Basic Properties of Metric and Normed Spaces

Geometric Methods in Computer Science

Instructor: Yury Makarychev

1 Definitions and Examples

1.1 Metric and Normed Spaces

Definition 1.1. A metric space is a pair (X,d), where X is a set and d is a function from $X \times X$ to \mathbb{R} such that the following conditions hold for every $x, y, z \in X$.

- 1. Non-negativity: $d(x,y) \ge 0$.
- 2. Symmetry: d(x,y) = d(y,x).
- 3. Triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$.
- 4. d(x,y) = 0 if and only if x = y.

Elements of X are called points of the metric space, and d is called a metric or distance function on X.

Exercise 1. Prove that condition 1 follows from conditions 2-4.

Occasionally, spaces that we consider will not satisfy condition 4. We will call such spaces semi-metric spaces.

Definition 1.2. A space (X, d) is a semi-metric space if it satisfies conditions 1-3 and 4':

$$4'$$
. if $x = y$ then $d(x, y) = 0$.

Examples. Here are several examples of metric spaces.

- 1. **Euclidean Space.** Space \mathbb{R}^d equipped with the Euclidean distance $d(x,y) = ||x-y||_2$.
- 2. Uniform Metric. Let X be an arbitrary non-empty set. Define a distance function d(x,y) on X by d(x,y) = 1 if $x \neq y$ and d(x,x) = 0. The space (X,d) is called a uniform or discrete metric space.

- 3. Shortest Path Metric on Graphs. Let G = (V, E, l) be a graph with positive edge lengths l(e). Let d(u, v) be the length of the shortest path between u and v. Then (V, d) is the shortest path metric on G.
- 4. **Tree Metrics.** A very important family of graph metrics is the family of *tree metrics*. A tree metric is the shortest path metric on a tree T.
- 5. Cut Semi-metric. Let V be a set of vertices and $S \subset V$ be a proper subset of V. Cut semi-metric δ_S is defined by $\delta_S(x,y) = 1$ if $x \in S$ and $y \notin S$, or $x \notin S$ and $y \in S$; and $\delta_S(x,y) = 0$, otherwise. In general, the space (X,d) is not a metric since d(x,y) = 0 for some $x \neq y$. Nevertheless, $\delta_S(x,y)$ is often called a cut metric.

We will discuss balls in metric spaces – a natural analogue of the familiar notion from Euclidean spaces.

Definition 1.3. Let (X, d) be a metric space, $x_0 \in X$ and r > 0. The (closed) ball of radius r around x_0 is

$$B_r(x_0) = \text{Ball}_r(x_0) = \{x : d(x, x_0) \le r\}.$$

Definition 1.4. A normed space is a pair $(V, \|\cdot\|)$, where V is a linear space (vector space) and $\|\cdot\|: V \to \mathbb{R}$ is a norm on V such that the following conditions hold for every $x, y \in V$.

- 1. ||x|| > 0 if $x \neq 0$.
- 2. ||x|| = 0 if and only if x = 0.
- 3. $\|\alpha x\| = |\alpha| \cdot \|x\|$ for every $\alpha \in \mathbb{R}$.
- 4. $||x + y|| \le ||x|| + ||y||$ (convexity).

Every normed space $(V, \|\cdot\|)$ is a metric space with metric $d(x, y) = \|x - y\|$ on V.

Definition 1.5. We say that a sequence of points x_i in a metric space is a Cauchy sequence if

$$\lim_{i \to \infty} \sup_{j \ge i} d(x_i, x_j) = 0.$$

A metric space is complete if every Cauchy sequence has a limit. A Banach space is a complete normed space.

Remark 1.6. Every finite dimensional normed space is a Banach space. However, an infinite dimensional normed space may or may not be a Banach space. That said, all spaces we discuss in this course will be Banach spaces. Further, for every normed (metric) space V there exists a Banach (complete) space V' that contains it such that V is dense in V'. Here is an example of a non-complete normed space. Let V be the space of infinite sequences $a(1), a(2), \ldots, a(n), \ldots$ in which only a finite number of terms a(i) are non-zero. Define $\|a\| = \sum_{i=1}^{\infty} |a(i)|$. Then $(V, \|\cdot\|)$ is a normed space but it is not complete, and thus $(V, \|\cdot\|)$ is not a Banach space. To see that, define a sequence a_i of elements in V as follows: $a_i(n) = 1/2^n$ if $n \le i$ and $a_i(n) = 0$, otherwise. Then a_i is a Cauchy sequence but it has no limit in V. Space ℓ_1 , which we will define in the next section, is the completion of $(V, \|\cdot\|)$.

1.2 Lebesgue Spaces $L_p(X, \mu)$

In this section, we define Lebesgue spaces, a very important class of Banach spaces. Let (X, μ) be a measure space. We consider the set of measurable real valued functions on X. For $p \geq 1$, we define the p-norm of a function f by

$$||f||_p = \left(\int_X |f(x)|^p d\mu(x)\right)^{1/p}.$$

If the integral above is infinite (diverges), we write $||f||_p = \infty$. Similarly, we define

$$||f||_{\infty} = \sup |f(x)|.$$

Now we define the Lebesgue space $L_p(X, \mu)$ (for $1 \le p \le \infty$):

$$L_p(X,\mu) = \{f : f \text{ is measurable w.r.t. measure } \mu; \|f\|_p < \infty\}.$$

Caveat: The norm $||f||_p$ can be equal to 0 for a function $f \in L_p(X,\mu)$, which is not identically equal to 0. So formally $L_p(X,\mu)$ (as defined above) is not a normed space. The standard way to resolve this problem is to identify functions that differ only on a set of measure 0. The norm $||\cdot||_{\infty}$ is usually defined as

$$\|f\|_{\infty} = \operatorname{ess\,sup}_{x \in X} |f(x)| = \inf \{ \sup_{x \in X} |\tilde{f}(x)| : \tilde{f}(x) = f(x) \text{ almost everywhere} \}.$$

Examples. Consider several examples of L_p -spaces.

