
Partitioning Metric Spaces
Computational and Metric Geometry

Instructor: Yury Makarychev

1 Minimum Multiway Cut Problem

1.1 Preliminaries

Definition 1.1. We are given a graph G = (V,E) and a set of terminals T = {s1, . . . , sk} ⊂
V . We need to partition the graph into k pieces P1, . . . , Pk such that si ∈ Pi. Our goal is to
minimize the number of cut edges.

When k = 2, Multiway Cut is just the minimum s—t cut problem and can be solved in
polynomial-time. However, when k ≥ 3 the problem is NP-hard.

Exercise 1. Design a combinatorial 2-approximation algorithm for Minimum Multiway Cut.

1. Consider i ∈ {1, . . . , k}. Show how to find a minimum cut (Si, S̄i) that separates si
and T \ {si} (that is, a cut (S, S̄) such that si ∈ Si and sj ∈ S̄i for j ̸= i).

2. Consider the following algorithm for the Minimum Multiway Cut problem. Find sets
S1, . . . , Sk as described above. Remove all edges cut by cuts (S1, S̄1), . . . , (Sk, S̄k). We
get a partition of G into a number of connected components. Let Pi be the connected
component that contains si. If a connected component does not contain any terminals,
merge it with an arbitrary set Pi. Show that this algorithm gives 2 approximation for
the problem.

We will see how to get a 3/2 approximation using linear programming. Consider the fol-
lowing relaxation for the problem. For every vertex u, we introduce k LP variables ū1, . . . , ūk

and let ū = (ū1, . . . , ūk). Let ∆ = {x ∈ Rd : x1 + . . . xk = 1, x1 ≥ 0, . . . , xk ≥ 0}; ∆ is a sim-
plex with vertices e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1) (see Figure 1).
We write the following linear program.

minimize
1

2

∑
(u,v)∈E

∥ū− v̄∥1

subject to

s̄i = ei for every i,

ū ∈ ∆ for every i.

1

s2s1

s3

e2e1

e3

e2e1

e3

s2s1

s3

Figure 1: The figure shows (1) an input graph, (2) a feasible LP solution, (3) a random
partitioning, and (4) the corresponding cut in the graph.

Exercise 2. Show that this program is indeed a linear program. Hint: Introduce additional
LP variables yuvi. Write yuvi ≥ ūi − v̄i and yuvi ≥ v̄i − ūi. Replace each term ∥ū − v̄∥1 in
the objective function with

∑k
i=1 yuvi. Show that the obtained program is equivalent to our

original program.

We denote the value of the optimal solution by OPT, and the value of LP by LP.

Claim 1.2. The LP is a relaxation of the problem. That is, LP ≤ OPT.

Proof. Consider the optimal solution P1, . . . , Pk. Let ū = ei for u ∈ Pi. Clearly, ū is a
feasible LP solution. We compute the value of this solution. Consider an edge e = (u, v).
Suppose that u ∈ Pi and v ∈ Pj. The contribution of e to the objective function is

∥u− v∥1
2

=
∥ei − ej∥1

2
=

{
1, if i ̸= j,

0, if i = j.

That is, the contribution of e is 1 if e is cut, and 0, otherwise. Thus the total contribution
of all edges equals the number of cut edges. We get that the value of the LP solution ū is
OPT. Therefore, LP ≤ OPT.

1.2 Rounding Scheme for k = 2

It is instructive to first consider the case k = 2. Define d(u, v) = ∥ū− v̄∥1/2. Let us choose
r uniformly at random from (0, 1). Let P1 = Br(s1) and P2 = V \ P1. Note that (P1, P2) is
a feasible solution to Multiway Cut:

� Since d(s1, s1) = 0 < r, we have s1 ∈ Br(s1) = P1.

� Since d(s1, s2) = 1 > r, we have s2 /∈ Br(s1) = P1 and thus s2 ∈ P2.

Let us compute the expected number of cut edges. Consider an edge (u, v). Note that (u, v)
is cut if and only if either u ∈ Br(s1) and v /∈ Br(s1) or u /∈ Br(s1) and v ∈ Br(s1). That is,
if and only if d(u, s1) ≤ r < d(v, s1) or d(v, s1) ≤ r < d(u, s1), or equivalently

min(d(u, s1), d(v, s1)) ≤ r < max(d(u, s1), d(v, s1)).

