
Convexity
Geometric Methods in Computer Science

Instructor: Yury Makarychev

1 Convexity

Definition 1.1. Let V be a linear (vector) space. A set S ⊆ V is convex if for every two
points x, y ∈ S, the segment [x, y] ≡ {λx+ (1− λ)y : λ ∈ [0, 1]} lies in S.

Consider various examples: a circle, triangle, square, pair of circles. Are these sets
convex?

Claim 1.2. Let {Sα}α be a family of convex sets. Then their intersection T =
⋂

α Sα is also
a convex set.

Proof. Consider two points x, y ∈ T . We have x, y ∈ Sα for every index α. Since each set
Sα is convex, [x, y] ⊆ Sα for every α. Therefore, [x, y] ⊆ T . We conclude that T is also
convex.

Exercise 1. Assume that S and T are convex. Can S ∪ T be convex? Is it necessarily true
that S ∪ T is convex? Can the complement of S be convex? Is it necessarily true that the
complement of S is convex?

Exercise 2. Assume that S is convex. Is it necessarily connected?

2 Convex combinations

Definition 2.1. Consider a set of points v1, . . . , vn ∈ V and a set of non-negative weights
λ1, . . . , λn that add up to 1:

∑n
i=1 λi = 1. Then

∑n
i=1 λi is a convex combination of points

vi with weights λi.
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Note that we consider only finite convex combinations in Definition 2.1. The definition
of convexity can be restated in terms of convex combinations: S is convex if and only if for
every x, y ∈ S every convex combination λ1x+ λ2y ∈ S. In this definition, we consider only
convex combinations involving two points. Can we consider arbitrary convex combinations
instead? Obviously if every convex combination of points in S is in S, then so is every
combination of two points, and thus S is convex. Now we show that if S is convex then all
convex combinations of points from S are in S.

Claim 2.2. Consider a convex set S. Let u =
∑

λivi be a convex combination of points
v1, . . . , vn in S. Then u ∈ S.

Proof. We prove the claim by induction on n. For n = 1, the claim is trivial, as u = v1 ∈ S.
Assuming that the claim holds for n− 1 points, we prove it for n points.

Let µi = λi/(λ1 + · · · + λn−1) = λi/(1 − λn) for i ∈ [n − 1] ≡ {1, . . . , n − 1}. Note that∑n−1
i=1 µi = 1 and all µi ≥ 0. Define

u′ =
n−1∑
i=1

µivi.

Point u′ is a convex combination of n−1 points in S and thus belongs to S, by the induction
hypothesis. Since both points u′ and vn are in S and S is convex, the entire segment [u′, vn]
lies in S. We conclude that u = (1− λn)u

′ + λnvn ∈ [u′, vn] ⊆ S, as required.

3 Convex hull

Now consider an arbitrary (not necessarily convex) subset S of V . We define the convex hull
conv(S) of S as the “smallest” convex set that contains S.

Definition 3.1. Consider a set S ⊆ V . Define its convex hull as

conv(S) =
⋂

T :S⊆T
T is convex

T.

Exercise 3. Prove that

1. conv(S) is convex for every set S

2. conv(S) ⊆ T for every convex set T that contains S

3. conv(S) = S if S is convex

4. conv(S ′) ⊆ conv(S) if S ′ ⊆ S

The following claim provides an alternative characterization of conv(S).
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Claim 3.2.

conv(S) =

{
n∑

i=1

λivi : v1, . . . , vn ∈ S where n ≥ 1 and
n∑

i=1

λi = 1, ∀i : λi ≥ 0

}
Proof. Define T = conv(S) and

T ′ =

{
n∑

i=1

λivi : v1, . . . , vn ∈ S where n ≥ 1 and
n∑

i=1

λi = 1, ∀i : λi ≥ 0

}
.

First, we show that T ′ ⊆ T . Indeed, consider a convex combination u =
∑n

i=1 λivi. We have,
vi ∈ S ⊆ T for all i. Since T is convex, any convex combination of points in T is in T . In
particular, u =

∑n
i=1 λivi ∈ T . We conclude that T ′ ⊆ T .

