
Brunn–Minkowski Inequality and Its Applications
Geometric Methods in Computer Science

Instructor: Yury Makarychev

1 Minkowski Sum

In these lecture notes, we prove the Brunn–Minkowski inequality and the closely related
Prékopa–Leindler inequality, and then use them to derive isoperimetric and measure concen-
tration results. We start by defining standard arithmetic operations – scalar multiplication
and addition – on sets.

Definition 1.1. We define scalar multiplication and addition of sets as follows.

� Scalar Multiplication. Consider a set A ⊆ Rd and a real number c. Define

cA = {cx : x ∈ A} .

� Minkowski Sum Consider two sets A,B ⊆ Rd. Define

A+B = {a+ b : a ∈ A, b ∈ B} .

a square a circle their Minkowski sum

Exercise 1. Check if the following identities hold. If any of them does not hold, find addi-
tional conditions under which it holds.

1. A+B = B + A?

2. (A+B) + C = A+ (B + C)?
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3. c(A+B) = cA+ cB?

4. A+ A = 2A?

Definition 1.2. We will denote the volume of a set A by vol(A).

Exercise 2. (1) Verify that vol(cA) = |c|d vol(A). (2) Let T be a linear transformation on
Rd. Check that vol(TA) = | detT | · vol(A).

2 Brunn–Minkowski Inequality

Theorem 2.1 (Brunn–Minkowski Inequality). Consider two non-empty measurable sets A
and B in Rd. Assume that A+B is also measurable. Then, the following inequality holds.

vol(A+B)1/d ≥ vol(A)1/d + vol(B)1/d. (1)

Remark 2.2. We will not discuss measurability and related issues in this course. Instead,
we will prove the inequality for closed sets A and B, in which case A + B is an Fσ set and
therefore measurable.

Before we proceed with the proof, we will obtain an equivalent “multiplicative” or “di-
mensionless” form of the Brunn–Minkowski inequality. Assume that (1) holds. Let λ ∈ [0, 1].
Then

vol(λA+ (1− λ)B)1/d ≥ vol(λA)1/d + vol((1− λ)B)1/d = λ vol(A)1/d + (1− λ) vol(B)1/d

≥ vol(A)λ/d vol(B)(1−λ)/d

here we used a weighted variant of the AM-GM inequality

λx+ (1− λ)y ≥ xλy1−λ

applied to x = vol(A)1/d and y = vol(B)1/d. The inequality immediately follows from the
concavity of function ln x. We conclude that,

vol(λA+ (1− λ)B) ≥ vol(A)λ vol(B)1−λ. (2)

We now observe that (1) follows from (2) and therefore formulations (1) and (2) are equiv-
alent. Let a = vol(A)1/d and b = vol(B)1/d. Set λ = a/(a + b); then 1− λ = b/(a + b). We
have,

vol(A+B) = vol

(
λ · A

λ
+ (1− λ) · B

1− λ

)
≥ vol

(
A

λ

)λ

vol

(
B

1− λ

)1−λ

=
vol(A)λ vol(B)1−λ

λλd(1− λ)(1−λ)d
=

aλdb(1−λ)d(
a

a+b

)λd ( b
a+b

)(1−λ)d
= (a+ b)d.

Raising both sides to the power 1/d yields (1).
We now turn to the proof of the Brunn–Minkowski inequality. Our goal is to prove it by

induction on d, though, as we will see later, this approach will require a slight revision.
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2.1 Proof of the Brunn–Minkowski Inequality in dimension 1

We begin with the base case d = 1. By truncating sets A and B and then taking a limit,
we may assume that they are compact. Further, note that the volumes of sets A, B and
A+B remain unchanged if we shift A by some a and B by some b. Shifting A and B left by
a = maxA and b = minB, respectively, we may assume that A ⊂ (−∞, 0] and B ⊂ [0,∞),
and further A∩B = {0}. Then A+B ⊃ {0}+B = B and A+B ⊂ A+{0} = A. Therefore,
vol(A+B) ≥ vol(A ∪B) = vol(A) + vol(B). We proved (1) for d = 1.

