
Basic Properties of Metric and Normed Spaces
Geometric Methods in Computer Science

Instructor: Yury Makarychev

1 Definitions and Examples

1.1 Metric and Normed Spaces

Definition 1.1. A metric space is a pair (X, d), where X is a set and d is a function from
X ×X to R such that the following conditions hold for every x, y, z ∈ X.

1. Non-negativity: d(x, y) ≥ 0.

2. Symmetry: d(x, y) = d(y, x).

3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) .

4. d(x, y) = 0 if and only if x = y.

Elements of X are called points of the metric space, and d is called a metric or distance
function on X.

Exercise 1. Prove that condition 1 follows from conditions 2–4.

Occasionally, spaces that we consider will not satisfy condition 4. We will call such spaces
semi-metric spaces.

Definition 1.2. A space (X, d) is a semi-metric space if it satisfies conditions 1-3 and 4 ′:

4 ′. if x = y then d(x, y) = 0.

Examples. Here are several examples of metric spaces.

1. Euclidean Space. Space Rd equipped with the Euclidean distance d(x, y) = ∥x−y∥2.

2. Uniform Metric. Let X be an arbitrary non-empty set. Define a distance function
d(x, y) on X by d(x, y) = 1 if x ̸= y and d(x, x) = 0. The space (X, d) is called a
uniform or discrete metric space.
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3. Shortest Path Metric on Graphs. Let G = (V,E, l) be a graph with positive edge
lengths l(e). Let d(u, v) be the length of the shortest path between u and v. Then
(V, d) is the shortest path metric on G.

4. Tree Metrics. A very important family of graph metrics is the family of tree metrics.
A tree metric is the shortest path metric on a tree T .

5. Cut Semi-metric. Let V be a set of vertices and S ⊂ V be a proper subset of V . Cut
semi-metric δS is defined by δS(x, y) = 1 if x ∈ S and y /∈ S, or x /∈ S and y ∈ S; and
δS(x, y) = 0, otherwise. In general, the space (X, d) is not a metric since d(x, y) = 0
for some x ̸= y. Nevertheless, δS(x, y) is often called a cut metric.

We will discuss balls in metric spaces – a natural analogue of the familiar notion from
Euclidean spaces.

Definition 1.3. Let (X, d) be a metric space, x0 ∈ X and r > 0. The (closed) ball of radius
r around x0 is

Br(x0) = Ballr(x0) = {x : d(x, x0) ≤ r} .

Definition 1.4. A normed space is a pair (V, ∥ · ∥), where V is a linear space (vector space)
and ∥ · ∥ : V → R is a norm on V such that the following conditions hold for every x, y ∈ V .

1. ∥x∥ > 0 if x ̸= 0.

2. ∥x∥ = 0 if and only if x = 0.

3. ∥αx∥ = |α| · ∥x∥ for every α ∈ R.

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (convexity).

Every normed space (V, ∥ · ∥) is a metric space with metric d(x, y) = ∥x− y∥ on V .

Definition 1.5. We say that a sequence of points xi in a metric space is a Cauchy sequence
if

lim
i→∞

sup
j≥i

d(xi, xj) = 0.

A metric space is complete if every Cauchy sequence has a limit. A Banach space is a
complete normed space.

Remark 1.6. Every finite dimensional normed space is a Banach space. However, an in-
finite dimensional normed space may or may not be a Banach space. That said, all spaces
we discuss in this course will be Banach spaces. Further, for every normed (metric) space
V there exists a Banach (complete) space V ′ that contains it such that V is dense in V ′.
Here is an example of a non-complete normed space. Let V be the space of infinite se-
quences a(1), a(2), . . . , a(n), . . . in which only a finite number of terms a(i) are non-zero.
Define ∥a∥ =

∑∞
i=1 |a(i)|. Then (V, ∥ · ∥) is a normed space but it is not complete, and thus

(V, ∥ ·∥) is not a Banach space. To see that, define a sequence ai of elements in V as follows:
ai(n) = 1/2n if n ≤ i and ai(n) = 0, otherwise. Then ai is a Cauchy sequence but it has no
limit in V . Space ℓ1, which we will define in the next section, is the completion of (V, ∥ · ∥).
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1.2 Lebesgue Spaces Lp(X,µ)

In this section, we define Lebesgue spaces, a very important class of Banach spaces. Let
(X,µ) be a measure space. We consider the set of measurable real valued functions on X.
For p ≥ 1, we define the the p-norm of a function f by

∥f∥p =
(∫

X

|f(x)|pdµ(x)
)1/p

.

If the integral above is infinite (diverges), we write ∥f∥p = ∞. Similarly, we define

∥f∥∞ = sup |f(x)|.

Now we define the Lebesgue space Lp(X,µ) (for 1 ≤ p ≤ ∞):

Lp(X,µ) = {f : f is measurable w.r.t. measure µ; ∥f∥p <∞}.

