convex set containing 0 , then $S^{\circ \circ}=S$.
Let us now prove some other basic properties of S°.
Claim 7.4. The following properties hold.

1. Set S° is a convex closed set for every S.
2. If $S \subseteq T$ then $S^{\circ} \supseteq T^{\circ}$.
3. $(S \cup T)^{\circ}=S^{\circ} \cap T^{\circ}$.
4. More generally, let $\left\{S_{\alpha}\right\}_{\alpha}$ be a family of sets in \mathbb{R}^{d}. Then $\left(\bigcup_{\alpha} S_{\alpha}\right)^{\circ}=\bigcap_{\alpha} S_{\alpha}^{\circ}$.

Proof. 1. We have, $S^{\circ}=\bigcap_{x \in S} H_{x}$ is an intersection of closed convex sets and thus is a closed convex set itself.
2. We need to prove that $\bigcap_{x \in S} H_{x} \supseteq \bigcap_{x \in T} H_{x}$. This inclusion holds since each half-space that participates in the intersection on the left also participates in one on the right.
3.

$$
(S \cup T)^{\circ}=\bigcap_{x \in S \cup T} H_{x}=\left(\bigcap_{x \in S} H_{x}\right) \cap\left(\bigcap_{x \in T} H_{x}\right)=S^{\circ} \cap T^{\circ} .
$$

4. The proof is essentially identical to that of item 3.

Claim 7.5. Assume that S and T are closed convex sets containing the origin. Then

$$
(S \cap T)^{\circ}=\overline{\operatorname{conv}\left(S^{\circ} \cup T^{\circ}\right)}
$$

Here \bar{A} denotes the closure of set A. Note that $S^{\circ} \cup T^{\circ}$ is generally speaking a non-convex set. We will study polar sets of non-convex sets in the next section and then prove Claim 7.5.

8 Polar sets of arbitrary sets

As we discussed above, polar sets are particularly useful when S is a closed convex set containing 0 . Many properties hold only for such sets (e.g. $S=S^{\circ \circ}$ only for such sets). In this section, we give some properties of polar sets of arbitrary sets.

Claim 8.1. Consider a set $S \subseteq \mathbb{R}^{d}$. Then

- $S^{\circ}=(S \cup\{0\})^{\circ}$
- $S^{\circ}=\operatorname{conv}(S)^{\circ}$
- $S^{\circ}=(\bar{S})^{\circ}$

In particular, $S^{\circ}=(\overline{\operatorname{conv}(S \cup\{0\})})^{\circ}$.

Proof. Since $S \subseteq S \cup\{0\}, S \subseteq \operatorname{conv}(S)$, and $S \subseteq \bar{S}$, from Claim 7.4, we get $S^{\circ} \supseteq(S \cup\{0\})^{\circ}$, $S^{\circ} \supseteq \operatorname{conv}(S)^{\circ}$, and $S^{\circ} \supseteq \bar{S}^{\circ}$. So we need to prove that $S^{\circ} \subseteq(S \cup\{0\})^{\circ}, S^{\circ} \subseteq \operatorname{conv}(S)^{\circ}$, and $S^{\circ} \subseteq \bar{S}^{\circ}$.

First, $(S \cup\{0\})^{\circ}=S^{\circ} \cap\{0\}^{\circ}=S^{\circ} \cap \mathbb{R}^{d}=S^{\circ}$. Then, since H_{y} is convex, if $S \subseteq H_{y}$ then $\operatorname{conv}(S) \subseteq H_{y}$. Thus,

$$
S^{\circ}=\left\{y: S \subseteq H_{y}\right\} \subseteq\left\{y: \operatorname{conv}(S) \subseteq H_{y}\right\}=\operatorname{conv}(S)^{\circ}
$$

Finally, since H_{y} is closed, if $S \subseteq H_{y}$ then $\bar{S} \subseteq H_{y}$, as above we get

$$
S^{\circ}=\left\{y: S \subseteq H_{y}\right\} \subseteq\left\{y: \bar{S} \subseteq H_{y}\right\}=\bar{S}^{\circ}
$$