We now need to prove the inductive step. As is often the case, it is easier to do so
using a stronger induction hypothesis. In fact, we will prove the following Prékopa–Leindler
inequality

Theorem 2.3 (Prékopa–Leindler Inequality). Consider integrable functions f , g, and h :
Rd → R≥0 that satisfy

f(λx+ (1− λy)) ≥ g(x)λh(y)1−λ

for all x, y ∈ Rd and λ ∈ [0, 1]. Then∫
Rd

f(z)dz ≥
(∫

Rd

g(x)dx

)λ(∫
Rd

h(y)dy

)1−λ

If we apply the Prékopa–Leindler inequality to the indicator functions of sets A+B, A,
and B, we will obtain the Brunn–Minkowski inequality.

Proof. We prove the Prékopa–Leindler inequality by induction on d. We show that the base
case d = 1 follows from that for the Brunn–Minkowski inequality. Define

At = Ig(x)≥t = {x : g(x) ≥ t} and Bt = Ih(y)≥t = {y : h(y) ≥ t}.

Note that ∫
R
g(x)dx =

∫ ∞

0

vol(At)dt and

∫
R
h(y)dy =

∫ ∞

0

vol(Bt)dt

Now we check that At + Bt ⊆ If(z)≥t: using the assumption of the theorem, we get for
z ∈ λAt + (1− λ)Bt,

f(z) = f(λx+ (1− λ)y) ≥ g(x)λh(y)1−λ ≥ tλt1−λ = t.

From the Brunn–Minkowski inequality for d = 1, we get∫
f(z)dz ≥

∫ ∞

0

vol(λAt + (1− λ)Bt)dt ≥
∫ ∞

0

λ vol(At) + (1− λ) vol(Bt)dt

= λ

∫
g(x)dx+ (1− λ)

∫
h(y)dy ≥

(∫
g(x)dx

)λ(∫
h(y)dy

)1−λ

.

Now we prove the induction step. We reinterpret functions f , g, and h as functions of
two arguments: the first argument is a point in Rd−1 and the second argument is the last
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coordinate. Further, we first fix first arguments ẑ = λx + (1 − λ)y, x̂ and ŷ of f , g, and
h respectively, and then consider f(ẑ, zd), g(x̂, xd), and h(ŷ, yd) as functions of their second
arguments only. The functions satisfy the assumptions of the Prékopa–Leindler inequality.
Applying the one-dimensional Prékopa–Leindler inequality to them, we get∫

R
f(ẑ, zd)dzd ≥

(∫
R
g(x̂, xd)dxd

)λ(∫
R
h(ŷ, yd)dyd

)1−λ

. (3)

Let us denote three integrals above by F (ẑ), G(x̂), and H(ŷ), respectively:

F (ẑ) =

∫
R
f(ẑ, zd)dzd,

G(x̂) =

∫
R
g(x̂, xd)dxd,

H(ŷ) =

∫
R
h(ŷ, yd)dyd.

Inequality (3) states precisely that functions F , G, and H satisfy the assumptions of the
Prékopa–Leindler inequality in dimension d− 1:

F (λx̂+ (1− λ)ŷ) ≥ G(x̂)λH(ŷ)1−λ.

Applying the inequality, we get∫
Rd

f(ẑ) =

∫
Rd−1

F (ẑ)dẑ ≥
(∫

Rd−1

G(x̂)dx̂

)λ(∫
Rd−1

H(ŷ)dŷ

)1−λ

=

(∫
Rd

g(x)dx

)λ(∫
Rd

h(y)dy

)1−λ

.

3 Log-concave measures

Consider a measure µ on Rd with density p(x). We say that µ is log-concave if log p(x) is a
concave function or, equivalently,

p(λx+ (1− λ)y) ≥ p(x)λp(y)1−λ.

Observe that this condition resembles the one in the assumption of the Prékopa–Leindler
inequality: we obtain this condition by setting f(x) = p(x), g(x) = p(x), and h(y) = p(y) in
the assumption of the Prékopa–Leindler inequality.

Many probability distributions are log-concave. Two important examples are the uniform
distribution on a convex set the multivariate normal distribution.
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Applying the Prékopa–Leindler inequality to functions

f(z) = 1λA+(1−λ)B(z) · p(z),
g(x) = 1A(x) · p(x),
h(y) = 1B(y) · p(y),

we get the following variant of the Brunn-Minkowski inequality for log-concave measures.

Corollary 3.1 (Brunn–Minkowski Inequality for Log-concave Measures). Consider two non-
empty measurable sets A and B in Rd. Let µ be a log-concave measure. Then for every
λ ∈ [0, 1], we have

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

(We assume here that λA+ (1− λ)B is measurable.)