Caveat: The norm ∥f∥p can be equal to 0 for a function f ∈ Lp(X,µ), which is not
identically equal to 0. So formally Lp(X,µ) (as defined above) is not a normed space. The
standard way to resolve this problem is to identify functions that differ only on a set of
measure 0. The norm ∥ · ∥∞ is usually defined as

∥f∥∞ = ess sup
x∈X

|f(x)| = inf{sup
x∈X

|f̃(x)| : f̃(x) = f(x) almost everywhere}.

Examples. Consider several examples of Lp-spaces.

1. Space ℓp. Let X = N, and µ be the counting measure; i.e. µ(S) = |S| for S ⊂ N. The
elements of ℓp are infinite sequences of real numbers a = (a1, a2, . . . ) (which we identify
with maps from N to R) s.t. ∥a∥p < ∞. The p−norm of a sequence a = (a1, a2, . . . )
equals

∥a∥p =

(
∞∑
i=1

|a|p
)1/p

.

2. Space ℓdp. Let X = {1, . . . , d}, and µ be again the counting measure; i.e. µ(S) = |S|
for S ⊂ N. The elements of ℓdp are d-tuples of real numbers a = (a1, a2, . . . , ad) ∈ Rd.
The p−norm of a vector a = (a1, a2, . . . , ad) equals

∥a∥p =

(
d∑

i=1

|a|p
)1/p

.

3. Space Lp[a, b]. Let X = [a, b], and µ be the standard measure on R. The elements
of Lp[a, b] are measurable functions f : [a, b] → R with ∥f∥p < ∞. The p-norm of a
function f equals

∥f∥p =
(∫ b

a

|f(x)|pdx
)1/p

.
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Lemma 1.7. For every 1 ≤ p < q ≤ ∞, we have ℓp ⊂ ℓq and Lq[0, 1] ⊂ Lp[0, 1]. Both
inclusions are proper.

Proof. We consider the case when q < ∞. Let a ∈ ℓp. Let I = {i : |ai| ≥ 1}. Note that I
is a finite set, as otherwise we would have that ∥a∥pp ≥

∑
i∈I |ai|p = ∞. For every i /∈ I, we

have |ai|q < |ai|p. Therefore,

∥a∥qq =
∑
i∈I

|ai|q +
∑
i/∈I

|ai|q ≤
∑
i∈I

|ai|q +
∑
i/∈I

|ai|p ≤
∑
i∈I

|ai|q + ∥a∥pp <∞.

We conclude that a ∈ ℓq.
Now let f ∈ Lq[0, 1]. Let I = {x : |f(x)| ≤ 1}. Note that |f |p < |f |q when x /∈ I, and∫

I
|f(x)|q dx ≤

∫
I
1 dx ≤ 1. Therefore,

∥f∥pp =
∫ 1

0

|f(x)|p dx =

∫
I

|f(x)|p dx+
∫
[0,1]\I

|f(x)|p dx ≤ 1+

∫
[0,1]\I

|f(x)|q dx ≤ 1+∥f∥qq <∞.

We get that f ∈ Lp[0, 1].

Exercise 2. Prove the statement of Lemma 1.7 for q = ∞.

Exercise 3. Let (X,µ) be a measure space with µ(X) < ∞, and 1 ≤ p < q ≤ ∞. Prove
that Lq(X,µ) ⊂ Lp(X,µ). Show that on the other hand Lq(R) ̸⊂ Lp(R).

1.3 Dual Space

Consider a normed space (V, ∥ · ∥). The continuous dual V ∗ of V is the space of continuous
linear functionals ϕ : V → R. That is, V ∗ consists of linear maps ϕ on V for which
supu̸=0

|ϕ(u)|
∥u∥ < ∞. The requirement that ϕ be continuous is crucial when V is infinite

dimensional; however, in finite-dimensional spaces, all linear functionals are continuous, so
this condition becomes redundant.

The dual norm ∥ · ∥∗ on V ∗ is defined as:

∥ϕ∥∗ = sup
u̸=0

|ϕ(u)|
∥u∥

.

The normed space (V ∗, ∥ · ∥∗) is a Banach space.
Let p, q ∈ (1,∞) such that 1/p+1/q = 1. Later in this course, we will show that the dual

of ℓp is ℓq, and vice versa. Similarly, the dual of Lp(X,µ) is Lq(X,µ), and vice versa. The
duals of ℓ1 and L1(X,µ) are ℓ∞ and L∞(X,µ), respectively. However, ℓ1 is not the dual of
ℓ∞, and, in general, L1(X,µ) is not the dual of L∞(X,µ). That said, the finite-dimensional
spaces ℓd1 and ℓd∞ are duals of each other.