2

Since we sample r from a segment of length 1, the probability that

r ∈ [min(d(u, s1), d(v, s1)),max(d(u, s1), d(v, s1)))

is
max(d(u, s1), d(v, s1)))−min(d(u, s1), d(v, s1)) = |d(u, s1)− d(v, s1)| ≤ d(u, v).

By the linearity of expectation, we get that the expected number of cut edges is at most∑
e∈E

Pr (e is cut) ≤
∑
e∈E

d(u, v) = LP.

We showed that we get a solution of value at most OPT in expectation1.

1.3 Rounding Scheme

Now we consider the general case when k ≥ 3. We need to partition the graph into k pieces.
Let us try to generalize the approach we used for k = 2. We again choose a random radius,
and consider balls Br(s1), . . . , Br(sk). Note that now these balls are not necessarily disjoint:
the distance between every si and sj is 1 and so balls Br(si) and Br(sj) might intersect if
r > 1/2. In general, {Br(s1), . . . , Br(sk)} is not a partition of V .

Exercise 3. One way to deal with this problem is to sample r uniformly at random from
(0, 1/2). Then sets P1 = Br(s1), . . . , Pk−1 = Br(sk−1), and Pk = V \ (P1 ∪ . . . Pk−1) are
disjoint and define a valid partition of V . Show that the expected cost of this partition is at
most 2LP.

We resolve this problem as follows. We choose a random permutation π of {1, . . . , k}
and process terminals according to the order defined by π: sπ(1), sπ(2), . . . , sπ(k−1). When we
process terminal si, we add to Pi those vertices in Br(si) that were not added previously to
any set Pj. We present the algorithm in Figure 2.

Claim 1.3. The algorithm returns a feasible solution.

Proof. The claim follows from the fact that si ∈ Br(si) and si /∈ Br(sj) for every j ̸= i.

Now we compute the expected cost of the solution. Consider an edge e = (u, v). Note
that

d(u, si) =
∥ū− ei∥

2
=

(1− ūi) +
∑

j ̸=i ūj

2
=

(1− ūi) + (1− ūi)

2
= 1− ūi.

Let
Ai = min(d(u, si), d(v, si)) and Bi = max(d(u, si), d(v, si)).

1In fact, we always get an optimal solution, since we never get a solution better than an optimal solution
(there is no such solution), and thus we cannot get a solution which is worse than an optimal — if we did
the expected value would be worse than OPT.

3

Approximation Algorithm for Minimum Multiway Cut

Input: graph G = (V,E) and a set of terminals T = {s1, . . . , sk} ⊂ V .
Output: a partition P1, . . . , Pk of V such that si ∈ Pi.

solve the LP relaxation for Multiway Cut. Define d(u, v) = 1
2
∥ū− v̄∥1.

choose a random permutation π of {1, . . . , k}
choose r uniformly at random from (0, 1)
let A = ∅
for i = π(1), π(2), . . . , π(k − 1) do
let Pi = Br(si) \ A
let A = A ∪ Pi

let Pπ(k) = V \ A
return partition P1, . . . , Pk

Figure 2: Approximation algorithm for Multiway Cut

We have,
Bi − Ai = |d(u, si)− d(v, si)| = |ūi − v̄i|.

We may assume without loss of generality that

A1 ≤ A2 ≤ · · · ≤ Ak. (1)

Let us write i ≺ j if π−1(i) < π−1(j) (i precedes j in the order defined by π). We say that an
index i settles the edge (u, v) if i is the first index w.r.t. π such that u ∈ Br(si) or v ∈ Br(si)
(or both). In other words, index i settles edge e if

Ai ≤ r and Aj > r for all j ≺ i. (2)

Let Ei be the event that i settles (u, v). Note that at most one of the events Ei happens. (If
no event Ei happens than u and v belong to Pπ(k), and the edge (u, v) is not cut.)

When the event Ei happens, we add either one or both of the vertices u and v to Pi. Note
that in the former case, the edge (u, v) is cut since u ∈ Pi and v /∈ Pi; in the latter case, the
edge (u, v) is not cut since u, v ∈ Pi. We conclude that

Pr (e is cut) =
k∑

i=1

Pr (Ei and |{u, v} ∩Br(si)| = 1) =
k∑

i=1

Pr (Ei and Ai ≤ r < Bi) .

