1 Notation

Given a metric space \((X, d)\) and \(S \subset X\), the distance from \(x \in X\) to \(S\) equals
\[
d(x, S) = \inf_{s \in S} d(x, s).
\]
The distance between two sets \(S_1, S_2 \subset X\) equals
\[
d(S_1, S_2) = \inf_{s_1 \in S_1, s_2 \in S_2} d(s_1, s_2).
\]

Exercise 1. Show that distances between sets do not necessarily satisfy the triangle inequality. That is, it is possible that
\[
d(S_1, S_2) + d(S_2, S_3) > d(S_1, S_3)
\]
for some sets \(S_1, S_2\) and \(S_3\).

Exercise 2. Prove that
\[
d(x, y) \geq d(S, x) - d(S, y)
\]
and thus \(d(x, y) \geq |d(S, x) - d(S, y)|\).

Proof. Fix \(\varepsilon > 0\). Let \(y' \in S\) be such that \(d(y', y) \leq d(S, y) + \varepsilon\) (if \(S\) is a finite set, there is \(y' \in S\) s.t. \(d(y, y') = d(S, y)\)). Then
\[
d(x, S) \leq d(x, y') \leq d(x, y) + d(y, y') \leq d(x, y) + d(S, y) + \varepsilon.
\]
We proved that \(d(x, S) \leq d(x, y) + d(S, y) + \varepsilon\) for every \(\varepsilon > 0\). Therefore,
\[
d(x, S) \leq d(x, y) + d(S, y).
\]

Definition 1.1. Let \((X, d)\) be a metric space, \(x_0 \in X\) and \(r > 0\). The (closed) ball of radius \(r\) around \(x_0\) is
\[
B_r(x_0) = \text{Ball}_r(x_0) = \{x : d(x, x_0) \leq r\}.
\]
2 Metric Embeddings of Normed Spaces

Consider two normed spaces \((U, \| \cdot \|_U)\) and \((V, \| \cdot \|_V)\). Let \(f\) be a linear map between \(U\) and \(V\). What is the Lipschitz norm of \(f\)? It is equal

\[
\sup_{x, y \in U, x \neq y} \frac{\|f(x) - f(y)\|_V}{\|x - y\|_U} \quad \text{by linearity of } f
\]

Definition 2.1. The operator norm of \(f\) is

\[
\|f\| \equiv \|f\|_{U \to V} = \sup_{z \in U, z \neq 0} \frac{\|f(z)\|_V}{\|z\|_U}.
\]

The above computation shows that the Lipschitz norm of a linear operator equals its operator norm.

Let \(U\) and \(V\) be two \(d\)-dimensional normed spaces. The Banach-Mazur distance between them is

\[
d_{BM}(U, V) = \min_{\varphi : U \to V} \|\varphi\|_{\varphi^{-1}};
\]

where the minimum is over non-degenerate linear maps \(\varphi : U \to V\).

Exercise 3. Consider two normed spaces \(U\) and \(V\). Let \(B_U\) and \(B_V\) be their unit balls. Prove that there exists a linear map \(\varphi\) such that \(B_V \subseteq \varphi(B_U) \subseteq \alpha B_V\) for some \(\alpha\) then \(d_{BM}(U, V) \leq \alpha\).

The Banach-Mazur distance is a distance in the following sense.

Claim 2.2. The Banach–Mazur distance satisfies the following properties.

- \(d_{BM}(U, U) = 1\)
- \(d_{BM}(U, V) \geq 1\)
- \(d_{BM}(U, V) \cdot d_{BM}(V, W) \geq d_{BM}(U, W)\)

Theorem 2.3. \(d_{BM}(\ell_p^d, \ell_2^d) = d^{1/p - 1/2}\)

Proof. First we observe that \(d_{BM}(\ell_p^d, \ell_2^d) \leq d^{1/p - 1/2}\). Indeed, let us consider the identity map between \(\ell_p^d\) and \(\ell_2^d\) and upper bound its distortion. If \(p \in [1, 2]\), we have \(\|a\|_2 \leq \|a\|_p \leq d^{1/p - 1/2} \|a\|_2\). Thus the identity map from \((\mathbb{R}^d, \| \cdot \|_p)\) to \((\mathbb{R}^d, \| \cdot \|_2)\) has distortion at most \(d^{1/p - 1/2}\). Similarly, if \(p \in [2, \infty]\), we have \(\|a\|_p \leq \|a\|_2 \leq d^{1/2 - 1/p} \|a\|_p\). Thus the identity map from \((\mathbb{R}^d, \| \cdot \|_p)\) to \((\mathbb{R}^d, \| \cdot \|_2)\) has distortion at most \(d^{1/2 - 1/p}\).
Discussion