We say that a normed space V is reflexive if V = V ∗∗ (or more precisely, if V ∗∗ is
isometrically isomorphic to V ). As mentioned above, the spaces ℓp and Lp(X,µ) are reflexive
for p ∈ (1,∞). However, the spaces ℓ1, ℓ∞, L1(R), and L∞(R) are not. Importantly, all
finite-dimensional normed spaces are reflexive.
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Figure 1: The figure shows the unit balls of ℓ1 (the gray rhombus/square), ℓ4/3 (the brown
curve), ℓ2 (the black circle), ℓ4 (the red curve), and ℓ∞ (the blue square). Since ℓ21 and ℓ2∞
are dual spaces, their unit balls – the rhombus and the square – are polar sets of each other.
Similarly, ℓ24/3 and ℓ24 are duals, so their unit balls (enclosed by the brown and red curves,

respectively) are also polar sets of each other. Finally, ℓ22 is self-dual, and thus its unit ball
– the circle – is its own polar.

1.4 Unit Balls

The unit ball in a normed space (V, ∥ · ∥) is the set of points with norm at most 1:

B = {v ∈ V : ∥v∥ ≤ 1}.

The set B is closed and convex. Moreover, it is centrally symmetric – that is, B = −B –
and contains the origin.

Let V be a finite-dimensional vector space, and let C be a centrally symmetric, closed,
convex body in V . Suppose further that some neighborhood of 0 lies in C. Define the
Minkowski norm ∥ · ∥ associated with C as follows: for u ̸= 0, set

∥u∥ = min{α > 0 : u/α ∈ C} and ∥0∥ = 0.

Then (V, ∥ · ∥) is a normed space; moreover, C is the unit ball of this norm. Thus, in finite-
dimensional spaces, there is a one-to-one correspondence between norms and their unit balls.

Dual Norms and Polarity Consider a (finite-dimensional) Euclidean space V . We iden-
tify the dual space V ∗ with V in the standard way: a vector u ∈ V is associated with the
linear functional u(·) defined by

u(v) = ⟨u, v⟩.

Let ∥ · ∥ be an arbitrary norm on V , and let ∥ · ∥∗ be its dual norm. Then the unit balls B
and B∗ of ∥ · ∥ and ∥ · ∥∗, respectively, are polar sets of each other.
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2 Lyapunov’s, Hölder’s, and Interpolation Inequalities

In this section, we prove a few inequalities that we will need later.

Theorem 2.1 (Lyapunov’s inequality). Let 1 ≤ p < q ≤ ∞. For every random variable α
with finite q-th moment, we have ∥α∥p ≤ ∥α∥q.

Proof. The statement is obvious for q = ∞ since |α| < ∥α∥∞ almost surely. Let us assume
that q < ∞. Let f(x) = xq/p for x ≥ 0. Note that f(x) is a convex function. Let β = |α|p
(β is a random variable). We have

∥α∥qq = E [|α|q] = E
[
|β|q/p

]
= E [f(|β|)]

by Jensen’s Inequality

≥ f(E [|β|]) = (E [|αp|])q/p .

We conclude that ∥α∥q ≥ ∥α∥p as required.

We now state Hölder’s inequality. This fundamental result establishes that the ∥ · ∥p and
∥ · ∥q norms are dual to each other when 1/p+ 1/q = 1.

Theorem 2.2 (Hölder’s Inequality). Assume that 1/p+ 1/q = 1. Then for every a, b ∈ Rd.

⟨a, b⟩ ≤ ∥a∥p · ∥b∥q

Proof. Fix some b ̸= 0. Consider the function f(a) = ⟨a, b⟩ on the manifoldM = {a : ∥a∥pp =
1}. Since M is compact, f attains its maximum on M at some point a.

At the maximizer a, the gradient ∇f is orthogonal to the tangent space to M . Since M
is the level set of the function g(a) = ∥a∥pp =

∑
|ai|p, it follows that ∇f = b is colinear with

∇g = (p|a1|p−1 sgn a1, . . . , p|ad|p−1 sgn ad). Thus, for some t > 0,

|bi| = t|ai|p−1 for all i.

Therefore,
|ai||bi| = t|ai|p.

Summing over i, we get ∑
i

aibi ≤
∑
i

|ai||bi| = t
∑
i

|ai|p = t.

On the other hand, using that 1/p+ 1/q = 1, we get

∥b∥qq =
∑
i

|bi|q =
∑
i

tq|ai|(p−1)q = tq
∑
i

|ai|p = tq.

We conclude that t = ∥b∥q, and hence

⟨a, b⟩ ≤ t = ∥a∥p∥b∥q.

This proves Hölder’s inequality for vectors a with ∥a∥p = 1. The general case follows by
homogeneity.
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Exercise 4. For a given a ∈ Rd, define b as follows: bi = |ai|p/q sgn ai. Show that ⟨a, b⟩ =
∥a∥p∥b∥q. Conclude that

∥b∥q = ∥b∥∗p ≡ sup
b̸=0

⟨a, b⟩
∥a∥p

.

Theorem 2.3 (Interpolation Inequality). Let 1 ≤ p < r < q ≤ ∞. Define p̂ = 1/p, q̂ = 1/q,
r̂ = 1/r,

α =
r̂ − q̂

p̂− q̂
and β =

p̂− r̂

p̂− q̂
.