Now we prove that T ⊆ T ′. As T is a minimal convex set that contains S, it is sufficient
to verify that T ′ contains S and is convex. By the definition of T ′, T ′ contains a trivial
convex combination 1 · u = u for every u ∈ S. Thus, S ⊆ T ′. Now consider two convex
combinations in T ′. By introducing, zero coefficients if necessary, we may assume that both
combinations use the same points v1, . . . , vn.

u1 =
n∑

i=1

µivi

u2 =
n∑

i=1

νivi.

We want to prove that λu1 + (1− λ)u2 ∈ T ′ for every λ ∈ [0, 1]. We have,

λu1 + (1− λ)u2 = λ
n∑

i=1

µivi + (1− λ)
n∑

i=1

νivi =
n∑

i=1

(λµi + (1− λ)νi)vi,

which is a convex combination of points v1, . . . , vn with weights λµi + (1− λ)νi.
1

Example 3.1. The convex hull of k > 1 points in R2 is a convex polygon with at most k
vertices or a segment.

Exercise 4. Answer the questions below.

1. Is it true that the convex hull of a bounded set is necessarily bounded?

2. Is it true that the convex hull of a closed set necessarily closed?

3. Is it true that the convex hull of a compact set is necessarily compact?

4. Is it true that the convex hull of an open set is necessarily open?

Do your answers on the questions above depend on whether the space is finite or infinite
dimensional?

1Exercise: verify that
∑n

i=1 λµi + (1− λ)νi = 1.
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Figure 1: Illustration for Radon’s theorem in R2: there exist two disjoint subsets A and B
of S such that conv(A) ∩ conv(B) ̸= ∅, as long as |S| ≥ 4.

4 Theorems about convex hulls

Theorem 4.1 (Radon’s Theorem). Consider S ⊆ Rd with |S| ≥ d + 2. Then there exist
disjoint subsets A and B of S with conv(A) ∩ conv(B) ̸= ∅ (see Figure 1).

Proof. To simplify the notation, we prove the theorem when S is finite. If S is infinite, we can
choose an arbitrary subset S ′ ⊆ S of size d+2 and apply the theorem to it, obtaining desired
sets A and B. Let v1, . . . , vn be the points in S (where n ≥ d+2). Define v′i = vi⊕1 ∈ Rd+1.
We have at least d + 2 points v′1, . . . , v

′
n in a d + 1 dimensional space. The points must be

linearly dependent. That is, we must have

n∑
i=1

λiv
′
i = 0

for some coefficients λi, some of which are non-zero.

! Note that coefficients λi are not necessarily positive. In general,
∑

i λivi is not a
convex combination.

Rewrite this equation in terms of the original vectors vi.

n∑
i=1

λivi = 0

n∑
i=1

λi = 0

Let A = {vi : λi > 0} and B = {vi : λi < 0}. Then

u ≡
∑
vi∈A

λivi =
∑
vi∈B

(−λi)vi

Λ ≡
∑
vi∈A

λi =
∑
vi∈B

(−λi)

Note that in each of the two expressions for Λ all the terms are positive. In particular, Λ > 0.
Let αi = λi/Λ for vi ∈ A and βi = −λi/Λ for vi ∈ B. We have,

∑
vi∈A αi =

∑
vi∈B βi = 1

4



a

b

cd

e u

Figure 2: An illustration of Carathéodory’s theorem in R2: The point u lies within the
convex hull of five points, a, b, c, d, and e. By Carathéodory’s theorem, u can always be
expressed as a convex combination of at most d+ 1 = 3 of these points. In this case, u is a
convex combination of a, b, and c.

and all coefficients αi and βi are positive. Therefore,

u

Λ
=

∑
i:vi∈A

αivi ∈ conv(A) and u =
∑
i:vi∈B

βivi ∈ conv(B).

We conclude that conv(A) ∩ conv(B) ̸= ∅.

Theorem 4.2 (Caratheódory’s Theorem). Consider S ⊆ Rd. Then every point u ∈ conv(S)
can be expressed as a convex combination of at most d+ 1 points in S.