Claim 8.2. Let S be an arbitrary set in \mathbb{R}^{d}. Then $S^{\circ \circ}=\overline{\operatorname{conv}(S \cup\{0\})}$.
Proof. Define $\hat{S}=\overline{\operatorname{conv}(S) \cup\{0\}}$. By Claim 8.1, $S^{\circ}=\hat{S}^{\circ}$. Now \hat{S} is a closed convex set containing 0 . Thus, $\hat{S}^{\circ \circ}=\hat{S}$. We get,

$$
S^{\circ \circ}=\left(\hat{S}^{\circ}\right)^{\circ}=\hat{S}^{\circ \circ}=\hat{S},
$$

as required.
Proof of Claim 7.5. We apply Claim 7.4, item 3, to sets S° and T°. We get

$$
\left(S^{\circ} \cup T^{\circ}\right)^{\circ}=S^{\circ \circ} \cap T^{\circ \circ}=S \cap T
$$

Thus, $(S \cap T)^{\circ}=\left(S^{\circ} \cup T^{\circ}\right)^{\circ \circ}=\overline{\operatorname{conv}\left(S^{\circ} \cup T^{\circ}\right)}$. Here we used that $S^{\circ} \cup T^{\circ}$ contains the origin.

Exercise 12. Prove that

$$
(S \cap T)^{\circ} \neq \overline{\operatorname{conv}\left(S^{\circ} \cup T^{\circ}\right)}
$$

for the following sets S and T :

- $S=\{(x, y): x>0, y>0\}$ and $T=\{(x, y): x<0, y>0\}$
- $S=\{(1, y): y \in \mathbb{R}\}$ and $T=\{(x, 1): x \in \mathbb{R}\}$

Claim 8.3. Let P be a linear subspace of \mathbb{R}^{d} and π be the orthogonal projection on P. Let $S \subset \mathbb{R}^{d}$. Then

$$
(\pi S)^{\circ} \cap P=S^{\circ} \cap P
$$

if S is a closed convex set containing 0 then

$$
(S \cap P)^{\circ} \cap P=\pi\left(S^{\circ}\right)
$$

Proof. It is straightforward to verify these identities directly using the definition of the polar set. However, we will prove them using polar set properties we established above. Consider P^{\perp}, the orthogonal complement to P. Note that $P^{\circ}=P^{\perp}$. Observe that for every set A

$$
\begin{align*}
\overline{\operatorname{conv}\left(\pi A \cup P^{\perp}\right)}=\overline{\operatorname{conv}\left(A \cup P^{\perp}\right)} & =\pi A+P^{\perp} \equiv\left\{x^{\prime}+x^{\prime \prime}: x^{\prime} \in \pi A, x^{\prime \prime} \in P^{\perp}\right\} \tag{2}\\
& =A+P^{\perp} \equiv\left\{x^{\prime}+x^{\prime \prime}: x^{\prime} \in A, x^{\prime \prime} \in P^{\perp}\right\} \tag{3}
\end{align*}
$$

Therefore, $\left(\pi A \cup P^{\perp}\right)^{\circ}=\left(A \cup P^{\perp}\right)^{\circ}=\pi A+P^{\perp}$. We start with proving the first identity. We apply the statement we just proved with $A=S$.

$$
(\pi S)^{\circ} \cap P=(\pi S)^{\circ} \cap\left(P^{\perp}\right)^{\circ}=\left(\pi S \cup P^{\perp}\right)^{\circ} \stackrel{(2)}{=}\left(S \cup P^{\perp}\right)^{\circ}=S^{\circ} \cap\left(P^{\perp}\right)^{\circ}=S^{\circ} \cap P
$$

Now we prove the second identity. Here, we let $A=S^{\circ}$.

$$
(S \cap P)^{\circ} \cap P=\overline{\operatorname{conv}\left(S^{\circ} \cup P^{\circ}\right)} \cap P \stackrel{(2)}{=}\left(\pi\left(S^{\circ}\right)+P^{\perp}\right) \cap P=\pi\left(S^{\circ}\right)
$$

[^0]: ${ }^{1}$ Exercise: verify that $\sum_{i=1}^{n} \lambda \mu_{i}+(1-\lambda) \nu_{i}=1$.

[^1]: ${ }^{2}$ In particular, x must be in X, as otherwise $x \in \operatorname{conv}(X)=\operatorname{conv}(X \backslash\{x\})$.

[^2]: ${ }^{3}$ Recall that $X \subseteq \mathbb{R}^{d}$ is compact if and only if it is closed and bounded.
 ${ }^{4}$ In fact, $\operatorname{rank} x=0$ if and only if x is an extreme point.