∥a∥r ≤ ∥a∥αp · ∥a∥βq
for every a ∈ Rd.

Remark 2.4. Weights α and β are chosen so that r̂ = αp̂+ βq̂ and α + β = 1.

Proof. Note that α + β = 1 and r̂ = αp̂+ βq̂ (that is, r̂ is a convex combination of p̂ and q̂
with weights α and β). Let p′ = p

αr
and q′ = q

βr
. Then 1/p′+1/q′ = r ·(αp̂)+r ·(βq̂) = rr̂ = 1

∥a∥rr =
d∑

i=1

|ai|r =
d∑

i=1

|ai|αr · |ai|βr
Hölder

≤

(
d∑

i=1

(|ai|αr)p
′

)1/p′

·

(
d∑

i=1

(
|ai|βr

)q′)1/q′

=

(
d∑

i=1

|ai|p
)1/p′

·

(
d∑

i=1

|ai|q
)1/q′

= ∥a∥p/p′p · ∥a∥q/q′q = ∥a∥αrp · ∥a∥βrq

Therefore,
∥a∥r ≤ ∥a∥αp · ∥a∥βq

Corollary 2.5. Let 1 ≤ p < r ≤ ∞. For every a ∈ Rd, we have

∥a∥r ≤ ∥a∥p ≤ d1/p−1/r∥a∥r.

Proof. We apply the interpolation inequality with q = ∞. Then q̂ = 0 and thus α = p/r,
β = 1− p/r. We have

∥a∥r ≤ ∥a∥p/rp ∥a∥1−p/r
∞ ≤ ∥a∥p/rp ∥a∥1−p/r

p = ∥a∥p.

On the other hand, let ξ be a random coordinate of a chosen uniformly at random. Then,

∥a∥p
d1/p

=

(
d∑

i=1

|ai|p

d

)1/p

≡ ∥ξ∥p
Lyapunov’s Ineq.

≤ ∥ξ∥r =

(
d∑

i=1

|ai|r

d

)1/r

=
∥a∥r
d1/r

.

Therefore, ∥a∥p ≤ d1/p−1/r∥a∥r.
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3 Metric Embeddings

Consider two metric spaces (X, dX), (Y, dY ), and a map f : X → Y . We say that f : X → Y
is a Lipschitz map if there is a number C such that

dY (f(x1), f(x2)) ≤ CdX(x1, x2) for all x1, x2,∈ X.

The Lipschitz constant ∥f∥Lip of f is the minimum C such that this inequality holds.
We say that a bijective map φ : X → Y is an isometry if for every x1, x2 ∈ X,

dY (φ(x1), φ(x2)) = dX(x1, x2). We say that an injective map φ : X → Y is an isomet-
ric embedding if φ is an isometry between X and φ(X) (the image of X under φ).

The distortion of a map f : X → Y equals ∥f∥Lip · ∥f−1∥Lip where f−1 is the inverse map
from f(X) to X.

Exercise 5. Prove that f has distortion at most D if and only if there is a number c > 0
such that

c · dX(x1, x2) ≤ dY (x1, x2) ≤ cD · dX(f(x1), f(x2)) for every x1, x2 ∈ X.

Exercise 6. Prove the following statements.

1. An isometric embedding has distortion 1.

2. Let f be a Lipschitz map from X to Y and g be a Lipschitz map from Y to Z then
h = g ◦ f is a Lipschitz map from X to Z and ∥h∥Lip ≤ ∥f∥Lip · ∥g∥Lip.

3. Let f be an embedding of X into Y and g be an embedding of Y into Z then the
distortion of h = g ◦ f is at most the product of distortions of f and g.

4 Embeddings into Lp spaces

Theorem 4.1. Every finite metric subspace (X, d) embeds isometrically into ℓn∞ for n = |X|.

Proof. Denote the elements of X by x1, x2, . . . , xn. Now define the embedding φ : X → ℓn∞
as follows

φ : x 7→ (d(x1, x), d(x2, x), . . . , d(xn, x)).

We claim that φ is an isometric embedding. That is,

∥φ(xi)− φ(xj)∥∞ = d(xi, xj).

First, we prove that ∥φ(xi) − φ(xj)∥∞ ≤ d(xi, xj). We need to show that all coordinates
of the vector φ(xi) − φ(xj) are bounded by d(xi, xj) in the absolute value. Indeed, the
k-th coordinate of φ(xi) − φ(xj) equals d(xk, xi) − d(xk, xj). From the triangle inequalities
for xi, xj and xk, it follows that |d(xk, xi) − d(xk, xj)| ≤ d(xi, xj). Now, we verify that
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∥φ(xi) − φ(xj)∥∞ ≥ d(xi, xj). Note that ∥φ(xi) − φ(xj)∥∞ ≥ |d(xk, xi) − d(xk, xj)| (the
absolute value of the k-th coordinate) for every k. In particular, this inequality holds for
k = i. That is,

∥φ(xi)− φ(xj)∥∞ ≥ |d(xi, xi)− d(xi, xj)| = d(xi, xj).