Proof. Consider a convex combination for u with the smallest number of terms:

u =
n∑

i=1

µivi

where all vi ∈ S. If n ≤ d + 1, then we are done. So we assume that n > d + 1 and then
get a contradiction by providing another convex combination for u with a smaller number
of terms.

Let us apply Radon’s theorem to points v1, . . . , vn. We get two disjoint sets A ⊆ S and
B ⊆ S and positive weights αi and βi such that

w ≡
∑
vi∈A

αivi =
∑
vi∈B

βivi∑
vi∈A

αi =
∑
vi∈B

βi = 1

Now let

µ
(t)
i =


µi − tαi, for vi ∈ A

µi + tβi, for vi ∈ B

µi, otherwise
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We now verify that
∑

µ
(t)
i vi is also a convex combination for u, as long as t is small enough

in absolute value to ensure that all the coefficients µ
(t)
i are non-negative.

n∑
i=1

µ
(t)
i vi =

n∑
i=1

µivi − t
∑
vi∈A

αivi + t
∑
vi∈B

βivi = u− tw + tw = u.

n∑
i=1

µ
(t)
i =

n∑
i=1

µi − t
∑
vi∈A

αi + t
∑
vi∈B

βi = 1− t+ t = 1

We see that for every t,
∑n

i=1 µ
(t)
i vi is indeed a convex combination for u as long as µ

(t)
i ≥ 0

for all i. Our goal now is to choose t so that this is a valid convex combination and at least
one coefficient µ

(t)
i is 0.

?
Question: What t should we use?
Answer: We can use t = minvi∈A

µi

αi
.

Then all µ
(t)
i ≥ 0 and at least one µ

(t)
i = 0. We got a convex combination with fewer than

n non-zero terms, as desired.

Theorem 4.3 (Helly’s Theorem). Consider n ≥ d+1 convex sets S1, . . . , Sn in Rd. Assume
that every d+ 1 of them have a non-empty intersection. Then

⋂n
i=1 Si ̸= ∅.

Proof. The proof is by induction on n. The claim is trivial when n = d+ 1. We prove it for
n > d+ 1, assuming that it holds for n′ = n− 1.

We choose points x1, . . . , xn as follows. Consider the intersection of all sets Si other
than Sj. It is non-empty by the induction hypothesis. Let xj be an arbitrary point in
this intersection

⋂
i:i ̸=j Si. We obtain points x1, . . . , xn. By construction, xi ∈ Sj if i ̸= j.

Observe that if xi ∈ Si for some i then we are done, since then xi lies in all sets Sj, including
j = i. So we assume below that xi /∈ Si for all i.

Now we apply Radon’s theorem to the set of points {xi : 1 ≤ i ≤ n}. We get two disjoint
subsets A and B such that conv(A) ∩ conv(B) ̸= ∅. Choose u ∈ conv(A) ∩ conv(B). We
prove that u ∈

⋂n
i=1 Si or, in other words, u ∈ Si for every i.

Fix some i. We know that xi cannot belong to both A and B, as A and B are disjoint.
Assume without loss of generality that xi /∈ A. All points xj ∈ A are in Si. Therefore,
u ∈ conv(A) ⊆ conv(Si) = Si.

5 Extreme points

Consider a finite set of points in R2. Its convex hull is simply a convex polygon, which is
uniquely determined by its vertices. Informally speaking, the vertices can be regarded as the
most “important” points of the polygon. In higher dimensions, the convex hull is a polytope,
which again is uniquely determined by its vertices. In this section, we generalize the notion
of a vertex to arbitrary convex sets by introducing the concept of extreme points.
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Figure 3: Point x is not an extreme points, since x = a+b
2

for some distinct a, b ∈ S. Point

x′ is an extreme point, since there are no distinct points a′, b′ ∈ S such that x′ = a′+b′

2
.

Definition 5.1 (Minkowski’s definition). We say that x is an extreme point of a convex set
S if there are no distinct points a, b ∈ S such that x = a+b

2
.