1. Space ℓ_p . Let $X = \mathbb{N}$, and μ be the counting measure; i.e. $\mu(S) = |S|$ for $S \subset \mathbb{N}$. The elements of ℓ_p are infinite sequences of real numbers $a = (a_1, a_2, \dots)$ (which we identify with maps from \mathbb{N} to \mathbb{R}) s.t. $||a||_p < \infty$. The p-norm of a sequence $a = (a_1, a_2, \dots)$ equals

$$||a||_p = \left(\sum_{i=1}^{\infty} |a|^p\right)^{1/p}.$$

2. Space ℓ_p^d . Let $X = \{1, \ldots, d\}$, and μ be again the counting measure; i.e. $\mu(S) = |S|$ for $S \subset \mathbb{N}$. The elements of ℓ_p^d are d-tuples of real numbers $a = (a_1, a_2, \ldots, a_d) \in \mathbb{R}^d$. The p-norm of a vector $a = (a_1, a_2, \ldots, a_d)$ equals

$$||a||_p = \left(\sum_{i=1}^d |a|^p\right)^{1/p}.$$

3. Space $L_p[a,b]$. Let X=[a,b], and μ be the standard measure on \mathbb{R} . The elements of $L_p[a,b]$ are measurable functions $f:[a,b]\to\mathbb{R}$ with $\|f\|_p<\infty$. The p-norm of a function f equals

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}.$$

Lemma 1.7. For every $1 \le p < q \le \infty$, we have $\ell_p \subset \ell_q$ and $L_q[0,1] \subset L_p[0,1]$. Both inclusions are proper.

Proof. We consider the case when $q < \infty$. Let $a \in \ell_p$. Let $I = \{i : |a_i| \ge 1\}$. Note that I is a finite set, as otherwise we would have that $||a||_p^p \ge \sum_{i \in I} |a_i|^p = \infty$. For every $i \notin I$, we have $|a_i|^q < |a_i|^p$. Therefore,

$$||a||_q^q = \sum_{i \in I} |a_i|^q + \sum_{i \notin I} |a_i|^q \le \sum_{i \in I} |a_i|^q + \sum_{i \notin I} |a_i|^p \le \sum_{i \in I} |a_i|^q + ||a||_p^p < \infty.$$

We conclude that $a \in \ell_q$.

Now let $f \in L_q[0,1]$. Let $I = \{x : |f(x)| \le 1\}$. Note that $|f|^p < |f|^q$ when $x \notin I$, and $\int_I |f(x)|^q dx \le \int_I 1 dx \le 1$. Therefore,

$$||f||_p^p = \int_0^1 |f(x)|^p dx = \int_I |f(x)|^p dx + \int_{[0,1]\setminus I} |f(x)|^p dx \le 1 + \int_{[0,1]\setminus I} |f(x)|^q dx \le 1 + ||f||_q^q < \infty.$$

We get that
$$f \in L_p[0,1]$$
.

Exercise 2. Prove the statement of Lemma 1.7 for $q = \infty$.

Exercise 3. Let (X, μ) be a measure space with $\mu(X) < \infty$, and $1 \le p < q \le \infty$. Prove that $L_q(X, \mu) \subset L_p(X, \mu)$. Show that on the other hand $L_q(\mathbb{R}) \not\subset L_p(\mathbb{R})$.

1.3 Dual Space

Consider a normed space $(V, \|\cdot\|)$. The continuous dual V^* of V is the space of continuous linear functionals $\phi: V \to \mathbb{R}$. That is, V^* consists of linear maps ϕ on V for which $\sup_{u\neq 0} \frac{|\phi(u)|}{\|u\|} < \infty$. The requirement that ϕ be continuous is crucial when V is infinite dimensional; however, in finite-dimensional spaces, all linear functionals are continuous, so this condition becomes redundant.

The dual norm $\|\cdot\|^*$ on V^* is defined as:

$$\|\phi\|^* = \sup_{u \neq 0} \frac{|\phi(u)|}{\|u\|}.$$

The normed space $(V^*, \|\cdot\|^*)$ is a Banach space.

Let $p, q \in (1, \infty)$ such that 1/p+1/q=1. Later in this course, we will show that the dual of ℓ_p is ℓ_q , and vice versa. Similarly, the dual of $L_p(X,\mu)$ is $L_q(X,\mu)$, and vice versa. The duals of ℓ_1 and $L_1(X,\mu)$ are ℓ_∞ and $L_\infty(X,\mu)$, respectively. However, ℓ_1 is not the dual of ℓ_∞ , and, in general, $L_1(X,\mu)$ is not the dual of $L_\infty(X,\mu)$. That said, the finite-dimensional spaces ℓ_1^d and ℓ_∞^d are duals of each other.

We say that a normed space V is reflexive if $V = V^{**}$ (or more precisely, if V^{**} is isometrically isomorphic to V). As mentioned above, the spaces ℓ_p and $L_p(X,\mu)$ are reflexive for $p \in (1,\infty)$. However, the spaces ℓ_1 , ℓ_∞ , $L_1(\mathbb{R})$, and $L_\infty(\mathbb{R})$ are not. Importantly, all finite-dimensional normed spaces are reflexive.

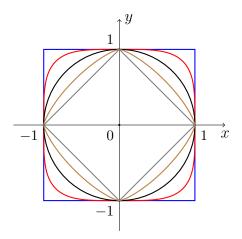


Figure 1: The figure shows the unit balls of ℓ_1 (the gray rhombus/square), $\ell_{4/3}$ (the brown curve), ℓ_2 (the black circle), ℓ_4 (the red curve), and ℓ_{∞} (the blue square). Since ℓ_1^2 and ℓ_{∞}^2 are dual spaces, their unit balls – the rhombus and the square – are polar sets of each other. Similarly, $\ell_{4/3}^2$ and ℓ_4^2 are duals, so their unit balls (enclosed by the brown and red curves, respectively) are also polar sets of each other. Finally, ℓ_2^2 is self-dual, and thus its unit ball – the circle – is its own polar.