Now we prove that Pr (Ei|r) ≤ 1/i for every i. To this end, we first show that if there exists
j < i that is processed before i (that is, j ≺ i) then i does not settle (u, v). Indeed, there
are two cases:

4

� r < Ai. Then the first condition in (2) does not hold, and thus i does not settle (u, v).

� r ≥ Ai. Then Aj ≤ Ai ≤ r (see (1)), and therefore the second condition in (2) does
not hold. Again, i does not settle (u, v).

We conclude that if one of the indices {1, . . . , i − 1} is processed before i then i does not
settle (u, v). That is, if i settles (u, v) then i is the first index among {1, . . . , i} to be
processed. Since all indices {1, . . . , i} have the same probability of being processed first, we
have Pr (Ei|r) ≤ 1/i, as required.

In particular, Pr (Ei|r) ≤ 1/2 for i ≥ 2. We have,

Pr (e is cut) =
k∑

i=1

Pr (Ei and Ai ≤ r < Bi) =
k∑

i=1

Er [Pr (Ei|r) Pr (Ai ≤ r < Bi|r)]

≤ (B1 − A1) +
k∑

i=2

Bi − Ai

2
=

B1 − A1

2
+

k∑
i=1

Bi − Ai

2

=
|ū1 − v̄1|

2
+

k∑
i=1

|ūi − v̄i|
2

=
|ū1 − v̄1|+ ∥ū− v̄∥1

2
.

Observe that

∥u− v∥1 ≥ |u1 − v1|+

∣∣∣∣∣
k∑

i=2

ui −
k∑

i=2

vi

∣∣∣∣∣ = |u1 − v1|+ |(1− u1)− (1− v1)| = 2 |u1 − v1|.

Thus Pr (e is cut) ≤ 3∥ū − v̄∥1/4. By the linearity of expectation, the expected number of
cut edges is at most ∑

(u,v)∈E

3

4
∥ū− v̄∥1 =

3 LP

2
≤ 3OPT

2
.

We proved that our algorithm gives a 3/2 approximation.

Remark 1.4. Our analysis showed that we find a solution of expected cost 3OPT
2

. Note that
this implies that for every ε > 0 with probability at least ε we find a solution of cost at most
3OPT
2(1−ε)

(by Markov’s inequality). Hence by running the algorithm polynomially many times
and returning the best solution, we can find a solution of cost at most(

3

2
+

1

p(n)

)
· OPT

with high probability for every fixed polynomial p(n).

The results presented in this section are due to Calinescu, Karloff, and Rabani.

5

2 Multicut Problem

Definition 2.1. We are given a graph G = (V,E) and a set of source-terminal pairs
{(s1, t1), . . . , (sk, tk)}. We need to cut the graph into pieces such that each (si, ti) pair is
separated. Our objective is to minimize the number of cut edges.

We use the following LP relaxation for Multicut.

minimize
∑

(u,v)∈E

d(u, v)

subject to

d(si, ti) = 1 for every i

d(·, ·) is a semi-metric on V.

Question 1. Why do not we write an ℓ1-relaxation similar to the relaxation for Multiway
Cut?

Answer: We do not know which terminals are separated and which terminals are not
separated. Say, we cannot require that s̄i = ei and s̄j = ej since si and sj possibly lie in one
piece of the optimal cut; similarly, we cannot require that s̄i = ek and s̄j = ek since si and sj
possibly lie in different pieces of the cut. Finally, we cannot just require that ∥s̄i − t̄i∥1 = 1
since this constraint is not a linear constraint.

Let P be the optimal solution. Denote the piece that u belongs to by P(u). The intended
LP solution corresponding to P is

d(u, v) =

{
1, if P(u) ̸= P(v),

0, otherwise.

Solution d(·, ·) is a feasible LP solution since (1) P(si) ̸= P(ti) and so d(si, ti) = 1 and (2)
d(·, ·) is a semi-metric. Therefore, LP ≤ OPT. Consider the following algorithm for the
problem.

Approximation Algorithm for Multicut

Input: graph G = (V,E) and a set of source-terminal pairs {(s1, t1), . . . , (sk, tk)}.
Output: a partition P of V such that each pair (si, ti) is separated by P .

solve the LP relaxation for Multicut
choose a random permutation π of {1, . . . , k}
choose r uniformly at random from (0, 1/2)
let A = ∅
for i = π(1), π(2), . . . , π(k) do
let Pi = Br(si) \ A
let A = A ∪ Pi

let Pk+1 = V \ A
return partition {Pi} //some sets in the partition may be empty

6

The algorithm is very similar to the algorithm for Minimum Multiway Cut. Essentially,
the only difference is that we choose r uniformly at random from (0, 1/2) rather than from
(0, 1). Note that vertex si does not necessarily lies in Pi; it might lie in some Pj for j ⪯ i.

