
Metric and Normed Spaces II, Bourgain’s Theorem
Computational and Metric Geometry

Instructor: Yury Makarychev

1 Notation

Given a metric space (X, d) and S ⊂ X, the distance from x ∈ X to S equals

d(x, S) = inf
s∈S

d(x, s).

The distance between two sets S1, S2 ⊂ X equals

d(S1, S2) = inf
s1∈S1,s2∈S2

d(s1, s2).

Exercise 1. Show that distances between sets do not necessarily satisfy the triangle inequal-
ity. That is, it is possible that d(S1, S2) + d(S2, S3) > d(S1, S3) for some sets S1, S2 and
S3.

Exercise 2. Prove that d(x, y) ≥ d(S, x)− d(S, y) and thus d(x, y) ≥ |d(S, x)− d(S, y)|.

Proof. Fix ε > 0. Let y′ ∈ S be such that d(y′, y) ≤ d(S, y) + ε (if S is a finite set, there is
y′ ∈ S s.t. d(y, y′) = d(S, y)). Then

d(x, S) ≤ d(x, y′) ≤ d(x, y) + d(y, y′) ≤ d(x, y) + d(S, y) + ε.

We proved that d(x, S) ≤ d(x, y) + d(S, y) + ε for every ε > 0. Therefore,

d(x, S) ≤ d(x, y) + d(S, y).

Definition 1.1. Let (X, d) be a metric space, x0 ∈ X and r > 0. The (closed) ball of radius
r around x0 is

Br(x0) = Ballr(x0) = {x : d(x, x0) ≤ r} .
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2 Metric Embeddings of Normed Spaces

Consider two normed spaces (U, ∥ · ∥U) and (V, ∥ · ∥V ). Let f be a linear map between U and
V . What is the Lipschitz norm of f? It is equal

sup
x,y∈U
x̸=y

∥f(x)− f(y)∥V
∥x− y∥U

by linearity of f
= sup

x,y∈U
x ̸=y

∥f(x− y)∥V
∥x− y∥U

= sup
z∈U
z ̸=0

∥f(z)∥V
∥z∥U

.

Definition 2.1. The operator norm of f is

∥f∥ ≡ ∥f∥U→V = sup
z∈U
z ̸=0

∥f(z)∥V
∥z∥U

.

The above computation shows that the Lipschitz norm of a linear operator equals its
operator norm.

Let U and V be two d-dimensional normed spaces. The Banach-Mazur distance between
them is

dBM(U, V ) = min
φ:U→V

∥φ∥∥φ−1∥,

where the minimum is over non-degenerate linear maps φ : U → V

Exercise 3. Consider two normed spaces U and V . Let BU and BV be their unit balls.
Prove that there exists a linear map φ such that BV ⊆ φ(BU) ⊆ αBV where α = dBM(U, V ).
Further, if BV ⊆ φ(BU) ⊆ αBV for some α then dBM(U, V ) ≤ α.

The Banach-Mazur distance is a distance in the following sense.

Claim 2.2. The Banach–Mazur distance satisfies the following properties.

� dBM(U,U) = 1

� dBM(U, V ) ≥ 1

� dBM(U, V ) · dBM(V,W ) ≥ dBM(U,W )

Theorem 2.3. dBM(ℓdp, ℓ
d
2) = d|1/p−1/2|

Proof. First we observe that dBM(ℓdp, ℓ
d
2) ≤ d|1/p−1/2|. Indeed, let us consider the identity

map between ℓdp and ℓ2d and upper bound its distortion. If p ∈ [1, 2], we have ∥a∥2 ≤ ∥a∥p ≤
d1/p−1/2∥a∥2. Thus the identity map from (Rd, ∥ · ∥p) to (Rd, ∥ · ∥2) has distortion at most
d1/p−1/2. Similarly, if p ∈ [2,∞], we have ∥a∥p ≤ ∥a∥2 ≤ d1/2−1/p∥a∥p. Thus the identity
map from (Rd, ∥ · ∥p) to (Rd, ∥ · ∥2) has distortion at most d1/2−1/p.
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Discussion Now we need to prove that every linear map φ : ℓdp → ℓd2 has distortion at least

d|1/2−1/p|. Consider the hypercube C = {−1, 1}d ⊂ ℓdp. We will prove that even restricted to

C, φ has distortion at least d|1/2−1/p|. To gain some intuition, assume that p = 1 and φ = id.
How does φ distort the distances between the vertices of the hypercube?