1.4 Unit Balls

The unit ball in a normed space $(V, \|\cdot\|)$ is the set of points with norm at most 1:

$$B = \{ v \in V : ||v|| \le 1 \}.$$

The set B is closed and convex. Moreover, it is centrally symmetric – that is, B = -B – and contains the origin.

Let V be a finite-dimensional vector space, and let C be a centrally symmetric, closed, convex body in V. Suppose further that some neighborhood of 0 lies in C. Define the Minkowski norm $\|\cdot\|$ associated with C as follows: for $u \neq 0$, set

$$||u|| = \min\{\alpha > 0 : u/\alpha \in C\}$$
 and $||0|| = 0$.

Then $(V, \|\cdot\|)$ is a normed space; moreover, C is the unit ball of this norm. Thus, in finite-dimensional spaces, there is a one-to-one correspondence between norms and their unit balls.

Dual Norms and Polarity Consider a (finite-dimensional) Euclidean space V. We identify the dual space V^* with V in the standard way: a vector $u \in V$ is associated with the linear functional $u(\cdot)$ defined by

$$u(v) = \langle u, v \rangle.$$

Let $\|\cdot\|$ be an arbitrary norm on V, and let $\|\cdot\|^*$ be its dual norm. Then the unit balls B and B_* of $\|\cdot\|$ and $\|\cdot\|^*$, respectively, are polar sets of each other.

2 Lyapunov's, Hölder's, and Interpolation Inequalities

In this section, we prove a few inequalities that we will need later.

Theorem 2.1 (Lyapunov's inequality). Let $1 \le p < q \le \infty$. For every random variable α with finite q-th moment, we have $\|\alpha\|_p \le \|\alpha\|_q$.

Proof. The statement is obvious for $q = \infty$ since $|\alpha| < \|\alpha\|_{\infty}$ almost surely. Let us assume that $q < \infty$. Let $f(x) = x^{q/p}$ for $x \ge 0$. Note that f(x) is a convex function. Let $\beta = |\alpha|^p$ (β is a random variable). We have

$$\|\alpha\|_q^q = \mathbb{E}\left[|\alpha|^q\right] = \mathbb{E}\left[|\beta|^{q/p}\right] = \mathbb{E}\left[f(|\beta|)\right] \overset{\text{by Jensen's Inequality}}{\geq} f(\mathbb{E}\left[|\beta|\right]) = \left(\mathbb{E}\left[|\alpha^p|\right]\right)^{q/p}.$$

We conclude that $\|\alpha\|_q \ge \|\alpha\|_p$ as required.

We now state Hölder's inequality. This fundamental result establishes that the $\|\cdot\|_p$ and $\|\cdot\|_q$ norms are dual to each other when 1/p + 1/q = 1.

Theorem 2.2 (Hölder's Inequality). Assume that 1/p + 1/q = 1. Then for every $a, b \in \mathbb{R}^d$.

$$\langle a, b \rangle \le ||a||_p \cdot ||b||_q$$

Proof. Fix some $b \neq 0$. Consider the function $f(a) = \langle a, b \rangle$ on the manifold $M = \{a : ||a||_p^p = 1\}$. Since M is compact, f attains its maximum on M at some point a.

At the maximizer a, the gradient ∇f is orthogonal to the tangent space to M. Since M is the level set of the function $g(a) = \|a\|_p^p = \sum |a_i|^p$, it follows that $\nabla f = b$ is colinear with $\nabla g = (p|a_1|^{p-1} \operatorname{sgn} a_1, \dots, p|a_d|^{p-1} \operatorname{sgn} a_d)$. Thus, for some t > 0,

$$|b_i| = t|a_i|^{p-1}$$
 for all i .

Therefore,

$$|a_i||b_i| = t|a_i|^p.$$

Summing over i, we get

$$\sum_{i} a_i b_i \le \sum_{i} |a_i| |b_i| = t \sum_{i} |a_i|^p = t.$$

On the other hand, using that 1/p + 1/q = 1, we get

$$||b||_q^q = \sum_i |b_i|^q = \sum_i t^q |a_i|^{(p-1)q} = t^q \sum_i |a_i|^p = t^q.$$

We conclude that $t = ||b||_q$, and hence

$$\langle a, b \rangle \le t = ||a||_p ||b||_q.$$

This proves Hölder's inequality for vectors a with $||a||_p = 1$. The general case follows by homogeneity.

Exercise 4. For a given $a \in \mathbb{R}^d$, define b as follows: $b_i = |a_i|^{p/q} \operatorname{sgn} a_i$. Show that $\langle a, b \rangle = \|a\|_p \|b\|_q$. Conclude that

$$||b||_q = ||b||_p^* \equiv \sup_{b \neq 0} \frac{\langle a, b \rangle}{||a||_p}.$$

Theorem 2.3 (Interpolation Inequality). Let $1 \le p < r < q \le \infty$. Define $\hat{p} = 1/p$, $\hat{q} = 1/q$, $\hat{r} = 1/r$,

$$\alpha = \frac{\hat{r} - \hat{q}}{\hat{p} - \hat{q}} \quad and \quad \beta = \frac{\hat{p} - \hat{r}}{\hat{p} - \hat{q}}.$$
$$\|a\|_r \le \|a\|_n^\alpha \cdot \|a\|_q^\beta$$

for every $a \in \mathbb{R}^d$.

Remark 2.4. Weights α and β are chosen so that $\hat{r} = \alpha \hat{p} + \beta \hat{q}$ and $\alpha + \beta = 1$.