Now we need to prove that every linear map \(\varphi : \ell_p^d \to \ell_2^d \) has distortion at least \(d^{1/2 - 1/p} \). Consider the hypercube \(C = \{-1, 1\}^d \subseteq \ell_p^d \). We will prove that even restricted to \(C \), \(\varphi \) has distortion at least \(d^{1/2 - 1/p} \). To gain some intuition, assume that \(p = 1 \) and \(\varphi = id \). How does \(\varphi \) distort the distances between the vertices of the hypercube?

- \(\varphi = id \) preserves the lengths of the edges of \(C \): if \(u, v \in C \) differ in exactly one coordinate then \(\| \varphi(u) - \varphi(v) \|_2 = \| u - v \|_1 = 2 \). Therefore, \(\| \varphi \| \geq \frac{\| \varphi(u) - \varphi(v) \|_2}{\| u - v \|_1} \geq 1 \).

- \(\varphi \) contracts the diagonals of \(C \) by a factor of \(\sqrt{d} \): for \(u \in C \) and \(u' = -u \), we have \(\| u - u' \|_1 = 2d \) and \(\| \varphi(u) - \varphi(u') \|_2 = 2\sqrt{d} \). Therefore, \(\| \varphi^{-1} \| \geq \frac{\| u - u' \|_1}{\| \varphi(u) - \varphi(u') \|_2} \geq \sqrt{d} \).

We see that the distortion of \(\varphi \) is at least \(\| \varphi \| \cdot \| \varphi^{-1} \| \geq 1 \cdot \sqrt{d} = \sqrt{d} \).

Now consider an arbitrary non-degenerate linear map \(\varphi \) and arbitrary \(p \in [1, \infty] \). The example above suggests that we should examine how \(\varphi \) distorts edges and diagonals of \(C \). However, it is not sufficient to look at a single edge or single diagonal. Instead, we compute how \(\varphi \) distorts edges and diagonals on average. First, we look at the edges. Choose a random coordinate \(i \in \{1, \ldots, d\} \) uniformly at random. Then independently choose a random vertex \(u \) of \(C \) uniformly at random. Let \(v \in C \) be the vertex that differs from \(u \) in coordinate \(i \). Then \(u - v = 2e_i \) or \(u - v = -2e_i \). We have \(\| \varphi(u) - \varphi(v) \|_2 \leq \| \varphi \| \cdot \| u - v \|_p \) (always). Therefore,

\[
\| \varphi \|^2 \geq \mathbb{E} \left[\frac{\| \varphi(u) - \varphi(v) \|_2^2}{\| u - v \|_p^2} \right] = \mathbb{E} \left[\frac{\| 2e_i \|_2^2}{\| 2e_i \|_p^2} \right] = \mathbb{E} \left[\frac{\| \varphi(e_i) \|_2^2}{\| \varphi(e_i) \|_p^2} \right] = \frac{1}{d} \sum_{j=1}^{d} \| \varphi(e_j) \|_2^2
\]

(1)

Similarly, \(\| u - v \|_p \leq \| \varphi^{-1} \| \cdot \| \varphi(u) - \varphi(v) \|_2 \) and thus \(\mathbb{E} \left[\| u - v \|_p^2 \right] \leq \| \varphi^{-1} \|^2 \cdot \mathbb{E} \left[\| \varphi(u) - \varphi(v) \|_2^2 \right] \). We have,

\[
\| \varphi^{-1} \|^2 \geq \mathbb{E} \left[\| u - v \|_p^2 \right] / \mathbb{E} \left[\| \varphi(u) - \varphi(v) \|_2^2 \right] = \mathbb{E} \left[\frac{\| 2e_i \|_2^2}{\| 2e_i \|_p^2} \right] = \mathbb{E} \left[\frac{\| \varphi(e_i) \|_2^2}{\| \varphi(e_i) \|_p^2} \right] = \frac{1}{d} \sum_{j=1}^{d} \| \varphi(e_j) \|_2^2
\]

(2)