� φ = id preserves the lengths of the edges of C: if u, v ∈ C differ in exactly one
coordinate then ∥φ(u)− φ(v)∥2 = ∥u− v∥1 = 2. Therefore, ∥φ∥ ≥ ∥φ(u)−φ(v)∥2

∥u−v∥1 ≥ 1.

� φ contracts the diagonals of C by a factor of
√
d: for u ∈ C and u′ = −u, we have

∥u− u′∥1 = 2d and ∥φ(u)− φ(u′)∥2 = 2
√
d. Therefore, ∥φ−1∥ ≥ ∥u−u′∥1

∥φ(u)−φ(u′)∥2 ≥
√
d.

We see that the distortion of φ is at least ∥φ∥ · ∥φ−1∥ ≥ 1 ·
√
d =

√
d.

Now consider an arbitrary non-degenerate linear map φ and arbitrary p ∈ [1,∞]. The
example above suggests that we should examine how φ distorts edges and diagonals of C.
However, it is not sufficient to look at a single edge or single diagonal. Instead, we compute
how φ distorts edges and diagonals on average. First, we look at the edges. Choose a random
coordinate i ∈ {1, . . . , d} uniformly at random. Then independently choose a random vertex
u of C uniformly at random. Let v ∈ C be the vertex that differs from C only in coordinate
i. Then u − v = 2ei or u − v = −2ei. We have ∥φ(u) − φ(v)∥2 ≤ ∥φ∥ · ∥u − v∥p (always).
Therefore,

∥φ∥2 ≥ E
[
∥φ(u)− φ(v)∥22

∥u− v∥2p

]
= E

[
∥2φ(ei)∥22
∥2ei∥2p

]
= E

[
∥φ(ei)∥22

]
=

1

d

d∑
j=1

∥φ(ej)∥22 (1)

Similarly, ∥u−v∥p ≤ ∥φ−1∥·∥φ(u)−φ(v)∥2 and thus E
[
∥u− v∥2p

]
≤ ∥φ−1∥2·E [∥φ(u)− φ(v)∥22].

We have,

∥φ−1∥2 ≥
E
[
∥u− v∥2p

]
E [∥φ(u)− φ(v)∥22]

=
E
[
∥2ei∥2p

]
E [∥2φ(ei)∥22]

=
1

E [∥φ(ei)∥22]
=

d∑d
j=1 ∥φ(ej)∥22

. (2)

Now let u be a random vertex of C and u′ = −u. Note that all coordinates u1, . . . , ud of
u are i.i.d. Bernoulli {±1} random variables. Also, u =

∑d
j=1 ujej and therefore φ(u) =∑d

j=1 ujφ(ej). We write,

E
[
∥φ(u)∥22

]
= E

[∥∥ d∑
j=1

ujφ(ej)
∥∥2

2

]
= E

[ ∑
1≤j,j′≤d

⟨ujφ(ej), uj′φ(ej′)⟩

]
=

∑
1≤j,j′≤d

E [ujuj′ ] · ⟨φ(ej), φ(ej′)⟩.

Since all random variable u1, . . . , ud are independent, E [uj] = 0, and u2j = 1 (always), we
have

E [ujuj′ ] =

{
1, if j = j′

0, otherwise
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We conclude that

E
[
∥φ(u)∥22

]
=

d∑
j=1

∥φ(ej)∥22.

As above, we have

∥φ∥2 ≥ E
[
∥φ(u)− φ(u′)∥22

∥u− u′∥2p

]
= E

[
∥2φ(u)∥22
∥2u∥2p

]
=

∑d
j=1 ∥φ(ei)∥2

d2/p
. (3)

Similarly,

∥φ−1∥2 ≥ d2/p∑d
j=1 ∥φ(ej)∥2

. (4)

If p ∈ [1, 2], multiplying inequalities (1) and (4), we get ∥φ∥2∥φ−1∥2 ≥ d2/p

d
= d2/p−1.

Thus, the distortion of φ is at least d1/p−1/2, as required. If p ∈ [2,∞], multiplying inequalities
(2) and (3), we get ∥φ∥2∥φ−1∥2 ≥ d

d2/p
= d1−2/p. Thus, the distortion of φ is at least d1/2−1/p,

as required.