Proof. Note that $\alpha + \beta = 1$ and $\hat{r} = \alpha \hat{p} + \beta \hat{q}$ (that is, \hat{r} is a convex combination of \hat{p} and \hat{q} with weights α and β). Let $p' = \frac{p}{\alpha r}$ and $q' = \frac{q}{\beta r}$. Then $1/p' + 1/q' = r \cdot (\alpha \hat{p}) + r \cdot (\beta \hat{q}) = r\hat{r} = 1$

$$||a||_r^r = \sum_{i=1}^d |a_i|^r = \sum_{i=1}^d |a_i|^{\alpha r} \cdot |a_i|^{\beta r} \stackrel{\text{H\"older}}{\leq} \left(\sum_{i=1}^d \left(|a_i|^{\alpha r} \right)^{p'} \right)^{1/p'} \cdot \left(\sum_{i=1}^d \left(|a_i|^{\beta r} \right)^{q'} \right)^{1/q'}$$

$$= \left(\sum_{i=1}^d |a_i|^p \right)^{1/p'} \cdot \left(\sum_{i=1}^d |a_i|^q \right)^{1/q'} = ||a||_p^{p/p'} \cdot ||a||_q^{q/q'} = ||a||_p^{\alpha r} \cdot ||a||_q^{\beta r}$$

Therefore,

$$||a||_r \le ||a||_p^\alpha \cdot ||a||_q^\beta$$

Corollary 2.5. Let $1 \leq p < r \leq \infty$. For every $a \in \mathbb{R}^d$, we have

$$||a||_r \le ||a||_p \le d^{1/p-1/r} ||a||_r.$$

Proof. We apply the interpolation inequality with $q=\infty$. Then $\hat{q}=0$ and thus $\alpha=p/r$, $\beta=1-p/r$. We have

$$||a||_r \le ||a||_p^{p/r} ||a||_{\infty}^{1-p/r} \le ||a||_p^{p/r} ||a||_p^{1-p/r} = ||a||_p.$$

On the other hand, let ξ be a random coordinate of a chosen uniformly at random. Then,

$$\frac{\|a\|_p}{d^{1/p}} = \left(\sum_{i=1}^d \frac{|a_i|^p}{d}\right)^{1/p} \equiv \|\xi\|_p \overset{\text{Lyapunov's Ineq.}}{\leq} \|\xi\|_r = \left(\sum_{i=1}^d \frac{|a_i|^r}{d}\right)^{1/r} = \frac{\|a\|_r}{d^{1/r}}.$$

Therefore, $||a||_p \le d^{1/p-1/r} ||a||_r$.

3 Metric Embeddings

Consider two metric spaces (X, d_X) , (Y, d_Y) , and a map $f: X \to Y$. We say that $f: X \to Y$ is a Lipschitz map if there is a number C such that

$$d_Y(f(x_1), f(x_2)) \le Cd_X(x_1, x_2)$$
 for all $x_1, x_2, \in X$.

The Lipschitz constant $||f||_{Lip}$ of f is the minimum C such that this inequality holds.

We say that a bijective map $\varphi: X \to Y$ is an isometry if for every $x_1, x_2 \in X$, $d_Y(\varphi(x_1), \varphi(x_2)) = d_X(x_1, x_2)$. We say that an injective map $\varphi: X \to Y$ is an isometric embedding if φ is an isometry between X and $\varphi(X)$ (the image of X under φ).

The distortion of a map $f: X \to Y$ equals $||f||_{Lip} \cdot ||f^{-1}||_{Lip}$ where f^{-1} is the inverse map from f(X) to X.

Exercise 5. Prove that f has distortion at most D if and only if there is a number c > 0 such that

$$c \cdot d_X(x_1, x_2) \le d_Y(x_1, x_2) \le c D \cdot d_X(f(x_1), f(x_2))$$
 for every $x_1, x_2 \in X$.

Exercise 6. Prove the following statements.

- 1. An isometric embedding has distortion 1.
- 2. Let f be a Lipschitz map from X to Y and g be a Lipschitz map from Y to Z then $h = g \circ f$ is a Lipschitz map from X to Z and $||h||_{Lip} \leq ||f||_{Lip} \cdot ||g||_{Lip}$.
- 3. Let f be an embedding of X into Y and g be an embedding of Y into Z then the distortion of $h = g \circ f$ is at most the product of distortions of f and g.

4 Embeddings into L_p spaces

Theorem 4.1. Every finite metric subspace (X, d) embeds isometrically into ℓ_{∞}^n for n = |X|.

Proof. Denote the elements of X by x_1, x_2, \ldots, x_n . Now define the embedding $\varphi : X \to \ell_{\infty}^n$ as follows

$$\varphi: x \mapsto (d(x_1, x), d(x_2, x), \dots, d(x_n, x)).$$

We claim that φ is an isometric embedding. That is,

$$\|\varphi(x_i) - \varphi(x_j)\|_{\infty} = d(x_i, x_j).$$

First, we prove that $\|\varphi(x_i) - \varphi(x_j)\|_{\infty} \leq d(x_i, x_j)$. We need to show that all coordinates of the vector $\varphi(x_i) - \varphi(x_j)$ are bounded by $d(x_i, x_j)$ in the absolute value. Indeed, the k-th coordinate of $\varphi(x_i) - \varphi(x_j)$ equals $d(x_k, x_i) - d(x_k, x_j)$. From the triangle inequalities for x_i , x_j and x_k , it follows that $|d(x_k, x_i) - d(x_k, x_j)| \leq d(x_i, x_j)$. Now, we verify that

 $\|\varphi(x_i) - \varphi(x_j)\|_{\infty} \ge d(x_i, x_j)$. Note that $\|\varphi(x_i) - \varphi(x_j)\|_{\infty} \ge |d(x_k, x_i) - d(x_k, x_j)|$ (the absolute value of the k-th coordinate) for every k. In particular, this inequality holds for k = i. That is,

$$\|\varphi(x_i) - \varphi(x_j)\|_{\infty} \ge |d(x_i, x_i) - d(x_i, x_j)| = d(x_i, x_j).$$

Theorem 4.2. Let $p \in [1, \infty)$. Metric space ℓ_2^d (Euclidean d-dimensional space) embeds isometrically into $L_p(X, \mu)$ for some space X.