Now let \(u \) be a random vertex of \(C \) and \(u' = -u \). Note that all coordinates \(u_1, \ldots, u_d \) of \(u \) are i.i.d. Bernoulli \(\{\pm 1\} \) random variables. Also, \(u = \sum_{j=1}^{d} u_j e_j \) and therefore \(\varphi(u) = \sum_{j=1}^{d} u_j \varphi(e_j) \). We write,

\[
\mathbb{E} \left[\| \varphi(u) \|_2^2 \right] = \mathbb{E} \left[\| \sum_{j=1}^{d} u_j \varphi(e_j) \|_2^2 \right] = \mathbb{E} \left[\sum_{1 \leq j, j' \leq d} \langle u_j \varphi(e_j), u_{j'} \varphi(e_{j'}) \rangle \right] \]

\[
= \sum_{1 \leq j, j' \leq d} \mathbb{E} [u_j u_{j'}] \cdot \langle \varphi(e_j), \varphi(e_{j'}) \rangle.
\]

Since all random variable \(u_1, \ldots, u_d \) are independent, \(\mathbb{E} [u_j] = 0 \), and \(u_j^2 = 1 \) (always), we have

\[
\mathbb{E} [u_j u_{j'}] = \begin{cases}
1, & \text{if } j = j' \\
0, & \text{otherwise}
\end{cases}
\]
We conclude that
\[E \left[\| \varphi(u) \|_2^2 \right] = \sum_{j=1}^{d} \| \varphi(e_j) \|_2^2. \]

As above, we have
\[\| \varphi \|^2 \geq E \left[\| \varphi(u) - \varphi(u') \|_p^2 \right] = \sum_{j=1}^{d} \| \varphi(e_j) \|_2^2. \]

Similarly,
\[\| \varphi^{-1} \|^2 \geq \frac{d^{2/p}}{\sum_{j=1}^{d} \| \varphi(e_j) \|_2^2}. \] (4)

If \(p \in [1, 2] \), multiplying inequalities (1) and (4), we get \(\| \varphi \|^2 \| \varphi^{-1} \|^2 \geq \frac{d^{2/p}}{d^{2/p}} = \frac{d^{2/p}}{d^{2/p}} \).

Thus, the distortion of \(\varphi \) is at least \(d^{1/p-1/2} \), as required. If \(p \in [2, \infty] \), multiplying inequalities (2) and (3), we get \(\| \varphi \|^2 \| \varphi^{-1} \|^2 \geq \frac{d^{1/p}}{d^{2/p}} = \frac{d^{1/p}}{d^{2/p}} \). Thus, the distortion of \(\varphi \) is at least \(d^{1/2-1/p} \), as required.

\[\square \]

Using Claim 2.2, we get the following corollary from Theorem 2.3.

Corollary 2.4. We have,
- \(d_{BM}(\ell_p^d, \ell_q^d) = d^{1/p-1/q} \) if \(p, q \in [1, 2] \)
- \(d_{BM}(\ell_p^d, \ell_q^d) = d^{1/p-1/q} \) if \(p, q \in [2, \infty] \)

Fact 2.5. \(d_{BM}(\ell_p^d, \ell_q^d) = \Theta(\max(1/p-1/2, 1/2-1/q)) \) if \(1 \leq p \leq 2 \leq q \leq \infty \).

One can ask if there is a non-linear bijection between \(\ell_p^d \) and \(\ell_q^d \) with a smaller distortion. The answer is negative. We omit the details here. However, one way to prove this is as follows. Consider a non-linear map \(\varphi : \ell_p^d \to \ell_p^d \) with distortion \(D \). Note that \(\varphi \) is Lipschitz (as otherwise, it would have an infinite distortion). By Rademacher’s theorem, every Lipschitz map from \(\mathbb{R}^d \) to \(\mathbb{R}^d \) is differentiable almost everywhere. Let \(x \) be any point where \(\varphi \) is differentiable. Consider the differential of \(d_x \varphi \) of \(\varphi \) at \(x \). It is not hard to verify that linear map \(\psi = d_x \varphi : \ell_p^d \to \ell_p^d \) has distortion at most \(D \).

Fact 2.6 (John Ellipsoid or Löwner–John Ellipsoid). For every convex centrally-symmetric set \(S \subset \mathbb{R}^d \) that contains a neighborhood of the origin, there exists an ellipsoid \(\mathcal{E} \) centered at the origin such that \(\mathcal{E} \subseteq S \subseteq \sqrt{d} \cdot \mathcal{E} \). Specifically, one may choose (a) \(\mathcal{E} \) to be the maximum volume ellipsoid inside \(S \) or (b) \(\sqrt{d} \cdot \mathcal{E} \) to be the minimum volume ellipsoid containing \(S \).