Using Claim 2.2, we get the following corollary from Theorem 2.3.

Corollary 2.4. We have,

� dBM(ℓdp, ℓ
d
q) = d|1/p−1/q| if p, q ∈ [1, 2]

� dBM(ℓdp, ℓ
d
q) = d|1/p−1/q| if p, q ∈ [2,∞]

Fact 2.5. dBM(ℓdp, ℓ
d
q) = Θ(dmax(1/p−1/2,1/2−1/q)) if 1 ≤ p ≤ 2 ≤ q ≤ ∞.

One can ask if there is a non-linear bijection between ℓdp and ℓ
d
q with a smaller distortion.

The answer is negative. We omit the details here. However, one way to prove this is
as follows. Consider a non-linear map φ : ℓdp → ℓqp with distortion D. Note that φ is
Lipschitz (as otherwise, it would have an infinite distortion). By Rademacher’s theorem,
every Lipschitz map from Rd to Rd is differentiable almost everywhere. Let x be any point
where φ is differentiable. Consider the differential of dxφ of φ at x. It is not hard to verify
that linear map ψ = dxφ : ℓdp → ℓqp has distortion at most D.

Fact 2.6 (John Ellipsoid or Löwner–John Ellipsoid). For every convex centrally-symmetric
set S ⊂ Rd that contains a neighborhood of the origin, there exists an ellipsoid E centered at
the origin such that E ⊆ S ⊆

√
d · E. Specifically, one may choose (a) E to be the maximum

volume ellipsoid inside S or (b)
√
d · E to be the minimum volume ellipsoid containing S.

Equivalently, let ∥ · ∥ be an arbitrary norm in Rd. Then dBM((Rd, ∥ · ∥), ℓd2) ≤
√
d.
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3 Bourgain’s Theorem

Definition 3.1. Let X be a finite metric space and p ≥ 1. Suppose that Z ̸= ∅ is a random
subset of X (chosen according to some probability distribution). For every u ∈ X, define
random variable ξu = d(u, Z) = minz∈Z d(u, z). Consider the map f from X to the space of
random variables Lp(Ω, µ) that sends u to ξu (where Ω is the probability space and µ is the
probability measure on Ω). We say that f is a Fréchet embedding.

Lemma 3.2. Every Fréchet embedding f is non-expanding. That is, ∥f∥Lip ≤ 1.

Proof. Consider a Fréchet embedding that sends u to ξu = d(u, Z). For every u, v ∈ X, we
have

∥ξu − ξv∥p = (E [|d(u, Z)− d(v, Z)|p])1/p
by Exercise 2

≤ (E [|d(u, v)|p])1/p = d(u, v).

Remark 3.3. If X is infinite, then the random variable ξu = d(u, Z) does not necessarily
belong to Lp(Ω, µ) (its p-norm might be infinite). However, we can define ξ̃u as ξ̃u = d(u, Z)−
d(x0, Z), where x0 is some point in X. Then the proof of Lemma 3.2 shows that ∥ξ̃u∥p ≤
d(u, x0) <∞ and the map f : u 7→ ξ̃u is non-expanding.

Theorem 3.4 (Bourgain’s Theorem). Every metric space X on n points embeds into Lp(X,µ)
with distortion O(log n) (for every p ≥ 1). That is, cp(X) = O(log n).

Proof. Let l = ⌈log2 n⌉+ 1. Construct a random set Z as follows.

� Choose s uniformly at random from {1, . . . , l}.

� Initially, let Z = ∅.

� Add every point of X to Z with probability 1/2s, independently.

Now let f be the Fréchet embedding that maps u ∈ X to random variable ξu = d(Z, u). By
Lemma 3.2, f is non-expanding. We are going to prove that for every u and v,

∥f(u)− f(v)∥p ≥
c

l
· d(u, v),

for some absolute constant c. Note that it is sufficient to prove this statement for p = 1,
since by Lyapunov’s inequality ∥f(u)− f(v)∥p ≥ ∥f(u)− f(v)∥1.