Lemma 2.2. The algorithm always finds a feasible solution.

Proof. We need to prove that si and ti belong to different pieces of the cut for every i. Let
Pj = P(si) be the piece si belongs to. Note that either j = i or j ≺ i. In particular,
j ̸= k + 1. For every u, v ∈ Pj,

d(u, v) ≤ d(u, sj) + d(sj, v) ≤ 2r < 1.

Since d(si, ti) = 1, terminal ti cannot belong to Pj.

We now prove that the algorithm gives O(log k) approximation.

Lemma 2.3. Partition P cuts at most O(log kOPT) edges in expectation.

Proof. Consider an edge e = (u, v). Define

Ai = min(d(u, si), d(v, si)) and Bi = max(d(u, si), d(v, si)).

Assume without loss of generality that A1 ≤ A2 ≤ · · · ≤ Ak. We say that an index i settles
(u, v) if i is the first index w.r.t. π such that u ∈ Br(si) or v ∈ Br(si) or both; i.e., index
i settles edge e if Ai ≤ r and Aj > r for all j ≺ i. Let Ei be the event that i settles (u, v).
Note that at most one of the events Ei happens. We have,

Pr (e is cut) =
k∑

i=1

Pr (Ei and Ai ≤ r < Bi) .

We prove that Pr (Ei|r) ≤ 1/i. The proof is the same as that for Minimum Multiway Cut.
Consider the set I = {i : Ai ≤ r}. This set depends only on r and not on the permutation
π. Note that the first index in I w.r.t. π settles (u, v). Each element of I may be the first
index w.r.t. π with the same probability 1/|I|. If i ∈ I then also 1, . . . , i − 1 ∈ I since
A1 ≤ · · · ≤ Ai−1 ≤ Ai. Therefore, Pr (Ei|r) ≤ 1

i
· Pr (i ∈ I|r) + 0 · Pr (i /∈ I|r) ≤ 1/i. We

have,

Pr (e is cut) ≤
k∑

i=1

Pr (Ai ≤ r < Bi)

i
≤ 2

k∑
i=1

d(u, v)

i
= O(log k) d(u, v).

We conclude that the expected number of cut edges is∑
(u,v)∈E

O(log k) d(u, v) ≤ O(log k) LP ≤ O(log k)OPT.

The first O(log n) approximation algorithm for Multicut was designed by Garg, Vazirani,
and Yannakakis. The algorithm presented in this section is due to Calinescu, Karloff, and
Rabani.

7

3 Stochastic Decomposition I

We have successfully used essentially the same algorithm to solve two different problems. In
this section, we again use this algorithm; this time we apply it to an arbitrary metric space
(X, d) on n points and get an α-separating ∆-bounded stochastic decomposition of X.

Definition 3.1. Let (X, d) be a metric space on n points. An α–separating ∆-bounded
decomposition of X is a probabilistic distribution of partitions P of X such that

� The diameter of each cluster C ∈ P is at most ∆, d(u, v) ≤ ∆ for every u, v ∈ C.

� The probability that u and v are separated is at most α · d(u, v)/∆.

Remark 3.2.

α-Separating ∆-Bounded Decomposition

Input: a finite metric space (X, d) and a parameter ∆.
Output: an α = O(log |X|)-separating ∆-bounded decomposition P of X.

choose a random ordering π : {1, . . . , n} → X of X
choose r uniformly at random from (0,∆/2)
let A = ∅
for i = 1, . . . , n do
let Ci = Br(π(i)) \ A
let A = A ∪ Ci

return partition P = {Ci} //some clusters in the partition may be empty

Alternatively, we can formulate the algorithm as follows. We choose a random threshold
r ∈ (0,∆/2) and random ordering π on X. For each point u, consider the ball Br(u), find
the first vertex in Br(u) w.r.t. to the order defined by π,

i = min{j : π(j) ∈ Br(u)},

and assign u to Ci (see the right diagram in Figure 3).
It is immediate that every set in partition has diameter at most ∆. The same argument

as we used to prove that our algorithm for Multicut gives an O(log k) approximation shows
that the probability that u and v are separated is at most α · d(u, v)/∆ where α = O(log n).
We proved he following theorem.