Exercise 3. Check that the additive version of the Brunn–Minkowski inequality does not
necessarily hold for log-concave measures. Specifically, consider the Gaussian measure γ on

R with density p(x) = 1√
2π
e−

x2

2 . Present two sets A and B such that γ(A+B) < γ(A)+γ(B).

4 Applications of the Brunn–Minkowski Inequality

4.1 Brunn’s Principle

Consider a convex set S in Rd and a direction u ̸= 0. For every t ∈ R, let H(t) = {⟨x, u⟩ =
t∥u∥2} be the affine hyperplane orthogonal to u that passes through tu. Define

S(t) = S ∩H(t).

to be the section of S by the hyperplane H(t). Finally, let f(t) denote the (d−1)-dimensional
volume of S(t) (see Figure 4.1).

u

S(t)

tu

t

t

f(t)

Figure 1: A convex body, its section S(t), and the function f(t) = vold−1(S(t)). The volume
of the section f(t) is a log-concave function.
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Theorem 4.1 (Brunn’s Principle). Function f(t) is log-concave. That is, for every s, t ∈ R
and λ ∈ [0, 1], we have

f(λs+ (1− λ)t) ≥ f(s)λf(t)1−λ.

Proof. First, observe that the convexity of S implies that S = λS + (1− λ)S and therefore

S(λs+ (1− λ)t) ⊇ λS(s) + (1− λ)S(t).

We apply the Brunn–Minkowski inequality for (d − 1)-dimensional bodies to the sets S(s)
and S(t) and obtain

f(λs+(1−λ)t) ≥ vold−1(λS(s)+(1−λ)S(t)) ≥ vold−1(S(s))
λ vold−1(S(t))

1−λ = f(s)λf(t)1−λ.

Brunn’s Principle can be easily generalized to k-dimensional sections of a convex body
S. Fix a k-dimensional linear subspace L of Rd. For every point v ∈ L, consider the (d− k)-
dimensional affine subspace of Rd orthogonal to L that passes through v, and let S(v) denote
the section of S by this subspace. Define the function f(v) = vold−k(S(v)). Then f is a
log-concave function on L.

4.2 Isoperimetric Inequality

In this section, we prove the isoperimetric inequality, which asserts that among all sets with
a given volume, the ball minimizes surface area.

Definition 4.2. Consider a set A in Rd. Let B be the unit ball centered at the origin. We
define the surface area of A as

area(A) = lim
t→0

vol(A+ tB)− vol(A)

t
.

Equivalently, let f(t) = vol(A+ tB). Then

area(A) = f ′(0).

Theorem 4.3 (Isoperimetric Inequality). Let A be a non-empty set in Rd and Br be the ball
of the same measure. Then

area(A) ≥ area(Br).

Proof. From the Brunn–Minkowski inequality, we get

(f(t)1/d)′|t=0 = lim
t→0

vol(A+ tB)1/d − vol(A)

t

1/d

≥ lim
t→0

vol(tB)1/d

t
= vol(B)1/d.

On the other hand,

(f(t)1/d)′|t=0 = f ′(0) · f(0)
1
d
−1

d
=

area(A)

d · vol(A)1−1/d
.
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We get,

area(A) ≥ d · vol(A)1−1/d · vol(B)1/d.

Let us compare that with the surface area of the ball Br of volume vol(A). Solving for r, we

get r =
(

vol(A)
vol(B)

)1/d
. The surface area of Br is

vol(Br+t)
′|t=0 = (rd vol(B))′ = drd−1 vol(B) = d

(
vol(A)

vol(B)

) d−1
d

vol(B) = d vol(A)1−1/d vol(B)1/d.

We conclude that
area(A) ≥ area(Br),

as required.

5 Measure Concentration

In this section, we will prove measure concentration inequalities for the unit sphere Sd−1 ≡
{u : ∥u∥2 = 1} in Rd, equipped with the uniform probability measure µ on it.

5.1 Levy’s isoperimetric inequality for the sphere

For a non-empty subset A ⊂ Sd−1, let At denote the set of points on the sphere that are
within Euclidean distance at most t from A:

At = {x ∈ Sd−1 : d(x,A) ≤ t}.

Distances are measured using the Euclidean metric rather than the geodesic metric on the
sphere. Alternatively, we could use the geodesic metric instead; the rest of the discussion
would be the same.