Theorem 4.2. Let p ∈ [1,∞). Metric space ℓd2 (Euclidean d-dimensional space) embeds
isometrically into Lp(X,µ) for some space X.

Proof. Let X = ℓd2 and µ = γ be the Gaussian measure on X = ℓd2 (µ is the probability

measure on X with density e−∥x∥2/2
/
(2π)d/2). Recall that the elements of Lp(ℓ

d
2, γ) are

functions on ℓd2. Let M =
(∫

ℓd2
|x1|p dγ(x)

)1/p
. We construct an embedding φ that maps

every v ∈ ℓd2 to a function fv defined as follows:

fv(x) =
⟨v, x⟩
M

.

We prove that the embedding is an isometry. Consider two vectors u and v. Let w = u− v,
and e = w/∥w∥2. We have,

∥φ(u)− φ(v)∥pp =
∫
ℓd2

∣∣∣∣⟨u, x⟩M
− ⟨v, x⟩

M

∣∣∣∣p dγ(x) = 1

Mp

∫
ℓd2

|⟨u− v, x⟩|p dγ(x)

=
1

Mp

∫
ℓd2

|⟨∥w∥ e, x⟩|pdγ(x) = 1

Mp
∥w∥p

∫
ℓd2

|⟨e, x⟩|pdγ(x)

Consider a coordinate frame in which the x1-axis is parallel to the vector e (i.e. vector e has
coordinates (1, 0, . . . , 0)). Then |⟨e, x⟩| = |x1|. We get

∥φ(u)− φ(v)∥p =
∥w∥2
M

(∫
ℓd2

|x1|pdµ(x)

)1/p

= ∥w∥2 = ∥u− v∥2.

We proved that the map φ is an isometry.

We showed that every finite subset S of ℓd2 embeds isometrically into space Lp(X,µ). Can
we embed S into a “simpler” space ℓNp (for some N)? We will see that all spaces Lp(X,µ)
(of sufficiently large dimension) have essentially the same finite metric subspaces. Therefore,
if a metric space embeds into some Lp(X,µ), then it also embeds into ℓNp for some N .

Theorem 4.3. Let S be a finite subset of Lp(Z, µ), n = |S|, and N =
(
n
2

)
+ 1. Then S

isometrically embeds into ℓNp .
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Proof. Consider the linear space M of all symmetric n × n matrices with zeros on the
diagonal. The dimension of M is

(
n
2

)
. Consider a map f : Rn → M defined as follows. The

map f sends a vector u ∈ Rn to the matrix A = (aij) with entries aij = |ui − uj|p. Clearly,
f(v) ∈ M for every v ∈ Rn. Let B = f(Rn) ≡ {f(u) : u ∈ Rn} and C = conv(B).

For every metric space (S, d) on a set S = {s1, s2, . . . , sn}, we define a matrix F S by
F S
ij = d(si, sj)

p. The theorem follows from the following two lemmas.

Lemma 4.4. Suppose that S = {s1, . . . , sn} ⊂ Lp(Z, µ) then F
S ∈ C.

Proof. Recall that each element si is a function from Z to R. Let σ(z) = (s1(z), . . . , sn(z))
for every z ∈ Z. We have,

F S
ij = d(si, sj)

p =

∫
Z

|si(z)− sj(z)|pdµ(z) =
∫
Z

fij(σ(z))dµ(z).

Therefore, F S =
∫
Z
f(σ(z))dµ(z). Since f(σ(z)) ∈ B ⊂ C for every z ∈ Z, we conclude that

F S ∈ C.

Lemma 4.5. Consider a finite metric space S = {s1, . . . , sn}. Suppose that F S ∈ C. Then
S embeds into ℓNp , where N =

(
n
2

)
+ 1.

Proof. By the Carathéodory theorem, every point in the cone C can be expressed as a sum
of at most dimM+ 1 = N points in B. In particular, we can write

F S =
N∑
k=1

b(k) =
N∑
k=1

f(x(k)),

for some b(1), . . . , b(N) ∈ B and some x(k) ∈ f−1(b(k)) (xi is a preimage of b(k)). By the
definition of F S, we have

d(si, sj)
p = F S

ij =
N∑
k=1

fij(x
(k)) =

N∑
k=1

|x(k)i − x
(k)
j |p. (1)

We define the embedding φ of S to ℓNp :

φ(si) = (x
(1)
i , x

(2)
i , . . . , x

(N)
i ).

Note that equation (1) says that d(si, sj)
p = ∥φ(si) − φ(sj)∥pp, and therefore d(si, sj) =

∥φ(si)− φ(sj)∥p. We conclude that φ is an isometric embedding.

Corollary 4.6. Suppose that S is a subset of ℓd2. Then S isometrically embeds into ℓNp ,

where N =
(|S|

2

)
+ 1.
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Exercise 7. In our proof, we used the Carathéodory theorem for arbitrary convex sets: every
point in the convex hull of S ⊂ Rd is a convex combination of at most d + 1 points from
S. Show that if the convex hull conv(S) of S is a cone, then every point conv(S) is a
linear combination, with positive coefficients, of at most d points in S. Conclude that in the
statement of Theorem 4.3 we can replace N =

(
n
2

)
+ 1 with N =

(
n
2

)
.