Proof. Let $X = \ell_2^d$ and $\mu = \gamma$ be the Gaussian measure on $X = \ell_2^d$ (μ is the probability measure on X with density $e^{-\|x\|^2/2} / (2\pi)^{d/2}$). Recall that the elements of $L_p(\ell_2^d, \gamma)$ are functions on ℓ_2^d . Let $M = \left(\int_{\ell_2^d} |x_1|^p \, d\gamma(x)\right)^{1/p}$. We construct an embedding φ that maps every $v \in \ell_2^d$ to a function f_v defined as follows:

$$f_v(x) = \frac{\langle v, x \rangle}{M}.$$

We prove that the embedding is an isometry. Consider two vectors u and v. Let w = u - v, and $e = w/||w||_2$. We have,

$$\|\varphi(u) - \varphi(v)\|_p^p = \int_{\ell_2^d} \left| \frac{\langle u, x \rangle}{M} - \frac{\langle v, x \rangle}{M} \right|^p d\gamma(x) = \frac{1}{M^p} \int_{\ell_2^d} \left| \langle u - v, x \rangle \right|^p d\gamma(x)$$
$$= \frac{1}{M^p} \int_{\ell_2^d} \left| \langle \|w\| e, x \rangle \right|^p d\gamma(x) = \frac{1}{M^p} \|w\|^p \int_{\ell_2^d} \left| \langle e, x \rangle \right|^p d\gamma(x)$$

Consider a coordinate frame in which the x_1 -axis is parallel to the vector e (i.e. vector e has coordinates $(1,0,\ldots,0)$). Then $|\langle e,x\rangle|=|x_1|$. We get

$$\|\varphi(u) - \varphi(v)\|_p = \frac{\|w\|_2}{M} \left(\int_{\ell_2^d} |x_1|^p d\mu(x) \right)^{1/p} = \|w\|_2 = \|u - v\|_2.$$

We proved that the map φ is an isometry.

We showed that every finite subset S of ℓ_2^d embeds isometrically into space $L_p(X,\mu)$. Can we embed S into a "simpler" space ℓ_p^N (for some N)? We will see that all spaces $L_p(X,\mu)$ (of sufficiently large dimension) have essentially the same finite metric subspaces. Therefore, if a metric space embeds into some $L_p(X,\mu)$, then it also embeds into ℓ_p^N for some N.

Theorem 4.3. Let S be a finite subset of $L_p(Z,\mu)$, n=|S|, and $N=\binom{n}{2}+1$. Then S isometrically embeds into ℓ_p^N .

Proof. Consider the linear space \mathcal{M} of all symmetric $n \times n$ matrices with zeros on the diagonal. The dimension of \mathcal{M} is $\binom{n}{2}$. Consider a map $f: \mathbb{R}^n \to \mathcal{M}$ defined as follows. The map f sends a vector $u \in \mathbb{R}^n$ to the matrix $A = (a_{ij})$ with entries $a_{ij} = |u_i - u_j|^p$. Clearly, $f(v) \in \mathcal{M}$ for every $v \in \mathbb{R}^n$. Let $B = f(\mathbb{R}^n) \equiv \{f(u) : u \in \mathbb{R}^n\}$ and $\mathcal{C} = \text{conv}(B)$.

For every metric space (S, d) on a set $S = \{s_1, s_2, \ldots, s_n\}$, we define a matrix F^S by $F_{ij}^S = d(s_i, s_j)^p$. The theorem follows from the following two lemmas.

Lemma 4.4. Suppose that $S = \{s_1, \ldots, s_n\} \subset L_p(Z, \mu)$ then $F^S \in \mathcal{C}$.

Proof. Recall that each element s_i is a function from Z to \mathbb{R} . Let $\sigma(z) = (s_1(z), \ldots, s_n(z))$ for every $z \in Z$. We have,

$$F_{ij}^{S} = d(s_i, s_j)^p = \int_{Z} |s_i(z) - s_j(z)|^p d\mu(z) = \int_{Z} f_{ij}(\sigma(z)) d\mu(z).$$

Therefore, $F^S = \int_Z f(\sigma(z)) d\mu(z)$. Since $f(\sigma(z)) \in B \subset \mathcal{C}$ for every $z \in Z$, we conclude that $F^S \in \mathcal{C}$.

Lemma 4.5. Consider a finite metric space $S = \{s_1, \ldots, s_n\}$. Suppose that $F^S \in \mathcal{C}$. Then S embeds into ℓ_p^N , where $N = \binom{n}{2} + 1$.

Proof. By the Carathéodory theorem, every point in the cone C can be expressed as a sum of at most dim M + 1 = N points in B. In particular, we can write

$$F^{S} = \sum_{k=1}^{N} b^{(k)} = \sum_{k=1}^{N} f(x^{(k)}),$$

for some $b^{(1)}, \ldots, b^{(N)} \in B$ and some $x^{(k)} \in f^{-1}(b^{(k)})$ $(x_i \text{ is a preimage of } b^{(k)})$. By the definition of F^S , we have

$$d(s_i, s_j)^p = F_{ij}^S = \sum_{k=1}^N f_{ij}(x^{(k)}) = \sum_{k=1}^N |x_i^{(k)} - x_j^{(k)}|^p.$$
(1)

We define the embedding φ of S to ℓ_p^N :

$$\varphi(s_i) = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(N)}).$$

Note that equation (1) says that $d(s_i, s_j)^p = \|\varphi(s_i) - \varphi(s_j)\|_p^p$, and therefore $d(s_i, s_j) = \|\varphi(s_i) - \varphi(s_j)\|_p$. We conclude that φ is an isometric embedding.

Corollary 4.6. Suppose that S is a subset of ℓ_2^d . Then S isometrically embeds into ℓ_p^N , where $N = \binom{|S|}{2} + 1$.

Exercise 7. In our proof, we used the Carathéodory theorem for arbitrary convex sets: every point in the convex hull of $S \subset \mathbb{R}^d$ is a convex combination of at most d+1 points from S. Show that if the convex hull $\operatorname{conv}(S)$ of S is a cone, then every point $\operatorname{conv}(S)$ is a linear combination, with positive coefficients, of at most d points in S. Conclude that in the statement of Theorem 4.3 we can replace $N = \binom{n}{2} + 1$ with $N = \binom{n}{2}$.