Theorem 3.3. For every metric space (X, d) and every ∆ > 0, there exists an α = (O(log n)-
separating ∆-bounded decomposition of X (where n = |X|). Moreover, there is a randomized
polynomial-time algorithm that finds such a decomposition.

8

7

6

5
43

2

1 7

6

5
43

2

1

Figure 3: Stochastic Decomposition of X. Vertices are listed w.r.t. random ordering π. The
left diagram shows how the algorithm works. The right diagram shows that each vertex u
is assigned to the cluster Ci with i = min{j : π(j) ∈ Br(u)}. For example, the ball around
vertex 5 consists of vertices 3, 5 and 7; thus vertex 5 is assigned to the cluster C3.

4 Hierarchically Well-Separated Trees

Let T be a tree on V with positive edge lengths. Recall that the tree metric dT (·, ·) is
the shortest metric on T . Tree metrics are much simpler than general metrics, and many
problems that cannot be solved on arbitrary metrics can be solved on tree metrics. This
observation leads to a natural question, can an arbitrary metric be “well-approximated” with
a tree metric? An arbitrary metric may be very far from being a tree metric, but as we will
show every metric can be approximated with a distribution of tree metrics.

Definition 4.1. Let us say that a metric space (X, d) embeds into a distribution of dom-
inating trees with distortion α if there is a probabilistic distribution of tree metrics dT on
X ′ ⊃ X such that for every u, v ∈ X:

d(u, v) ≤ dT (u, v) and ET [dT (u, v)] ≤ αd(u, v).

Note that T is a tree on a superset X ′ of X. We call vertices in X ′ \X Steiner vertices.

Question 2. We showed that every metric space embeds into a distribution of cut metrics
with distortion O(log n). Every cut metric trivially is a tree metric. Is an embedding in a
distribution of cuts an embedding into a distribution of dominating trees? Why?

We show that every metric space embeds into a distribution of trees.

Theorem 4.2. Let (X, d) be a metric space on n points. Assume that d(u, v) ≥ 1 for every
u, v ∈ V . Let ∆0 = diam(X) = maxu,v∈X d(u, v) be the diameter of X. Then there is an
embedding of X into a distribution of dominating trees with distortion O(log n (log∆0 + 1))

Proof. We find an O(log n)-separating ∆-bounded decomposition P1 of X with ∆ = ∆0/2,
then find a subpartition of each cluster of P1 with ∆ = ∆0/4 and so on. At level i + 1

9

X

C1 C2 C3 C4
. . . Ck

∆0/2

∆0/4

∆0/8
...

points of X

level 0

level 1 clusters

level 2 clusters

Figure 4: Hierarchically Well-Separated Tree

of recursion, we partition each cluster obtained at level i with parameter ∆ = ∆0/2
i+1.

We recurse until ∆/2i < 1. We obtain a hierarchical decomposition of X. Consider the
corresponding decomposition tree T :

� There is a vertex in T for each cluster in the hierarchical decomposition (including the
top level cluster X); we denote the vertex for C by vC .

� The tree is rooted at vX .

� vA is a child of vB if A is a cluster in the partition of B.

� The level level(vC) of a vertex vC is the depth of vC in the tree (the number of edges
on the path from the root to vC); the level of cluster C is level(vC).

� All edges between vertices at levels i and i+ 1 have length ∆0/2
i+1.

� We identify leaf vertices with elements of X. Specifically, for each leaf vertex vC , we
have diam(C) < 1 and thus C contains a single point. We identify vC with the single
element of C.

� It may happen that a partitioning of some cluster C is trivial: the only sub-cluster of
C is C. In this case, we keep two vertices vC (one is at level i; the other is at level
i+ 1).

Formally, we use procedure FindHST(X,∆0/2), presented in Figure 4, to find T . Let us
say that two vertices u and v are separated at level i, if u and v lie in the same cluster at
level i− 1 but in different clusters at level i+ 1.

Claim 4.3. T is a dominating tree; that is, dT (u, v) ≥ d(u, v) for every u, v ∈ X.

Proof. Let u, v ∈ X. Suppose that u and v are separated at level i. Then both u and v lie
in one cluster C at level i− 1, but lie in different clusters, A and B, at level i. Then

dT (u, v) ≥ dT (vA, vB) = dT (vA, vC) + dT (vB, vC) = 2 ·∆0/2
i ≥ diam(C) ≥ d(u, v).