Definition 4.7. Let cp(X) be the least distortion1 with which a finite metric space (X, d)
embeds into ℓp.

Theorem 4.8. For every finite metric space X and every p ∈ [1,∞], we have 1 = c∞(X) ≤
cp(X) ≤ c2(X).

Proof. The inequality 1 = c∞(X) ≤ cp(X) follows from Theorem 4.1. Let f be an embedding
of X into ℓ2(X) with distortion c2(X). By Corollary 4.6, there is an isometric embedding g
of f(X) ⊂ ℓ2 into ℓp. Then map g ◦ f is an embedding of X into ℓp with distortion at most
c2(X). We conclude that cp(X) ≤ c2(X).

5 Embeddings of Normed Spaces and the Banach–Mazur

Distance

Consider two normed spaces (U, ∥ · ∥U) and (V, ∥ · ∥V ). Let f be a linear map between U and
V . What is the Lipschitz norm of f? It is equal

sup
x,y∈U
x̸=y

∥f(x)− f(y)∥V
∥x− y∥U

by linearity of f
= sup

x,y∈U
x ̸=y

∥f(x− y)∥V
∥x− y∥U

= sup
z∈U
z ̸=0

∥f(z)∥V
∥z∥U

.

Definition 5.1. The operator norm of f is

∥f∥ ≡ ∥f∥op ≡ ∥f∥U→V = sup
z∈U
z ̸=0

∥f(z)∥V
∥z∥U

.

The above computation shows that the Lipschitz norm of a linear operator equals its
operator norm.

Let U and V be two d-dimensional normed spaces. The Banach-Mazur distance between
them is

dBM(U, V ) = min
φ:U→V

∥φ∥∥φ−1∥,

where the minimum is over non-degenerate linear maps φ : U → V

Exercise 8. Consider two normed spaces U and V . Let BU and BV be their unit balls.
Prove that there exists a linear map φ such that BV ⊆ φ(BU) ⊆ αBV where α = dBM(U, V ).
Further, if BV ⊆ φ(BU) ⊆ αBV for some α then dBM(U, V ) ≤ α.

11
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Figure 2: The figure shows the unit ball Bℓ2∞ (the smaller square) and a copy of it scaled by
α = 21/4 (the larger square). The red curve encloses a copy of the unit ball of ℓ24, also scaled
by α. The inclusion Bℓ2∞ ⊆ αBℓ24

⊆ αBℓ2∞ demonstrates that the Banach–Mazur distance

between ℓ2∞ and ℓ24 is at most 21/4.

The Banach-Mazur distance is a distance in the following sense.

Claim 5.2. The Banach–Mazur distance satisfies the following properties.

� dBM(U,U) = 1

� dBM(U, V ) ≥ 1

� dBM(U, V ) · dBM(V,W ) ≥ dBM(U,W )

Theorem 5.3. dBM(ℓdp, ℓ
d
2) = d|1/p−1/2|

Proof. First we show that dBM(ℓdp, ℓ
d
2) ≤ d|1/p−1/2|. To this end, consider the identity map

between ℓdp and ℓ2d and upper bound its distortion. If p ∈ [1, 2], we have ∥a∥2 ≤ ∥a∥p ≤
d1/p−1/2∥a∥2. Thus the identity map from (Rd, ∥ · ∥p) to (Rd, ∥ · ∥2) has distortion at most
d1/p−1/2. Similarly, if p ∈ [2,∞], we have ∥a∥p ≤ ∥a∥2 ≤ d1/2−1/p∥a∥p. Thus the identity
map from (Rd, ∥ · ∥p) to (Rd, ∥ · ∥2) has distortion at most d1/2−1/p.

Discussion Now we need to prove that every linear map φ : ℓdp → ℓd2 has distortion at least

d|1/2−1/p|. Consider the hypercube C = {−1, 1}d ⊂ ℓdp. We will prove that even restricted

to C, φ has distortion at least d|1/2−1/p|. To gain some intuition, assume that p = 1 and
φ = id : ℓd1 → ℓd2. How does φ distort the distances between the vertices of the hypercube?

� φ = id preserves the lengths of the edges of C: if u, v ∈ C differ in exactly one
coordinate then ∥φ(u)− φ(v)∥2 = ∥u− v∥1 = 2. Therefore, ∥φ∥ ≥ ∥φ(u)−φ(v)∥2

∥u−v∥1 ≥ 1.

1A simple compactness argument shows that there is an embedding with the least possible distortion.
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� φ contracts the diagonals of C by a factor of
√
d: for u ∈ C and u′ = −u, we have

∥u− u′∥1 = 2d and ∥φ(u)− φ(u′)∥2 = 2
√
d. Therefore, ∥φ−1∥ ≥ ∥u−u′∥1

∥φ(u)−φ(u′)∥2 ≥
√
d.