Exercise 5. Check that in the definition of an extreme point, we can require that x /∈ (a, b)
for all distinct points a, b ∈ S (where (a, b) is the open interval between a and b).

Theorem 5.2. Let X be an arbitrary set. Then x ∈ conv(X) is an extreme point of conv(X)
if and only if x /∈ conv(X \ {x}).2

Proof. First, assume that x ∈ conv(X \ {x}). We shall prove that x is not an extreme
point of conv(X). That is, we show that there exist a and b such that x ∈ (a, b). Since
x ∈ conv(X \ {x}), we have a convex combination x =

∑n
i=1 αixn where all xi ∈ X \ {x}

and all αi are positive. Because all xi ̸= x, we must have n > 1. Let a =
∑n−1

i=1
αi

1−αn
xn and

b = xn. Clearly, a, b ∈ conv(X \ {x}). Then x = (1− αn)a+ αnb ∈ (a, b), as desired.
Now, assume that x is not an extreme point of conv(X); that is, x = a+b

2
for some

a, b ∈ conv(X). Since a, b ∈ conv(X), each of them is a convex combination of points in X.
We may assume that the same points participate in both convex combinations (but possibly
some coefficients are 0):

a =
n∑

i=1

αixi and b =
n∑

i=1

βixi

If x is not among points x1, . . . , xn then

x =
a+ b

2
=

n∑
i=1

αi + βi

2
xi

is a convex combination of points in X \ {x}. Thus, x ∈ conv(X \ {x}), as required. Now
assume that one of the points xi is x. Without loss of generality, xn = x. Note that αn < 1
and βn < 1, since a ̸= x and b ̸= x, respectively. We have,

n−1∑
i=1

αi + βi

2
xi =

a+ b

2
− αn + βn

2
x =

(
1− αn + βn

2

)
x.

2In particular, x must be in X, as otherwise x ∈ conv(X) = conv(X \ {x}).
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Thus,
n−1∑
i=1

αi + βi

2− αn + βn

xi = x.

We conclude that x is a convex combination of points x1, . . . , xn−1 in X \ {x}.

Exercise 6. Answer the following questions.

1. What is the set of extreme points of the closed unit disc {x ∈ R2 : ∥x∥2 ≤ 1}?

2. What is the set of extreme points of the open unit disc {x ∈ R2 : ∥x∥2 < 1}?

3. What is the set of extreme points of a line in R2.

Exercise 7. Recall the definition of the boundary ∂X of a set X:

∂X = {x ∈ X : Bε(x) \X ̸= ∅ for all ε > 0} where Bε(x) = {y : ∥x− y∥2 < ε}.

Prove that all extreme points of a convex set X lie on the boundary of X.

Exercise 8. A polygon is uniquely determined by the set of its vertices. However, show that
the extreme points of a convex set S do not determine S, in general.

Theorem 5.3 (Minkowski, Krein–Milman). Assume that S is a compact3 convex set in Rd,
then S = conv(X) where X is the set of extreme points of S.

Before we proceed with the proof, we need some auxiliary definitions. For a point x ∈ X,
let Lx = {v : x+ εv ∈ S and x− εv ∈ S for some ε > 0}.

Lemma 5.4. Lx is a linear subspace.

Proof. It is clear from the definition that if v ∈ Lx than so is −v. It is also clear that if
v ∈ Lx then αv ∈ Lx for every α. Now we verify that if u, v ∈ Lx then u+ v ∈ Lx.

Since u ∈ Lx, the segment [x − ε1u, x + ε1u] is in S for some ε1 > 0. Since v ∈ Lx, the
segment [x − ε2v, x + ε2v] is in S for some ε2 > 0. Since S is convex, the parallelogram Π
(including its interior points) with vertices x±ε1u and x±ε2v lies in S. Let ε3 = min(ε1, ε2)/2.
Then x± ε3(u+ v) ∈ Π ⊆ S. We conclude that u+ v ∈ Lx.