10

procedure FindHST(Y,∆)

Input: a finite metric space (Y, d) and a parameter ∆.
Output: a rooted dominating tree T on Y ′ ⊃ Y ; points of Y are leaves of T .

if ∆ < 1 return a tree on the single vertex of Y
find a random α-separating ∆-bounded decomposition P of Y .

for each cluster C in P
TC = FindHST(C,∆/2)

create a new vertex vY
let vY be the root of T
connect vY with roots vC of trees TC by edges of length ∆
return the obtained tree T

Figure 5: Procedure FindHST(Y,∆) generates a random dominating tree for Y .

Claim 4.4. ET [dT (u, v)] ≤ O(α · (h + 1)), where α = O(log n) and h = ⌊log2∆0⌋ is the
depth of T .

Proof. The probability that u and v are separated at level i is at most α · d(u,v)
∆0/2i

= 2iα/∆0.
If u and v are separated at level i, the distance between them is

2
h∑

j=i

∆0/2
j = O(∆0/2

i).

Thus the expected distance between u and v in T is at most

h∑
i=0

(
(∆0/2

i) · (α · 2i · d(u, v)/∆0)
)
= O

(
h∑

i=0

αd(u, v)

)
= O (α · (h+ 1) · d(u, v)) .

This concludes the proof of Theorem 4.2.

We obtained an embedding into distribution of dominating trees with distortion

O(log n(log∆0 + 1)).

Note that every tree in the distribution satisfies the following properties: points of X are
leaves of the tree, all leaves are at the same level, all edges between levels i and i + 1 have
the same length (for a given i). We call a tree that satisfies these properties a hierarchically
well-separated tree (HST).

Results presented in this section are due to Bartal.

11

5 Stochastic Decomposition II

Our bound on the distortion depends on the depth of the decomposition tree. That happens
because we first show that each level contributes at most αd(u, v) and then add up contri-
butions of all h+ 1 levels. We now show how to improve the distortion to O(log n). To this
end, we get a stochastic decomposition with stronger guarantees.

Theorem 5.1. Let (X, d) be a metric space on n points, and ∆ > 0. There is a probabilistic
distribution of partitions P of X that satisfies the following properties.

� Each cluster C in P has diameter at most ∆.

� For every x ∈ X and ρ ∈ (0,∆/8),

Pr (Bρ(x) ̸⊂ P(x)) ≤ α(x)
ρ

∆
,

where α(x) = O(log |B∆(x)|
|B∆/8(x)|

).

We call this decomposition an (α,∆)-padded decomposition.

Remark 5.2. P is an O(log n)-separating ∆-bounded decomposition: for every x and y,

Pr (P(x) ̸= P(y)) = Pr (y /∈ P(x)) ≤ Pr
(
Bd(x,y)(x) ̸⊂ P

)
(x) ≤ α(x)d(x, y)/∆,

where α(x) = O(log |B(x,∆)|
|B(x,∆/8)|) = O(log n).

Proof. We slightly change the algorithm that computes the padded decomposition.

Padded Decomposition

Input: a finite metric space (X, d) and a parameter ∆.
Output: a padded decomposition P of X.

choose a random ordering π : {1, . . . , n} → X of X
choose r uniformly at random from (∆/4,∆/2)
let A = ∅
for i = 1, . . . , n do
let Ci = Br(π(i)) \ A
let A = A ∪ Ci

return partition P = {Ci} //some clusters in the partition may be empty

The analysis of this algorithm is very similar to the one in Section 3. Consider a point x.
Sort vertices of X by their distance to x; denote them by u1, . . . , un. Let Ai = d(ui, x) − ρ

12

and Bi = d(ui, x) + ρ for every i ∈ {1, . . . , n}. Then A1 ≤ A2 ≤ · · · ≤ An and B1 ≤ B2 ≤
· · · ≤ Bn.

If Bρ(x) ∩ Br(ui) ̸= ∅ but Bρ(x) ̸⊂ Br(ui), then r ∈ [Ai, Bi). Let Ei be the event that i
is the first index w.r.t. π such that r ≥ Ai. Note that if Ei and r ≥ Bi then Bρ(x) ⊂ P(x).
Indeed, on one hand no vertex of Bρ(x) belongs to P(uj) for j ≺ i because r < Aj; on the
other hand, Bρ(x) ⊂ Br(ui) since Bi ≤ r. Thus

Pr (Bρ(u) ̸⊂ P(x)) ≤
n∑

i=1

Pr (Ei and Ai ≤ r < Bi) .