We see that the distortion of φ is at least ∥φ∥ · ∥φ−1∥ ≥ 1 ·
√
d =

√
d.

Now consider an arbitrary non-degenerate linear map φ and arbitrary p ∈ [1,∞]. The
example above suggests that we should examine how φ distorts edges and diagonals of C.
However, it is not sufficient to look at a single edge or single diagonal. Instead, we compute
how φ distorts edges and diagonals on average. First, we look at the edges. Choose a random
coordinate i ∈ {1, . . . , d} uniformly at random. Then independently choose a random vertex
u of C uniformly at random. Let v ∈ C be the vertex that differs from C only in coordinate
i. Then u − v = 2ei or u − v = −2ei. We have ∥φ(u) − φ(v)∥2 ≤ ∥φ∥ · ∥u − v∥p (always).
Therefore,

∥φ∥2 ≥ E
[
∥φ(u)− φ(v)∥22

∥u− v∥2p

]
= E

[
∥2φ(ei)∥22
∥2ei∥2p

]
= E

[
∥φ(ei)∥22

]
=

1

d

d∑
j=1

∥φ(ej)∥22 (2)

Similarly, ∥u−v∥p ≤ ∥φ−1∥·∥φ(u)−φ(v)∥2 and thus E
[
∥u− v∥2p

]
≤ ∥φ−1∥2·E [∥φ(u)− φ(v)∥22].

We have,

∥φ−1∥2 ≥
E
[
∥u− v∥2p

]
E [∥φ(u)− φ(v)∥22]

=
E
[
∥2ei∥2p

]
E [∥2φ(ei)∥22]

=
1

E [∥φ(ei)∥22]
=

d∑d
j=1 ∥φ(ej)∥22

. (3)

Now let u be a random vertex of C and u′ = −u. Note that all coordinates u1, . . . , ud of
u are i.i.d. Bernoulli {±1} random variables. Also, u =

∑d
j=1 ujej and therefore φ(u) =∑d

j=1 ujφ(ej). Write,

E
[
∥φ(u)∥22

]
= E

[∥∥ d∑
j=1

ujφ(ej)
∥∥2
2

]
= E

[ ∑
1≤j,j′≤d

⟨ujφ(ej), uj′φ(ej′)⟩

]
=

∑
1≤j,j′≤d

E [ujuj′ ] · ⟨φ(ej), φ(ej′)⟩.

Since all random variable u1, . . . , ud are independent, E [uj] = 0, and u2j = 1 (always), we
have

E [ujuj′ ] =

{
1, if j = j′

0, otherwise

We conclude that

E
[
∥φ(u)∥22

]
=

d∑
j=1

∥φ(ej)∥22.

As above, we have

∥φ∥2 ≥ E
[
∥φ(u)− φ(u′)∥22

∥u− u′∥2p

]
= E

[
∥2φ(u)∥22
∥2u∥2p

]
=

∑d
j=1 ∥φ(ei)∥2

d2/p
. (4)
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Similarly,

∥φ−1∥2 ≥ d2/p∑d
j=1 ∥φ(ej)∥2

. (5)

If p ∈ [1, 2], multiplying inequalities (2) and (5), we get ∥φ∥2∥φ−1∥2 ≥ d2/p

d
= d2/p−1.

Thus, the distortion of φ is at least d1/p−1/2, as required. If p ∈ [2,∞], multiplying inequalities
(3) and (4), we get ∥φ∥2∥φ−1∥2 ≥ d

d2/p
= d1−2/p. Thus, the distortion of φ is at least d1/2−1/p,

as required.

Using Theorem 5.3 and Claim 5.2 (part 3), we get for 1 ≤ p ≤ q ≤ 2

d1/p−1/2 = dBP (ℓ
d
p, ℓ

d
2) ≤ dBM(ℓdp, ℓ

d
q) · dBM(ℓdq , ℓ

d
2) = d1/q−1/2 · dBM(ℓdq , ℓ

d
2).

Therefore,

dBM(ℓdq , ℓ
d
2) ≥

d1/p−1/2

d1/q−1/2
= d1/p−1/q.

On the other hand, the distortion of the identity map from ℓdp to ℓdq is at most d1/p−1/q. We

conclude that dBM(ℓdp, ℓ
d
q) = d1/p−1/q. The same argument shows that dBM(ℓdp, ℓ

d
q) = d|1/p−1/q|

when p, q ∈ [2,∞]. We obtain the following corollary.

Corollary 5.4. We have,

� dBM(ℓdp, ℓ
d
q) = d|1/p−1/q| if p, q ∈ [1, 2]

� dBM(ℓdp, ℓ
d
q) = d|1/p−1/q| if p, q ∈ [2,∞]

In the proof of Theorem 5.3, we implicitly used the notions of type and cotype of a Banach
space; more precisely, we looked at the type-2 constant T2(ℓ

d
p) of space ℓ

2
p with p ∈ [1, 2] and

cotype-2 constant C2(ℓ
d
q) of space ℓ

d
q with q ∈ [2,∞]. We now present the general definitions

of type and cotype.