We define rankx = dimLx. Note that if x is not an extreme point then x belongs to some
interval (a, b) with distinct endpoints a, b ∈ S. Thus, vector a − b ∈ Lx and consequently
rankx = dimLx ≥ 1. Thus, rankx = 0 only if x is an extreme point of S.4

3Recall that X ⊆ Rd is compact if and only if it is closed and bounded.
4In fact, rankx = 0 if and only if x is an extreme point.
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Proof of Theorem 5.3. Clearly, conv(X) ⊆ conv(S) = S. So we need to prove that S ⊆
conv(X). That is, every point in S is a convex combination of extreme points. We are going
to prove that by induction on rank y. If rank y = 0, then y is an extreme point and thus lies
in conv(X).

Now assume that the induction hypothesis holds for points y with rank y ≤ k − 1 and
prove it for y with rank y = k. Since y is not an extreme point, y = a+b

2
for some distinct

a, b ∈ S. Consider the line ℓ that goes through a and b. Note that that ℓ ∩ S is a closed
(bounded) segment, since S is compact and convex. Denote the endpoints of this segment by
y1 and y2. Then y ∈ (a, b) ⊆ (y1, y2). We show that rank y1 < k and similarly rank y2 < k.

Lemma 5.5. We have,

� Ly1 ⊆ Ly.

� y1 − y2 ∈ Ly1 \ Ly.

Proof. I. Consider v ∈ Ly1 . We have that y1 ± εv ∈ S for some small enough ε > 0. We also
have that y2 ∈ S. Since S is convex, the entire triangle ∆ with vertices y1 + εv, y1 − εv, y2
lies in S. Note that point y lies on the segment (cevian) [y1, y2], which in turn is inside ∆.
We get that

p1 =
∥y − y2∥
∥y1 − y2∥

(y1 + εv) +
∥y − y1∥
∥y1 − y2∥

y2 = y +

(
∥y − y2∥
∥y1 − y2∥

ε

)
v

is a convex combination of y1 + εv and y2 and thus lies inside ∆. Similarly,

p2 = y −
(

∥y − y2∥
∥y1 − y2∥

ε

)
v

lies inside ∆. It follows that p1, p2 ∈ S and hence v ∈ Ly.
II. Recall that a, b ∈ S and y = a+b

2
. Therefore, a− b ∈ Ly. Now, y1 − y2 and a− b are

colinear so y1 − y2 ∈ Ly as well. On the other hand, y1 is an endpoint of the segment S ∩ ℓ.
Therefore, y1 + ε(y1 − y2) /∈ S for every ε > 0. We conclude that y1 − y2 /∈ Ly1 .

We have proved that Ly1 is a proper subset of Ly. Thus, rank y1 = dimLy1 < dimLy =
rank y. Similarly, rank y2 < rank y. By the induction hypothesis, y1, y2 ∈ conv(X). Since
conv(X) is convex, y ∈ [y1, y2] ⊆ conv(X), as required.

6 Separating Hyperplanes

Definition 6.1. Consider two sets A and B in a linear space. We say that an affine
hyperplane H strictly separates A and B if A and B lie on opposite sides of H and A∩H = ∅,
B ∩H = ∅. We call such a hyperplane a strict separating hyperplane.

If A and B lie on opposite sides of H but may share points with H, then we say that H
weakly or non-strictly separates A and B.
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Theorem 6.2. Let p ∈ Rd be a point and C ⊆ Rd be a non-empty closed convex set. Assume
that p /∈ C. Then there is a strict separating hyperplane H between p and C.

Proof. First, we find the point q in C that is closest to p. Why does such a point exist?
Consider the function f(x) = ∥x− p∥2 on C. Note that f is continuous.

If C is compact, then f attains its minimum on C, so we simply define q = argminx f(x).
If C is not compact, let ∆ = infx∈C ∥x− p∥2 and define

C ′ = C ∩ {x : ∥x− p∥ ≤ ∆+ 1}.

Since C ′ is the intersection of two closed sets—C and a closed ball of radius ∆+1—it is also
closed. Moreover, because the ball is bounded, so is C ′. Thus, C ′ is compact. Applying the
argument above to C ′, we obtain the desired point q at distance ∆ from p.