Definition 5.1. A spherical cap is a set of the form cap(h) = {x ∈ Sd−1 : ⟨x, u⟩ ≥ h} for
some direction u ∈ Sd−1 and parameter h ∈ [−1, 1].

Theorem 5.2 (Levy’s isoperimetric inequality). Let A be a non-empty measurable subset of
Sd−1 and C = cap(h) be a spherical cap of the same measure. Then for every t ≥ 0, we have

µ(At) ≥ µ(Ct).

Note that Ct is also a spherical cap.
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u

h

cap(h)

This theorem turns out to be quite useful in applications. While we will not prove it
here, its proof is not particularly difficult; for instance, it can be proved using the two-point
symmetrization transformation. Instead, we will prove a slightly weaker but more convenient
variant of the theorem, which follows from the Brunn–Minkowski inequality.

Warm-up Discussion Consider a random point u = (u1, . . . , ud) on Sd−1 (in other words,
u is a random unit vector in Rd).

Q: What is the distribution of ui for a fixed i, approximately?

To answer this question, imagine that we want to sample a unit vector. How can we do
that? One of the easiest approaches is as follows. Let us generate a random Gaussian vector
g = (g1, . . . , gn) with i.i.d. gi ∼ N (0, 1) and then normalize it. The distribution of ui is the
same as that of gi/∥g∥2. By the law of large numbers,

g21 + · · ·+ g2d
d

a.s.→ E
[
g21
]
= 1.

Therefore, ∥g∥/
√
d → 1 a.s. and

√
dui =

√
dgi

∥g∥2 → gi a.s. That is,
√
dui is approximately

distributed as N (0, 1) when d → ∞.
In particular, we can get an estimate for the measure of cap(t/

√
d):

µ(cap(t/
√
d)) = Pr(ui ≥ t/

√
d) = Pr(

√
dui ≥ t) → 1√

2π

∫ ∞

t

e−x2/2dx.

Plugging in known tail bounds for Gaussian random variables, we get that for t > 0,

e−t2/2

√
2π(t+min(1, 1/t))

≤ lim
t→∞

Pr

(
ui ≥

t√
d

)
= lim

t→∞
Pr

(
ui ≤ − t√

d

)
≤ e−t2/2

√
2π t

.

Let us say A has measure 1/2, the same measure as a half-sphere cap(0). Let δ = t/
√
d.

From Levy’s isoperimetric inequality, we get that

µ(Sd−1 \ Aδ) ≤ µ(St−1 \ cap(0)δ) ≈ µ(Cδ) ≈
e−δ2d/2

√
2π(δ

√
d+ 1)

Unfortunately, this bound provides only an asymptotic estimate of the spherical cap measure
for a fixed t, which significantly limits its applicability.
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x
b√
d

a√
d

x
ba

Figure 2: In high dimensions, the Gaussian measure of the interval [a, b] closely approximates
the area of the slab of the unit sphere between a/

√
d and b/

√
d.

5.2 Quantitative Isoperimetric Inequality on the Sphere

Theorem 5.3. Let µ be the uniform measure on the unit sphere Sd−1 and δ ∈ (0,
√
2).

Consider a subset X of Sd−1 of positive measure. Then

µ({y : d(y,X) ≥ δ}) ≤ e−δ2d/4

µ(X)
.

Proof. Define Y = {y : d(y,X) ≥ δ}. Consider cones C(X) and C(Y ) over X and Y ,
respectively:

C(X) = {λx : x ∈ X and λ ∈ [0, 1]} and C(Y ) = {λy : y ∈ Y and λ ∈ [0, 1]}.

Note that the volume of a cone is proportional to the volume of its base, and Thus

vol(C(X)) = µ(X) vol(B)

vol(C(Y )) = µ(Y ) vol(B).

Let Z = C(X)+C(Y )
2

. Consider a point z ∈ Z. Then z = λ1x+λ2y
2

for some x ∈ X, y ∈ Y , and
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λ1, λ2 ∈ [0, 1]. Let φ = arccos⟨x, y⟩ denote the angle between x and y. Then

∥z∥22 =
λ2
1 + λ2

2 + 2λ1λ2 cosφ

4
≤ max

(
1 + 1 + 2 cosφ

4
,
1 + 1 + 0

4

)
≤ max

(
1 + cosφ

2
,
1

2

)
= max

(
cos2

φ

2
,
1

2

)
.