Definition 5.5. A Banach space (V, ∥ · ∥) has type p ∈ [1, 2] if for some C > 0 and every
vectors v1, . . . , vn, the following inequality holds:

E
[∥∥∥ n∑

i=1

δivi

∥∥∥p] ≤ Cp

n∑
i=1

∥vi∥p,

where δ1, . . . , δn are independent unbiased {±1} random variables. The smallest constant C
for which the inequality holds is called the type-p constant of (V, ∥ · ∥). We will denote it by
Tp(V ). Similarly, we define the the cotype of a Banach space. (V, ∥ · ∥) has cotype q ∈ [2,∞]
if for some C > 0 and every vectors v1, . . . , vn, the following inequality holds:

n∑
i=1

∥vi∥q ≤ Cq E
[∥∥∥ n∑

i=1

δivi

∥∥∥q].
The smallest constant C for which the inequality holds is called the cotype-q constant of
(V, ∥ · ∥). We will denote it by Cq(V ).
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Exercise 9. Prove that ℓdp has type p with Cp(ℓ
d
p) = 1 for p ∈ [1, 2] and ℓq has cotype q with

Cq(ℓ
d
q) = 1 for q ∈ [2,∞]. First reduce the problem to the one-dimensional case. Then prove

the statement for n = 2. Finally, use simple induction to get it for all n.

Corollary 5.4 tells us what the Banach-Mazur distance between ℓdp and ℓdq is when either
both p and q are greater than 2 or both are smaller than 2. What happens when one of them
is smaller than 2 and the other one is greater than 2? In that case, the distortion of the
identity map is d1/p−1/q as in the discussion above. However, the identity map is no longer
optimal. There exists a map between ℓdp and ℓdq with a smaller distortion!

As an illustration, consider first the case p = 1 and q = ∞. Further, let us assume that
there is d× d Hadamard matrix H = Hd – a matrix with ±1 entries such that HH⊤ = dId.
In particular, such a matrix is known to exist if d is a power of 2. Note that 1√

d
H is an

orthogonal matrix and thus ∥H∥2→2 = ∥H⊤∥2→2 =
√
d. Matrix H defines a linear map from

ℓd1 to ℓd∞. Make the following observations:

∥H∥1→∞ = max
i,j

|Hij| = 1

∥H⊤∥∞→1 ≤ ∥id∥∞→2∥H⊤∥2→2∥id∥2→1 = d
1
2
− 1

∞ ·
√
d · d

1
1
− 1

2 = d
3
2

∥H∥1→∞ · ∥H−1∥∞→1 = ∥H∥1→∞ · 1
d
∥H⊤∥∞→1 ≤

√
d.

We conclude that dBM(ℓd1, ℓ
d
∞) ≤

√
d.

Exercise 10. Let M be an a× b matrix. Denote its i-th row by Mi⋆ and its j-th column by
M⋆j. Let r ∈ [1,∞] and r̂ = r

r−1
(then 1/r + 1/r̂ = 1). Prove that

∥M∥1→r = max
j

∥M⋆j∥r

∥M∥r→∞ = max
i

∥Mi⋆∥r̂

In particular, since all entries in H are ±1, |H|1→q = d1/q and |H|p→∞ = d1−1/p.

Using this exercise, prove that dBM(ℓdp, ℓ
d
q) ≤

√
d for arbitrary p, q ∈ [1,∞].

Fact 5.6. For 1 ≤ p ≤ 2 ≤ q ≤ ∞, we have

dBM(ℓdp, ℓ
d
q) = Θ(dmax(1/p−1/2,1/2−1/q)).

One can ask if there is a non-linear bijection between ℓdp and ℓ
d
q with a smaller distortion.

The answer is negative. We omit the details here. However, one way to prove this is
as follows. Consider a non-linear map φ : ℓdp → ℓqp with distortion D. Note that φ is
Lipschitz (as otherwise, it would have an infinite distortion). By Rademacher’s theorem,
every Lipschitz map from Rd to Rd is differentiable almost everywhere. Let x be any point
where φ is differentiable. Consider the differential of dxφ of φ at x. It is not hard to verify
that linear map ψ = dxφ : ℓdp → ℓqp has distortion at most D.
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Fact 5.7 (John Ellipsoid or Löwner–John Ellipsoid). For every convex centrally-symmetric
set S ⊂ Rd that contains a neighborhood of the origin, there exists an ellipsoid E centered at
the origin such that E ⊆ S ⊆

√
d · E. Specifically, one may choose (a) E to be the maximum

volume ellipsoid inside S or (b)
√
d · E to be the minimum volume ellipsoid containing S.

Equivalently, let ∥ · ∥ be an arbitrary norm in Rd. Then

dBM((Rd, ∥ · ∥), ℓd2) ≤
√
d.
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