Definition 4.7. Let $c_p(X)$ be the least distortion¹ with which a finite metric space (X, d) embeds into ℓ_p .

Theorem 4.8. For every finite metric space X and every $p \in [1, \infty]$, we have $1 = c_{\infty}(X) \le c_p(X) \le c_2(X)$.

Proof. The inequality $1 = c_{\infty}(X) \leq c_p(X)$ follows from Theorem 4.1. Let f be an embedding of X into $\ell_2(X)$ with distortion $c_2(X)$. By Corollary 4.6, there is an isometric embedding g of $f(X) \subset \ell_2$ into ℓ_p . Then map $g \circ f$ is an embedding of X into ℓ_p with distortion at most $c_2(X)$. We conclude that $c_p(X) \leq c_2(X)$.

5 Embeddings of Normed Spaces and the Banach–Mazur Distance

Consider two normed spaces $(U, \|\cdot\|_U)$ and $(V, \|\cdot\|_V)$. Let f be a linear map between U and V. What is the Lipschitz norm of f? It is equal

$$\sup_{\substack{x,y \in U \\ x \neq y}} \frac{\|f(x) - f(y)\|_{V}}{\|x - y\|_{U}} \stackrel{\text{by linearity of } f}{=} \sup_{\substack{x,y \in U \\ x \neq y}} \frac{\|f(x - y)\|_{V}}{\|x - y\|_{U}} = \sup_{\substack{z \in U \\ z \neq 0}} \frac{\|f(z)\|_{V}}{\|z\|_{U}}.$$

Definition 5.1. The operator norm of f is

$$||f|| \equiv ||f||_{op} \equiv ||f||_{U \to V} = \sup_{\substack{z \in U \ z \neq 0}} \frac{||f(z)||_V}{||z||_U}.$$

The above computation shows that the Lipschitz norm of a linear operator equals its operator norm.

Let U and V be two d-dimensional normed spaces. The Banach-Mazur distance between them is

$$d_{BM}(U, V) = \min_{\varphi: U \to V} \|\varphi\| \|\varphi^{-1}\|,$$

where the minimum is over non-degenerate linear maps $\varphi: U \to V$

Exercise 8. Consider two normed spaces U and V. Let B_U and B_V be their unit balls. Prove that there exists a linear map φ such that $B_V \subseteq \varphi(B_U) \subseteq \alpha B_V$ where $\alpha = d_{BM}(U, V)$. Further, if $B_V \subseteq \varphi(B_U) \subseteq \alpha B_V$ for some α then $d_{BM}(U, V) \leq \alpha$.

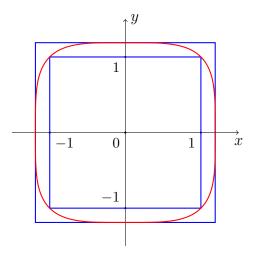


Figure 2: The figure shows the unit ball $B_{\ell_{\infty}^2}$ (the smaller square) and a copy of it scaled by $\alpha = 2^{1/4}$ (the larger square). The red curve encloses a copy of the unit ball of ℓ_4^2 , also scaled by α . The inclusion $B_{\ell_{\infty}^2} \subseteq \alpha B_{\ell_4^2} \subseteq \alpha B_{\ell_{\infty}^2}$ demonstrates that the Banach–Mazur distance between ℓ_{∞}^2 and ℓ_4^2 is at most $2^{1/4}$.

The Banach-Mazur distance is a distance in the following sense.

Claim 5.2. The Banach-Mazur distance satisfies the following properties.

- $d_{BM}(U,U) = 1$
- $d_{BM}(U,V) \geq 1$
- $d_{BM}(U,V) \cdot d_{BM}(V,W) \ge d_{BM}(U,W)$

Theorem 5.3. $d_{BM}(\ell_p^d, \ell_2^d) = d^{|1/p-1/2|}$

Proof. First we show that $d_{BM}(\ell_p^d, \ell_2^d) \leq d^{|1/p-1/2|}$. To this end, consider the identity map between ℓ_p^d and ℓ_d^2 and upper bound its distortion. If $p \in [1,2]$, we have $||a||_2 \leq ||a||_p \leq d^{1/p-1/2}||a||_2$. Thus the identity map from $(\mathbb{R}^d, ||\cdot||_p)$ to $(\mathbb{R}^d, ||\cdot||_2)$ has distortion at most $d^{1/p-1/2}$. Similarly, if $p \in [2, \infty]$, we have $||a||_p \leq ||a||_2 \leq d^{1/2-1/p}||a||_p$. Thus the identity map from $(\mathbb{R}^d, ||\cdot||_p)$ to $(\mathbb{R}^d, ||\cdot||_2)$ has distortion at most $d^{1/2-1/p}$.

Discussion Now we need to prove that every linear map $\varphi:\ell_p^d\to\ell_2^d$ has distortion at least $d^{[1/2-1/p]}$. Consider the hypercube $C=\{-1,1\}^d\subset\ell_p^d$. We will prove that even restricted to $C,\ \varphi$ has distortion at least $d^{[1/2-1/p]}$. To gain some intuition, assume that p=1 and $\varphi=id:\ell_1^d\to\ell_2^d$. How does φ distort the distances between the vertices of the hypercube?

• $\varphi = id$ preserves the lengths of the edges of C: if $u, v \in C$ differ in exactly one coordinate then $\|\varphi(u) - \varphi(v)\|_2 = \|u - v\|_1 = 2$. Therefore, $\|\varphi\| \ge \frac{\|\varphi(u) - \varphi(v)\|_2}{\|u - v\|_1} \ge 1$.

¹A simple compactness argument shows that there is an embedding with the least possible distortion.

• φ contracts the diagonals of C by a factor of \sqrt{d} : for $u \in C$ and u' = -u, we have $\|u - u'\|_1 = 2d$ and $\|\varphi(u) - \varphi(u')\|_2 = 2\sqrt{d}$. Therefore, $\|\varphi^{-1}\| \ge \frac{\|u - u'\|_1}{\|\varphi(u) - \varphi(u')\|_2} \ge \sqrt{d}$.