On the other hand, δ ≤ ∥x− y∥2 = 2 sin φ
2
. Using that sin2 φ

2
+ cos2 φ

2
= 1, we get that

∥z∥22 ≤ max

(
1− δ2

4
,
1

2

)
= 1− δ2

4
.

We conclude that Z ⊆
(
1− δ2

4

)
B, where B is the unit ball. Applying the Brunn–Minkowski

inequality, we get that

vol(Z) ≥
√

vol(C(X)) · vol(C(Y )) =
√

(vol(B)µ(X)) · (µ(Y ) vol(B)) =
√

µ(X)µ(Y ) vol(B).

Thus,

µ(Y ) ≤ vol(Z)2

vol(B)2µ(X)
≤ 1

µ(X)

(
1− δ2

4

)d

≤ e−δ2d/4

µ(X)
.

5.3 Measure Concentration for Lipschitz Functions

Theorem 5.4 (Measure Concentration for Lipschitz Functions). Consider a 1-Lipschitz
function f on the unit sphere Sd−1. That is, assume that |f(x) − f(y)| ≤ ∥x − y∥2 for all
x, y ∈ Sd−1. Let mf be the median of f . Then

Pr(f(X) ≥ mf + δ) ≤ 2e−δ2d/4 and Pr(f(X) ≤ mf − δ) ≤ 2e−δ2d/4

where X is sampled uniformly at random from Sd−1.

Proof. Let X = {x ∈ Sd−1 : f(x) ≤ mf}. By the definition of the median, µ(X) ≥ 1/2. If y
is at distance at most δ from X, then f(y) ≤ mf + δ. Therefore,

µ({y : f(y) ≥ mf + δ}) ≤ µ({y : d(y,X) ≥ δ}) ≤ e−δ2d/4

µ(X)
≤ 2e−δ2d/4.

Similarly,
µ({y : f(y) ≤ mf − δ}) ≤ 2e−δ2d/4.

Corollary 5.5.
Pr (|f(X)−mf | ≥ δ) ≤ 4e−δ2d/4.
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Exercise 4. 1. Use Corollary 5.5 to show

∣∣E [f(X)]−mf

∣∣ ≤√4π

d
.

Hint: Use that

E [f(X)]−mf ≤
∫ ∞

0

Pr(f(X) ≥ mf + t)dt.

2. Show that
Pr (|f(X)− E [f(X)] | ≥ δ) ≤ 6e−δ2d/16.

5.4 Johnson–Lindenstrauss Lemma

In this section, we will prove the Johnson–Lindenstrauss lemma. The lemma states that a
subset of n points in a high-dimensional space Rd can be embedded into a space of dimension
roughly logn

ε2
, while preserving pairwise distances within a factor of 1 ± ε. The lemma has

numerous applications in machine learning, theoretical computer science, and analysis.
For example, consider a set of n items represented as feature vectors in Rd, where the sim-

ilarity between any two items is given by the Euclidean distance between the corresponding
points. In general, the number of features can be very large, requiring storage of nd floating-
point numbers. Alternatively, one could store the matrix of pairwise distances between the
points, but this requires O(n2) space, which is also substantial.

The Johnson–Lindenstrauss lemma allows us to reduce the number of features to k =
O
(
logn
ε2

)
, and thus the storage requirement to O(nk) = O

(
n logn

ε2

)
floating-point numbers.

Furthermore, working with this lower-dimensional representation can speed up algorithms
that process the data – for example, clustering algorithms.

Theorem 5.6 (Johnson–Lindenstrauss Lemma). Consider a set of n points X ⊂ Rd. Let
ε ∈ (0, 1) and k > C lnn/ε2 (where C is a sufficiently large absolute constant). Then there
exists an embedding φ of X into ℓk2 s.t.

(1− ε) ≤ ∥φ(x)− φ(y)∥
∥x− y∥2

≤ (1 + ε). (4)

(that is, the embedding φ is “almost” isometric). Moreover, we can find such embedding in
randomized polynomial time.

We define the embedding φ simply as an appropriately normalized projection on a random
k-dimensional subspace of Rd. Specifically, let H be a random k-dimensional subspace S

of Rd and PS be an orthogonal projection on PS. Then φ =
√

d
k
PS satisfies the required

properties with high probability. We remark that that there are other ways to construct the
random embedding φ; for example, we can use an appropriately normalized k × n matrix
with i.i.d. Gaussian entries or, alternatively, ±1 entries. The analysis relies on the following
claim.
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Claim 5.7. Let v be an arbitrary unit vector. Then ∥φ(v)∥2 ∈ (1− ε, 1+ ε) with probability
at least 1− δ/n2, where δ → 0 as C → ∞.