Note that Pr (Ei|r) ≤ 1/i and Pr (Ai ≤ r < Bi) ≤ Bi−Ai

∆/4
= 8ρ/∆. Moreover, if ∆/2 < Ai

then r < Ai and thus Ei cannot happen. Therefore, if i > |B∆(x)| then i /∈ B∆(x) (since all
vertices ui are sorted according to their distance to x) and hence

Ai = d(ui, x)− ρ ≥ ∆− ρ > ∆/2,

and hence Pr (Ei) = 0. Additionally, if ∆/4 > Bi then r > Bi and Pr (Ai ≤ r < Bi) = 0.
Therefore, if i ≤ |B∆/8(x)| then i ∈ B∆/8(x) and Bi = d(x, ui) + ρ ≤ ∆/8 + ρ < ∆/4 and
hence Pr (Ai ≤ r < Bi) = 0. We conclude that

Pr (Bρ(u) ̸⊂ P(x)) ≤
|B∆(x)|∑

i=|B∆/8(x)|

1

i
× 8ρ

∆
= O

(
log

|B∆(x)|
|B∆/8(x)|

× ρ

∆

)
.

Proof sketch: We use Theorem 5.1 to construct a distribution of dominating HSTs with
distortion O(log n). We simply plug in the new padded decomposition in the construction
from Theorem 4.2. Now, the probability that u and v are separated at level i is at most

O

(
log

|B∆(u)|
|B∆/8(u)|

× 2i × d(u, v)

∆0

)
if d(u, v) ≤ ∆0/2

i+3, and at most 1, otherwise. If u and v are separated at level i, the
distance between them is O(∆0/2

i). Thus the expected distance between u and v is at most

O(1)
h∑

i=0

log
|B∆(u)|
|B∆/8(u)|

× d(u, v)

∆0

= O(log n)
d(u, v)

∆0

,

where h ≈ log2
∆0

8d(u,v)
.

Remark 5.3. Give another proof of Bourgain’s theorem using embeddings into distributions
of dominating trees. Prove a lower bound of Ω(log n) on the distortion of embeddings into
distributions of trees.

The results presented in this section are due to Fakcharoenphol, Rao, and Talwar.

13

6 k-Median

There are many applications of padded decompositions and HSTs in theoretical computer
science. We will not have time to discuss these applications in detail. We show below only
one application of HSTs to demonstrate the general approach.

Definition 6.1. We are given a metric space (X, d). The k-Median problem is to find a set
S of k points in X so as to minimize

∑
u∈X d(u, S).

The problem can be solved exactly on tree metrics using dynamic-programming.

Exercise 4. Design a polynomial-time algorithm that solves the problem on trees.

Consider an instance of the k-Median problem. Let S∗ be its optimal solution Compute
an embedding of X in a distribution of dominating trees T with distortion α = O(log n).

Exercise 5. Show that we may assume that T is a tree on X (that is, T has no Steiner
vertices).

Hint: Consider a tree T from the distribution. Change the length of every edge going from
a vertex to its left child to 0, double the length of every other edge. Then contract all edges
of length 0.

Compute an optimal solution S ′ for k-Median on (X, dT). We always have,∑
u∈X

d(u, S ′) ≤
∑
u∈X

dT (u, S
′) ≤

∑
u∈X

dT (u, S
∗).

We also have,

ET

[∑
u∈X

dT (u, S
∗)

]
≤ α

∑
u∈X

d(u, S∗) = α · OPT.

Therefore, S ′ is an α–approximate solution in expectation.

Remark 6.2. This algorithm is due to Bartal. It was the first approximation algorithm for
k-Median. Later Charikar, Guha, Tardos, and Shmoys gave a constant factor approximation
algorithm for the problem. The best currently known algorithm for the problem is due to Li
and Svensson.

14

	Minimum Multiway Cut Problem
	Preliminaries
	Rounding Scheme for k=2
	Rounding Scheme

	Multicut Problem
	Stochastic Decomposition I
	Hierarchically Well-Separated Trees
	Stochastic Decomposition II
	k-Median