Equivalently, let \(\| \cdot \| \) be an arbitrary norm in \(\mathbb{R}^d \). Then \(d_{BM}(\mathbb{R}^d, \| \cdot \|), \ell_2^d) \leq \sqrt{d} \).
3 Bourgain’s Theorem

Definition 3.1. Let X be a finite metric space and $p \geq 1$. Suppose that $Z \neq \emptyset$ is a random subset of X (chosen according to some probability distribution). For every $u \in X$, define random variable $\xi_u = d(u, Z) = \min_{z \in Z} d(u, z)$. Consider the map f from X to the space of random variables $L_p(\Omega, \mu)$ that sends u to ξ_u (where Ω is the probability space and μ is the probability measure on Ω). We say that f is a Fréchet embedding.

Lemma 3.2. Every Fréchet embedding f is non-expanding. That is, $\|f\|_{Lip} \leq 1$.

Proof. Consider a Fréchet embedding that sends u to $\xi_u = d(u, Z)$. For every $u, v \in X$, we have

$$\|\xi_u - \xi_v\|_p = (\mathbb{E} [d(u, Z) - d(v, Z)]^p)^{1/p} \leq (\mathbb{E} [d(u, v)^p])^{1/p} = d(u, v).$$

Remark 3.3. If X is infinite, then the random variable $\xi_u = d(u, Z)$ does not necessarily belong to $L_p(\Omega, \mu)$ (its p-norm might be infinite). However, we can define $\bar{\xi}_u$ as $\bar{\xi}_u = d(u, Z) - d(x_0, Z)$, where x_0 is some point in X. Then the proof of Lemma 3.2 shows that $\|\bar{\xi}_u\|_p \leq d(u, x_0) < \infty$ and the map $f: u \mapsto \bar{\xi}_u$ is non-expanding.

Theorem 3.4 (Bourgain’s Theorem). Every metric space X on n points embeds into $L_p(X, \mu)$ with distortion $O(\log n)$ (for every $p \geq 1$). That is, $c_p(X) = O(\log n)$.

Proof. Let $l = \lceil \log_2 n \rceil + 1$. Construct a random set Z as follows.

- Choose s uniformly at random from $\{1, \ldots, l\}$.
- Initially, let $Z = \emptyset$.
- Add every point of X to Z with probability $1/2^s$, independently.

Now let f be the Fréchet embedding that maps $u \in X$ to random variable $\xi_u = d(Z, u)$. By Lemma 3.2, f is non-expanding. We are going to prove that for every u and v,

$$\|f(u) - f(v)\|_p \geq \frac{c}{l} \cdot d(u, v),$$

for some absolute constant c. Note that it is sufficient to prove this statement for $p = 1$, since by Lyapunov’s inequality $\|f(u) - f(v)\|_p \geq \|f(u) - f(v)\|_1$.

Consider two points u and v. Let $\Delta = d(u, v)/2$. Define interval I_Z as follows: $I_Z = [d(u, Z), d(v, Z)]$ if $d(u, Z) \leq d(v, Z)$, and $I_Z = [d(v, Z), d(u, Z)]$ if $d(v, Z) < d(u, Z)$. That is, I_Z is the interval between $d(u, Z)$ and $d(v, Z)$. Denote the length of I_Z by $|I_Z|$. Let 1_{I_Z} be the indicator function of I_Z. Write,

$$|d(u, Z) - d(v, Z)| = |I_Z| = \int_{I_Z} 1 \, dt = \int_0^\infty 1_{I_Z}(t) \, dt.$$
Then,
\[
\|f(u) - f(v)\|_1 = \mathbb{E}[\|d(u, Z) - d(v, Z)\|] = \mathbb{E}\left[\int_0^\infty 1_{I_Z}(t) dt\right]
\]
(by Fubini's theorem) \[
= \int_0^\infty \mathbb{E}[1_{I_Z}(t)] dt = \int_0^\infty \Pr(t \in I_Z) dt \geq \int_0^\Delta \Pr(t \in I_Z) dt.
\]

We now prove that \(\Pr(t \in I_Z) \geq \frac{\Omega(1)}{t}\) if \(t \in (0, \Delta)\). That will imply that \(\|f(u) - f(v)\|_1 \geq \frac{\Omega(1)}{t} \cdot \Delta = \frac{\Omega(1)}{t} \cdot d(u, v)\).

