
Dimension Reduction
Computational and Metric Geometry

Instructor: Yury Makarychev

1 Dimension Reduction

Theorem 1.1 (Johnson—Lindenstruass Lemma). Consider a finite metric subspace X ⊂
`N2 . Let ε ∈ (0, 1), n = |X|, and d > C lnn/ε2 (where C is a sufficiently large absolute
constant). Then there exists an embedding ϕ of X into `d2 s.t.

(1− ε) ≤ ‖ϕ(x)− ϕ(y)‖
‖x− y‖2

≤ (1 + ε). (1)

(that is, the embedding ϕ is “almost” isometric). Moreover, we can find such embedding in
randomized polynomial time.

Proof. We show that the algorithm presented below finds the desired embedding with prob-
ability that tends to 1 as n tends to ∞.

Dimension Reduction Algorithm
Input: A metric space X ⊂ `N2 .
Output: An embedding ϕ of X into `d2.

1. Choose a random d×N matrix Γ = (γij), whose entries γij are i.i.d. standard Gaussian
random variables, γij ∼ N (0, 1).

2. Define ϕ(x) = 1√
d
Γx for every x ∈ X.

3. Return embedding ϕ.

Consider a pair of points x and y in X. Our plan is to prove that

pxy ≡ Pr (Inequality (1) does not hold for x and y) ≤ 1/n4.

Once we establish this bound, the theorem will follow since the probability that Inequality
(1) does not hold for some pair x, y ∈ X is at most

∑
x,y∈X pxy ≤ n2 · (1/n4) = 1/n2 by the

union bound.
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We now prove that pxy ≤ 1/n4. Denote z = (x− y)/‖x− y‖2. We have,

‖ϕ(x)− ϕ(y)‖2
2 =
‖Γx− Γy‖2

2

d
=
‖Γ(x− y)‖2

2

d
=
‖x− y‖2‖Γz‖2

2

d

=
‖x− y‖2

d

d∑
i=1

(
N∑
j=1

γijzj

)2

=

∑d
i=1 g

2
i

d
‖x− y‖2,

where gi =
∑N

j=1 zjγij. Therefore,

‖ϕ(x)− ϕ(y)‖2
2

‖x− y‖2
=

∑d
i=1 g

2
i

d
.

Note that each gi is a sum of scaled Gaussian random variables, and hence gi is a Gaussian
random variable. Let us compute the mean and variance of gi.

Egi = E

[
N∑
j=1

zjγij

]
=

N∑
j=1

zjE [γij] = 0,

Var [gi] = Var

[
N∑
j=1

zjγij

]
=

N∑
j=1

z2
j Var [γij] =

N∑
j=1

z2
j = ‖z‖2

2 = 1.

That is, g1, . . . , gd are i.i.d. random variables distributed as N (0, 1).
It remains to prove the following lemma (note that 1− ε > (1− ε)2 and 1 + ε < (1 + ε)2).

Lemma 1.2. Let g1, . . . , gd be i.i.d. standard Gaussian random variables, where d > C lnn/ε2.
Then

Pr

(
−εd ≤

d∑
i=1

g2
i − d ≤ εd

)
≥ 1− 1/n4.

Exercise 1. The random variable
∑d

i=1 g
2
i has the chi-square distribution with d degrees of

freedom, with density 1
2d/2Γ(d/2)

xd/2−1e−x/2 (where Γ(t) is the gamma function). Use this fact

to directly estimate the desired probability and prove the lemma.

Proof of Lemma 1.2. Denote T =
∑d

i=1 g
2
i − d. Consider the random variable e(1−α2)T/2

(where α > 0 is some number). Note that

E
[
e(1−α2)g2i /2

]
=

1√
2π

∫ +∞

−∞
e(1−α2)t2/2e−t

2/2dt =
1√
2π

∫ +∞

−∞
e−α

2t2/2dt

=
1√
2π

∫ +∞

−∞
e(αt)2/2d(αt)

α
=

1

α
.

Therefore,

E
[
e(1−α2)T/2

]
= E

[
e

1−α2
2

∑d
i=1 g

2
i

]
· e−d(1−α2)/2 = e−d(1−α2)/2

d∏
i=1

E
[
e(1−α2)g2i /2

]
=
e−d(1−α2)/2

αd
.
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Let α = 1 + δ, where δ ∈ (−1/2, 1/2) (we will fix δ later). Then

E
[
e(1−α2)T/2

]
=
e−d(1−α2)/2

αd
= eδd+dδ2/2−d ln(1+δ).

By Taylor’s theorem, ln(1+δ) = δ+R1(δ), where |R1(δ)| ≤ |δ|2
2
·maxt∈(−1/2,1/2)| |(ln(1+t))′′| =

|δ|2
2

maxt∈(−1/2,1/2)
1

(1+t)2
= 2δ2 for all δ ∈ (−1/2, 1/2). Therefore,

E
[
e(1−α2)T/2

]
≤ e3|δ|2d.

We now use the Chebyshev inequality to bound Pr (T > εd). For δ < 0 and α < 1, we have

E
[
e(1−α2)T/2

]
≥ e(1−α2)εd/2 · Pr (T > εd) .

Therefore,
Pr (T > εd) ≤ e3δ2deδεd+δ2εd/2 = eεδd(1+δ/2+3δ/ε)

We let δ = −ε/6 and get Pr (T > εd) ≤ e−ε
2d/18 < 1/(2n4) if C > 90 (recall that d > C lnn

ε2
).

Similarly, we bound Pr (T < −εd). For δ > 0 and α > 1, we have

E
[
e(1−α2)T/2

]
≥ e(α2−1)εd/2 · Pr (T < −εd) .

Therefore,
Pr (T < −εd) ≤ e3δ2de−δεd−δ

2εd/2 ≤ e−εδd(1−3δ/ε).

We let δ = ε/6 and get Pr (T < −εd) ≤ e−ε
2d/12 < 1/(2n4) if C > 60. We conclude that

Pr (|T | > εd) < 1/n4 if C > 90.

Remark 1.3. The algorithm we presented in this note runs in polynomial time but is
relatively slow. In fact, the embedding ϕ can be computed very efficiently using the Fast
Johnson–Lindenstrauss Transform, which was introduced recently by Ailon and Chazelle.
For more information, see N. Ailon and B. Chazelle. Faster dimension reduction. Commun.
ACM 53(2): 97-104 (2010) and N. Ailon, E. Liberty. Almost optimal unrestricted fast
Johnson-Lindenstrauss transform. CoRR, abs/1005.5513.
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