Consider two points u and v. Let ∆ = d(u, v)/2. Define interval IZ as follows: IZ =
[d(u, Z), d(v, Z)] if d(u, Z) ≤ d(v, Z), and IZ = [d(v, Z), d(u, Z)] if d(v, Z) < d(u, Z). That
is, IZ is the interval between d(u, Z) and d(v, Z). Denote the length of IZ by |IZ |. Let 1IZ

be the indicator function of IZ . Write,

|d(u, Z)− d(v, Z)| = |IZ | =
∫
IZ

1 dt =

∫ ∞

0

1IZ (t)dt.
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Then,

∥f(u)− f(v)∥1 = E [|d(u, Z)− d(v, Z)|] = E
[∫ ∞

0

1IZ (t)dt

]
(by Fubini’s

theorem ) =

∫ ∞

0

E [1IZ (t)] dt =

∫ ∞

0

Pr (t ∈ IZ) dt ≥
∫ ∆

0

Pr (t ∈ IZ) dt.

We now prove that Pr (t ∈ IZ) ≥ Ω(1)
l

if t ∈ (0,∆). That will imply that ∥f(u) − f(v)∥1 ≥
Ω(1)
l

·∆ = Ω(1)
l

· d(u, v).
Fix t ∈ (0,∆). Consider balls Bt(u) and Bt(v). They are disjoint since 2t < 2∆ =

d(u, v). Assume without loss of generality that |Bt(u)| ≤ |Bt(v)|. Denote m = |Bt(u)|. Let
s0 = ⌊log2m⌋ + 1. Then m < 2s0 ≤ 2m. Let Eu be the event that d(u, Z) > t, and Ev be
the event that d(v, Z) ≤ t. We have,

Pr (t ∈ IZ) = Pr (d(u, Z) ≤ t ≤ d(v, Z) or d(v, Z) ≤ t ≤ d(u, Z))

≥ Pr (d(v, Z) ≤ t < d(u, Z)) = Pr (Eu and Ev) .

Event Ev occurs if and only if there is a point in Z at distance at most t from v; that is,
when Bt(v) ∩ Z ̸= ∅. Event Eu occurs if and only if Bt(u) ∩ Z = ∅.

Consider the event s = s0. It happens with probability 1/l. Conditioned on this event,
events Eu and Ev are independent (since Bt(u) and Bt(v) are disjoint) and

Pr(Eu|s = s0) =
∏

w∈Bt(u)

Pr (w /∈ Z|s = s0) =
∏

w∈Bt(u)

(
1− 1

2s0

)
=

(
1− 1

2s0

)m

≥ 1

e
.

Pr(Ev|s = s0) = 1−
∏

w∈Bt(v)

Pr (w /∈ Z|s = s0) = 1−
∏

w∈Bt(v)

(
1− 1

2s0

)
≥ 1−

(
1− 1

2s0

)m

≥ 1− 1

e1/2
.

We get

Pr (t ∈ IZ) ≥ Pr (Eu and Ev) ≥ Pr (s = s0) Pr (Eu and Ev|s = s0)

≥ 1

l
Pr (Eu|s = s0) Pr (Ev|s = s0) ≥ Ω

(
1

l

)
.

Exercise 4. The set Z might be equal to ∅ in our proof, then random variables ξu = d(u, Z)
are not well defined. Show how to fix this problem.

Proof. There are many ways to fix this problem. For instance, we can add an extra point x∞
to the metric space X, and define d(u, x∞) = 2 diam(X), where diam(X) = maxu,v∈X d(u, v).
Then construct the set Z as before, except that always add x∞ to Z. Thus we ensure that
Z ̸= ∅. In other words, we can define ξu as before if Z ̸= ∅, and ξu = 2diam(X) if Z = ∅.
The rest of the proof goes through without any other changes.
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The proof of Bourgain’s theorem provides an efficient randomized procedure for gener-
ating set Z. As presented here, this procedure gives an embedding only in Lp(Ω, µ) and
not in ℓNp . We already know that if a set of n points embeds in Lp(Ω, µ) with distortion D

then it embeds in ℓ
(n2)
p with distortion D. However, in fact, we need only N = O((log n)2)

dimensions: for every value of s ∈ {1, . . . , l} we make Θ(log n) samples of the set Z. Then
the total number of samples equals Θ((log n)2). Using the Chernoff bound, it is easy to show
that the distortion of the obtained embedding is O(log n) w.h.p.

Fact 3.5 (Matoušek). Let Dn,p be the smallest number D such that every metric space on n
points embeds in ℓp with distortion at most Dn,p. Then

Dn,p = Θ

(
log n

p

)
.
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