We see that the distortion of φ is at least $\|\varphi\| \cdot \|\varphi^{-1}\| \ge 1 \cdot \sqrt{d} = \sqrt{d}$.

Now consider an arbitrary non-degenerate linear map φ and arbitrary $p \in [1, \infty]$. The example above suggests that we should examine how φ distorts edges and diagonals of C. However, it is not sufficient to look at a single edge or single diagonal. Instead, we compute how φ distorts edges and diagonals on average. First, we look at the edges. Choose a random coordinate $i \in \{1, \ldots, d\}$ uniformly at random. Then independently choose a random vertex u of C uniformly at random. Let $v \in C$ be the vertex that differs from C only in coordinate i. Then $u - v = 2e_i$ or $u - v = -2e_i$. We have $\|\varphi(u) - \varphi(v)\|_2 \le \|\varphi\| \cdot \|u - v\|_p$ (always). Therefore,

$$\|\varphi\|^{2} \ge \mathbb{E}\left[\frac{\|\varphi(u) - \varphi(v)\|_{2}^{2}}{\|u - v\|_{p}^{2}}\right] = \mathbb{E}\left[\frac{\|2\varphi(e_{i})\|_{2}^{2}}{\|2e_{i}\|_{p}^{2}}\right] = \mathbb{E}\left[\|\varphi(e_{i})\|_{2}^{2}\right] = \frac{1}{d}\sum_{j=1}^{d}\|\varphi(e_{j})\|_{2}^{2}$$
(2)

Similarly, $||u-v||_p \le ||\varphi^{-1}|| \cdot ||\varphi(u)-\varphi(v)||_2$ and thus $\mathbb{E}\left[||u-v||_p^2\right] \le ||\varphi^{-1}||^2 \cdot \mathbb{E}\left[||\varphi(u)-\varphi(v)||_2^2\right]$. We have,

$$\|\varphi^{-1}\|^{2} \ge \frac{\mathbb{E}\left[\|u-v\|_{p}^{2}\right]}{\mathbb{E}\left[\|\varphi(u)-\varphi(v)\|_{2}^{2}\right]} = \frac{\mathbb{E}\left[\|2e_{i}\|_{p}^{2}\right]}{\mathbb{E}\left[\|2\varphi(e_{i})\|_{2}^{2}\right]} = \frac{1}{\mathbb{E}\left[\|\varphi(e_{i})\|_{2}^{2}\right]} = \frac{d}{\sum_{i=1}^{d}\|\varphi(e_{i})\|_{2}^{2}}.$$
 (3)

Now let u be a random vertex of C and u' = -u. Note that all coordinates u_1, \ldots, u_d of u are i.i.d. Bernoulli $\{\pm 1\}$ random variables. Also, $u = \sum_{j=1}^d u_j e_j$ and therefore $\varphi(u) = \sum_{j=1}^d u_j \varphi(e_j)$. Write,

$$\mathbb{E}\left[\|\varphi(u)\|_{2}^{2}\right] = \mathbb{E}\left[\left\|\sum_{j=1}^{d} u_{j}\varphi(e_{j})\right\|_{2}^{2}\right] = \mathbb{E}\left[\sum_{1\leq j,j'\leq d} \langle u_{j}\varphi(e_{j}), u_{j'}\varphi(e_{j'})\rangle\right]$$
$$= \sum_{1\leq j,j'\leq d} \mathbb{E}\left[u_{j}u_{j'}\right] \cdot \langle \varphi(e_{j}), \varphi(e_{j'})\rangle.$$

Since all random variable u_1, \ldots, u_d are independent, $\mathbb{E}[u_j] = 0$, and $u_j^2 = 1$ (always), we have

$$\mathbb{E}\left[u_j u_{j'}\right] = \begin{cases} 1, & \text{if } j = j' \\ 0, & \text{otherwise} \end{cases}$$

We conclude that

$$\mathbb{E}\left[\|\varphi(u)\|_{2}^{2}\right] = \sum_{j=1}^{d} \|\varphi(e_{j})\|_{2}^{2}.$$

As above, we have

$$\|\varphi\|^{2} \ge \mathbb{E}\left[\frac{\|\varphi(u) - \varphi(u')\|_{2}^{2}}{\|u - u'\|_{p}^{2}}\right] = \mathbb{E}\left[\frac{\|2\varphi(u)\|_{2}^{2}}{\|2u\|_{p}^{2}}\right] = \frac{\sum_{j=1}^{a} \|\varphi(e_{i})\|^{2}}{d^{2/p}}.$$
(4)

Similarly,

$$\|\varphi^{-1}\|^2 \ge \frac{d^{2/p}}{\sum_{j=1}^d \|\varphi(e_j)\|^2}.$$
 (5)

If $p \in [1,2]$, multiplying inequalities (2) and (5), we get $\|\varphi\|^2 \|\varphi^{-1}\|^2 \ge \frac{d^{2/p}}{d} = d^{2/p-1}$. Thus, the distortion of φ is at least $d^{1/p-1/2}$, as required. If $p \in [2,\infty]$, multiplying inequalities (3) and (4), we get $\|\varphi\|^2 \|\varphi^{-1}\|^2 \ge \frac{d}{d^{2/p}} = d^{1-2/p}$. Thus, the distortion of φ is at least $d^{1/2-1/p}$, as required.

Using Theorem 5.3 and Claim 5.2 (part 3), we get for $1 \le p \le q \le 2$

$$d^{1/p-1/2} = d_{BP}(\ell_p^d, \ell_2^d) \le d_{BM}(\ell_p^d, \ell_q^d) \cdot d_{BM}(\ell_q^d, \ell_2^d) = d^{1/q-1/2} \cdot d_{BM}(\ell_q^d, \ell_2^d).$$

Therefore,

$$d_{BM}(\ell_q^d, \ell_2^d) \ge \frac{d^{1/p-1/2}}{d^{1/q-1/2}} = d^{1/p-1/q}.$$

On the other hand, the distortion of the identity map from ℓ_p^d to ℓ_q^d is at most $d^{1/p-1/q}$. We conclude that $d_{BM}(\ell_p^d, \ell_q^d) = d^{1/p-1/q}$. The same argument shows that $d_{BM}(\ell_p^d, \ell_q^d) = d^{1/p-1/q}$ when $p, q \in [2, \infty]$. We obtain the following corollary.