Before we prove this claim, let us show that it implies the Johnson–Lindenstrauss lemma.
Suppose that X = {v1, . . . , vn}. For i < j, let zij =

vi−vj
∥vi−vj∥2 . According to the claim,

∥φ(zij)∥2 ∈ (1− ε, 1 + ε) with probability at least δ/n2. Consequently,

∥φ(vi)− φ(vj)∥2 = ∥φ(vi − vj)∥2 =
∥∥φ(∥vi − vj∥2zij

)∥∥
2

(5)

= ∥vi − vj∥2 · ∥φ(zij)∥2 ∈ (1± ε)∥vi − vj∥ (6)

with probability at least 1− δ/n2. Applying the union bound, we get that (5) holds for all
pairs i and j simultaneously with probability at least 1− δ, as required.

To prove the claim, let us first fix a unit vector v and consider its projection PSv on a
random k-dimensional subspace S. For the sake of analysis, we also consider the subspace
K spanned by the first k standard basis vectors e1, . . . , ek.

Exercise 5. Show that the following two random variables have the same distribution:

� ∥PSv∥2

� ∥PKu∥2, where u is a random unit vector uniformly distributed on the sphere Sd−1.

Hint consider a random orthogonal transformation T and argue that (1) Tv and u have the
same distribution; (2) S and T−1K have the same distribution.

In light of the exercise, we will analyze the random variable ∥PKu∥2 instead of ∥PSv∥2.
Note that PKu = (u1, . . . , uk). We observe that f(u) = ∥PK(u)∥2 is 1-Lipschitz:∣∣∣∥PK(u)∥2 − ∥PK(v)∥2

∣∣∣ ≤ ∥PK(u)− PK(v)∥2 = ∥PK(u− v)∥ ≤ ∥u− v∥2.

Applying Theorem 5.5 to f , we get

Pr

(∣∣∥f(u)∥ −mf

∣∣ > ε

√
k

d

)
≤ 4e−

ε2k
4 . (7)

We will now approximately compute the median mf of f(u). Directly computing mf is

difficult, so we will compute
√

E [f(u)2] ≈ mf instead. Since u is a unit vector, we have∑d
i=1 u

2
i = ∥u∥22 = 1. Therefore,

∑d
i=1 E [u2

i ] = 1. From symmetry, all terms E [u2
i ] are equal.

Thus, E [u2
i ] =

1
d
for all i. Accordingly,

E
[
∥PK(u)∥22

]
=

k∑
i=1

1

d
=

k

d
.

We conclude that
√

E [f(u)2] =
√

k
d
.
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Exercise 6. Check that
∣∣mf −

√
E [f(u)2]

∣∣ ≤ O(
√
k)

d
. To this end, write

m2
f = E

[
(f(u) + (mf − f(u))2

]
= E

[
f(u)2

]
+ E

[
(mf − f(u))2

]
+ 2E [f(u)(mf − f(u))] .

Then use the Cauchy–Schwarz inequality to bound the last term:

E [f(u)(mf − f(u))] ≤
√
E [f(u)2] ·

√
E [(mf − f(u))2].

Finally, write∣∣m2
f − E

[
f(u)2

]∣∣ ≤ E
[
(mf − f(u))2

]
+
√

E [f(u)2] ·
√
E [(mf − f(u))2].

Now get an estimate for E [(mf − f(u))2] using the approach from Exercise 4.

From the exercise, we get that mf =

√
k+O(

√
k)

d
=

√
k+O(1)√

d
. Plugging in k = C log n/ε2

and mf =
√

k +O(1)/
√
d in (7), we get

Pr
(∣∣∥φ(v)∥2 − 1

∣∣ > ε+O(1/
√
k)
)
= Pr

(∣∣∥φ(v)∥2 − (1 +O(1/
√
k))
∣∣ > ε

)
= Pr

(∣∣∣∥f(u)∥ − √
k +O(1)√

d

∣∣∣ > ε

√
k

d

)
≤ 4e−

C logn
4 =

4

nC
.

Noting that ε+O(1/
√
k) = O(ε), we get the desired claim.
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