Fix \(t \in (0, \Delta)\). Consider balls \(B_t(u)\) and \(B_t(v)\). They are disjoint since \(2t < 2\Delta = d(u, v)\). Assume without loss of generality that \(|B_t(u)| \leq |B_t(v)|\). Denote \(m = |B_t(u)|\). Let \(s_0 = \lfloor \log_2 m \rfloor + 1\). Then \(m < 2^{s_0} \leq 2m\). Let \(E_u\) be the event that \(d(u, Z) > t\), and \(E_v\) be the event that \(d(v, Z) \leq t\). We have,
\[
\Pr(t \in I_Z) = \Pr(d(u, Z) \leq t \leq d(v, Z) \text{ or } d(v, Z) \leq t \leq d(u, Z)) \geq \Pr(d(v, Z) \leq t < d(u, Z)) = \Pr(E_u \text{ and } E_v).
\]

Event \(E_v\) occurs if and only if there is a point in \(Z\) at distance at most \(t\) from \(v\); that is, when \(B_t(v) \cap Z \neq \emptyset\). Event \(E_u\) occurs if and only if \(B_t(u) \cap Z = \emptyset\).

Consider the event \(s = s_0\). It happens with probability \(1/l\). Conditioned on this event, events \(E_u\) and \(E_v\) are independent (since \(B_t(u)\) and \(B_t(v)\) are disjoint) and
\[
\Pr(E_u|s = s_0) = \prod_{w \in B_t(u)} \Pr(w \notin Z|s = s_0) = \prod_{w \in B_t(u)} \left(1 - \frac{1}{2^{s_0}}\right) = \left(1 - \frac{1}{2^{s_0}}\right)^m \geq \frac{1}{e}.
\]
\[
\Pr(E_v|s = s_0) = 1 - \prod_{w \in B_t(v)} \Pr(w \notin Z|s = s_0) = 1 - \prod_{w \in B_t(v)} \left(1 - \frac{1}{2^{s_0}}\right) \geq 1 - \left(1 - \frac{1}{2^{s_0}}\right)^m \\
\geq 1 - \frac{1}{e^{1/2}}.
\]

We get
\[
\Pr(t \in I_Z) \geq \Pr(E_u \text{ and } E_v) \geq \Pr(s = s_0) \Pr(E_u \text{ and } E_v|s = s_0) \\
\geq \frac{1}{l} \Pr(E_u|s = s_0) \Pr(E_v|s = s_0) \geq \Omega\left(\frac{1}{l}\right).
\]

\[\square\]

Exercise 4. The set \(Z\) might be equal to \(\emptyset\) in our proof, then random variables \(\xi_u = d(u, Z)\) are not well defined. Show how to fix this problem.

Proof. There are many ways to fix this problem. For instance, we can add an extra point \(x_\infty\) to the metric space \(X\), and define \(d(u, x_\infty) = 2 \text{diam}(X)\), where \(\text{diam}(X) = \max_{u,v \in X} d(u, v)\). Then construct the set \(Z\) as before, except that always add \(x_\infty\) to \(Z\). Thus we ensure that \(Z \neq \emptyset\). In other words, we can define \(\xi_u\) as before if \(Z \neq \emptyset\), and \(\xi_u = 2 \text{diam}(X)\) if \(Z = \emptyset\). The rest of the proof goes through without any other changes. \[\square\]
The proof of Bourgain’s theorem provides an efficient randomized procedure for generating set Z. As presented here, this procedure gives an embedding only in $L_p(\Omega, \mu)$ and not in ℓ^N_p. We already know that if a set of n points embeds in $L_p(\Omega, \mu)$ with distortion D then it embeds in $\ell_p^\binom{n}{2}$ with distortion D. However, in fact, we need only $N = O((\log n)^2)$ dimensions: for every value of $s \in \{1, \ldots, l\}$ we make $\Theta(\log n)$ samples of the set Z. Then the total number of samples equals $\Theta((\log n)^2)$. Using the Chernoff bound, it is easy to show that the distortion of the obtained embedding is $O(\log n)$ w.h.p.

Fact 3.5 (Matoušek). Let $D_{n,p}$ be the smallest number D such that every metric space on n points embeds in ℓ_p with distortion at most $D_{n,p}$. Then

$$D_{n,p} = \Theta \left(\frac{\log n}{p} \right).$$