Note that ∥p − q∥2 > 0 because p /∈ C. Now let H be the perpendicular bisector
hyperplane of the segment [p, q]; in other words, H = {x : ∥x−p∥2 = ∥x− q∥2}. Clearly, the
distance from p to H is ∥p − q∥2/2 > 0. Thus, p /∈ H. We claim that H does not intersect
C. Assume to the contrary that there exists r ∈ C ∩H. Consider the triangle with vertices
p, q, and r. Since r ∈ H, ∥p − r∥ = ∥q − r∥. Therefore, the triangle is isosceles and thus
∠pqr < π/2. Since q, r ∈ C, we have [q, r] ⊂ C and thus xt ≡ q + t(r − q) ∈ C for t ∈ [0, 1].
Now

∥p− xt∥2 = ∥p− q∥2 + t2∥r − q∥2 − 2t · ∥p− q∥ · ∥r − q∥ · cos∠pqr
= ∥p− q∥2 − 2t · ∥p− q∥ · ∥r − q∥ · cos∠pqr︸ ︷︷ ︸

>0

+O(t2)

For sufficiently small t > 0, we have ∥p−xt∥2 < ∥p− q∥2, contradicting the assumption that
q is the closest to p point in C.

We conclude that p /∈ H and C2 lies entirely on one side of H. Since the segment [p, q]
intersects H, point p and set C lie on opposite sides of H.

Theorem 6.3. Let C1 ⊆ Rd be a compact convex set and C2 ⊆ Rd be a closed convex set.
Assume that C1 ∩ C2 = ∅ and both sets are not empty. Then there is a strict separating
hyperplane H between C1 and C2.
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Proof sketch. Let f(x) = infy∈C2 ∥x− y∥ be the distance from x ∈ C1 to C2. Function f(x)
is continuous (and, in fact, 1-Lipschitz) and thus attains its minimum on compact set C1.
Let p be the point where it attains its minimum. We use Theorem 6.2 to find a separating
hyperplane H between p and C2. Now the same argument as in Theorem 6.2 shows that C1

does not intersect H.

Exercise 9. Is Theorem 6.3 true if we only require that C1 and C2 be closed convex sets
(that is, we no longer require that C1 be compact).

If we do not require that the hyperplane strictly separate A abd B, then we only need
that both sets are convex and non-empty.

Theorem 6.4. Let A,B ⊆ Rd be non-empty disjoint convex sets. Then there is a hyperplane
H that non-strictly separates A and B.

The proof constructs appropriately defined sequences of compact convex sets Ai and Bi,
applying Theorem 6.2 to each pair (Ai, Bi) to obtain separating hyperplanes Hi, and then
taking the limit of these hyperplanes. We omit the details here.

7 Polar Sets

The Krein–Milman theorem states that a compact convex body is determined by its extreme
points. This is analogous to defining a polygon or polyhedron by specifying its vertices.
However, we can also define a polygon or polyhedron by specifying its facets instead of its
vertices. In fact, this approach is used to define the feasible polytope in a linear program.
Let us generalize this idea to arbitrary convex sets. Consider all closed affine half-spaces H
that contain a given convex set S and their intersection⋂

H:S⊆H

H.

Q: Is this intersection equal to S?
A: The intersection of closed affine half-spaces is a closed set. So if S is not closed, then the
intersection is not equal to S.

Claim 7.1. If S is a closed convex set, then S =
⋂

H:S⊆H H.

Proof. Since all H in the intersection contain S, so does their intersection. On the other
hand, if p /∈ S, then by Theorem 6.2, there is a separating hyperplane P that separates p
and C. Hyperplane P defines a half-space that contains C but not p. We conclude that
p /∈

⋂
H:S⊆H H.

Note that a half-space H can be written as {x : ⟨c, x⟩ ≤ b} for some vector c and scalar
b. Assume for a moment that S contains the origin. Then if H contains S, it also contains
0, and thus b ≥ ⟨c, 0⟩ = 0. Further, it is easy to see that Claim 7.1 holds for S even if we
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Figure 4: A set S and its polar set S◦ (shown separately for clarity).

exclude half-spaces with b = 0, since all hyperplanes from Theorem 6.2 strictly separate p
and S and thus do not go through the origin. The formula for a half-space H with b > 0
can be simplified: H = Hy = {x : ⟨y, x⟩ ≤ 1} where y = c/b. That is,

S =
⋂

y:S⊆Hy

Hy (1)

here we may assume that H0 = Rd also participates in the intersection, even though H0 is
not a half-space.

We conclude that the set S◦ ≡ {y : S ⊆ Hy} uniquely defines S if S is a closed convex
set and 0 ∈ S. We call S◦ the polar set of S. In the following definition of the polar set, we
use that S ⊆ Hy if and only if ⟨x, y⟩ ≤ 1 for all x ∈ S.

Definition 7.2. Consider an arbitrary set S in Euclidean space Rd. The polar set of S is

S◦ = {y : S ⊆ Hy} = {y : ⟨x, y⟩ ≤ 1 for all x ∈ S}.

Note that we defined S◦ for all sets S. However, the definition is mostly useful when S
is a closed convex set containing the origin.

Exercise 10. Find the polar sets of the following sets.

� BR, the closed Euclidean ball of radius R centered at the origin

� {x} where x ∈ Rd

� a half-space Hy

� a regular polygon P centered at the origin

� a cube centered at the origin

Exercise 11. Prove that 0 ∈ S◦ for every set S.

Exercise 12. Let S be an arbitrary set and T be a non-degenerate linear transform of Rd.
Prove that (TS)◦ = (T⊤)−1S◦, where TS ≡ {Tx : x ∈ S}.

12



Now observe that (1) can be written as follows for closed convex sets containing 0:

S =
⋂
y∈S◦

Hy.

On the other hand (for every S),

S◦ = {y : ⟨x, y⟩ ≤ 1 for all x ∈ S} =
⋂
x∈S

{y : ⟨x, y⟩ ≤ 1} =
⋂
x∈S

Hx.

We see the duality between S and S◦. Thus, we have proved the following theorem.

Theorem 7.3. If S is a closed convex set containing 0, then S◦◦ = S.

Let us now prove some other basic properties of S◦.

Claim 7.4. The following properties hold.

1. Set S◦ is a convex closed set for every S.

2. If S ⊆ T then S◦ ⊇ T ◦.

3. (S ∪ T )◦ = S◦ ∩ T ◦.

4. More generally, let {Sα}α be a family of sets in Rd. Then (
⋃

α Sα)
◦ =

⋂
α S

◦
α.

Proof. 1. We have, S◦ =
⋂

x∈S Hx is an intersection of closed convex sets and thus is a closed
convex set itself.

2. We need to prove that
⋂

x∈S Hx ⊇
⋂

x∈T Hx. This inclusion holds since each half-space
that participates in the intersection on the left also participates in one on the right.

3.
(S ∪ T )◦ =

⋂
x∈S∪T

Hx =
(⋂
x∈S

Hx

)
∩
(⋂
x∈T

Hx

)
= S◦ ∩ T ◦.

4. The proof is essentially identical to that of item 3.

Claim 7.5. Assume that S and T are closed convex sets containing the origin. Then

(S ∩ T )◦ = conv(S◦ ∪ T ◦)

Here A denotes the closure of set A. Note that S◦∪T ◦ is generally speaking a non-convex
set. We will study polar sets of non-convex sets in the next section and then prove Claim 7.5.

13



8 Polar Sets of Arbitrary Sets

As we discussed above, polar sets are particularly useful when S is a closed convex set
containing 0. Many properties hold only for such sets (e.g. S = S◦◦ only for such sets). In
this section, we give some properties of polar sets of arbitrary sets.

Claim 8.1. Consider a set S ⊆ Rd. Then

� S◦ = (S ∪ {0})◦

� S◦ = conv(S)◦

� S◦ = (S)◦

In particular, S◦ =
(
conv(S ∪ {0})

)◦
.

Proof. Since S ⊆ S ∪{0}, S ⊆ conv(S), and S ⊆ S, from Claim 7.4, we get S◦ ⊇ (S ∪{0})◦,
S◦ ⊇ conv(S)◦, and S◦ ⊇ S

◦
. So we need to prove that S◦ ⊆ (S ∪{0})◦, S◦ ⊆ conv(S)◦, and

S◦ ⊆ S
◦
.

First, (S ∪ {0})◦ = S◦ ∩ {0}◦ = S◦ ∩Rd = S◦. Then, since Hy is convex, if S ⊆ Hy then
conv(S) ⊆ Hy. Thus,

S◦ = {y : S ⊆ Hy} ⊆ {y : conv(S) ⊆ Hy} = conv(S)◦.

Finally, since Hy is closed, if S ⊆ Hy then S̄ ⊆ Hy, as above we get

S◦ = {y : S ⊆ Hy} ⊆ {y : S̄ ⊆ Hy} = S̄◦.

Claim 8.2. Let S be an arbitrary set in Rd. Then S◦◦ = conv(S ∪ {0}).

Proof. Define Ŝ = conv(S) ∪ {0}. By Claim 8.1, S◦ = Ŝ◦. Now Ŝ is a closed convex set
containing 0. Thus, Ŝ◦◦ = Ŝ. We get,

S◦◦ = (Ŝ◦)◦ = Ŝ◦◦ = Ŝ,

as required.

Proof of Claim 7.5. We apply Claim 7.4, item 3, to sets S◦ and T ◦. We get

(S◦ ∪ T ◦)◦ = S◦◦ ∩ T ◦◦ = S ∩ T.

Thus, (S ∩ T )◦ = (S◦ ∪ T ◦)◦◦ = conv(S◦ ∪ T ◦). Here we used that S◦ ∪ T ◦ contains the
origin.

Exercise 13. Prove that
(S ∩ T )◦ ̸= conv(S◦ ∪ T ◦)

for the following sets S and T :
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x

y

S

T

S ∩ T

� S = {(x, y) : x > 0, y > 0} and T = {(x, y) : x < 0, y > 0}

� S = {(1, y) : y ∈ R} and T = {(x, 1) : x ∈ R}

Exercise 14. Prove that
(S ∩ T )◦ ̸= conv(S◦ ∪ T ◦)

for the following closed convex sets S and T in R2 containing the origin:

S = [−1, 1]× R and T = R× {0}.

Claim 8.3. Let P be a linear subspace of Rd and π be the orthogonal projection on P . Let
S ⊂ Rd. Then

(πS)◦ ∩ P = S◦ ∩ P

if S is a closed convex set containing 0 then

(S ∩ P )◦ ∩ P = π(S◦)

Proof. It is straightforward to verify these identities directly using the definition of the polar
set. However, we will prove them using polar set properties we established above. Consider
P⊥, the orthogonal complement to P . Note that P ◦ = P⊥. Observe that for every set A

conv(πA ∪ P⊥) = conv(A ∪ P⊥) = πA+ P⊥ ≡ {x′ + x′′ : x′ ∈ πA, x′′ ∈ P⊥} (2)

= A+ P⊥ ≡ {x′ + x′′ : x′ ∈ A, x′′ ∈ P⊥}. (3)
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Therefore, (πA ∪ P⊥)◦ = (A ∪ P⊥)◦ = πA + P⊥. We start with proving the first identity.
We apply the statement we just proved with A = S.

(πS)◦ ∩ P = (πS)◦ ∩ (P⊥)◦ = (πS ∪ P⊥)◦
(2)
= (S ∪ P⊥)◦ = S◦ ∩ (P⊥)◦ = S◦ ∩ P.

Now we prove the second identity. Here, we let A = S◦.

(S ∩ P )◦ ∩ P = conv(S◦ ∪ P ◦) ∩ P
(2)
= (π(S◦) + P⊥) ∩ P = π(S◦).
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