Corollary 5.4. We have,

- $d_{BM}(\ell_p^d, \ell_q^d) = d^{|1/p-1/q|}$ if $p, q \in [1, 2]$
- $d_{BM}(\ell_p^d, \ell_q^d) = d^{|1/p-1/q|}$ if $p, q \in [2, \infty]$

In the proof of Theorem 5.3, we implicitly used the notions of type and cotype of a Banach space; more precisely, we looked at the type-2 constant $T_2(\ell_p^d)$ of space ℓ_p^2 with $p \in [1, 2]$ and cotype-2 constant $C_2(\ell_q^d)$ of space ℓ_q^d with $q \in [2, \infty]$. We now present the general definitions of type and cotype.

Definition 5.5. A Banach space $(V, \|\cdot\|)$ has type $p \in [1, 2]$ if for some C > 0 and every vectors v_1, \ldots, v_n , the following inequality holds:

$$\mathbb{E}\left[\left\|\sum_{i=1}^n \delta_i v_i\right\|^p\right] \le C^p \sum_{i=1}^n \|v_i\|^p,$$

where $\delta_1, \ldots, \delta_n$ are independent unbiased $\{\pm 1\}$ random variables. The smallest constant C for which the inequality holds is called the type-p constant of $(V, \|\cdot\|)$. We will denote it by $T_p(V)$. Similarly, we define the the cotype of a Banach space. $(V, \|\cdot\|)$ has cotype $q \in [2, \infty]$ if for some C > 0 and every vectors v_1, \ldots, v_n , the following inequality holds:

$$\sum_{i=1}^{n} \|v_i\|^q \le C^q \mathbb{E}\left[\left\|\sum_{i=1}^{n} \delta_i v_i\right\|^q\right].$$

The smallest constant C for which the inequality holds is called the cotype-q constant of $(V, \|\cdot\|)$. We will denote it by $C_q(V)$.

Exercise 9. Prove that ℓ_p^d has type p with $C_p(\ell_p^d) = 1$ for $p \in [1,2]$ and ℓ_q has cotype q with $C_q(\ell_q^d) = 1$ for $q \in [2,\infty]$. First reduce the problem to the one-dimensional case. Then prove the statement for n = 2. Finally, use simple induction to get it for all n.

Corollary 5.4 tells us what the Banach-Mazur distance between ℓ_p^d and ℓ_q^d is when either both p and q are greater than 2 or both are smaller than 2. What happens when one of them is smaller than 2 and the other one is greater than 2? In that case, the distortion of the identity map is $d^{1/p-1/q}$ as in the discussion above. However, the identity map is no longer optimal. There exists a map between ℓ_p^d and ℓ_q^d with a smaller distortion!

As an illustration, consider first the case p=1 and $q=\infty$. Further, let us assume that there is $d \times d$ Hadamard matrix $H=H_d$ – a matrix with ± 1 entries such that $HH^{\top}=dI_d$. In particular, such a matrix is known to exist if d is a power of 2. Note that $\frac{1}{\sqrt{d}}H$ is an orthogonal matrix and thus $||H||_{2\to 2} = ||H^{\top}||_{2\to 2} = \sqrt{d}$. Matrix H defines a linear map from ℓ_1^d to ℓ_∞^d . Make the following observations:

$$||H||_{1\to\infty} = \max_{i,j} |H_{ij}| = 1$$

$$||H^{\top}||_{\infty\to 1} \le ||id||_{\infty\to 2} ||H^{\top}||_{2\to 2} ||id||_{2\to 1} = d^{\frac{1}{2} - \frac{1}{\infty}} \cdot \sqrt{d} \cdot d^{\frac{1}{1} - \frac{1}{2}} = d^{\frac{3}{2}}$$

$$||H||_{1\to\infty} \cdot ||H^{-1}||_{\infty\to 1} = ||H||_{1\to\infty} \cdot \frac{1}{d} ||H^{\top}||_{\infty\to 1} \le \sqrt{d}.$$

We conclude that $d_{BM}(\ell_1^d, \ell_\infty^d) \leq \sqrt{d}$.

Exercise 10. Let M be an $a \times b$ matrix. Denote its i-th row by $M_{i\star}$ and its j-th column by $M_{\star j}$. Let $r \in [1, \infty]$ and $\hat{r} = \frac{r}{r-1}$ (then $1/r + 1/\hat{r} = 1$). Prove that

$$||M||_{1\to r} = \max_{j} ||M_{\star j}||_{r}$$

 $||M||_{r\to\infty} = \max_{j} ||M_{i\star}||_{\hat{r}}$

In particular, since all entries in H are ± 1 , $|H|_{1\to q} = d^{1/q}$ and $|H|_{p\to\infty} = d^{1-1/p}$.

Using this exercise, prove that $d_{BM}(\ell_p^d, \ell_q^d) \leq \sqrt{d}$ for arbitrary $p, q \in [1, \infty]$.

Fact 5.6. For $1 \le p \le 2 \le q \le \infty$, we have

$$d_{BM}(\ell_p^d, \ell_q^d) = \Theta(d^{\max(1/p-1/2, 1/2-1/q)}).$$

One can ask if there is a non-linear bijection between ℓ_p^d and ℓ_q^d with a smaller distortion. The answer is negative. We omit the details here. However, one way to prove this is as follows. Consider a non-linear map $\varphi:\ell_p^d\to\ell_p^q$ with distortion D. Note that φ is Lipschitz (as otherwise, it would have an infinite distortion). By Rademacher's theorem, every Lipschitz map from \mathbb{R}^d to \mathbb{R}^d is differentiable almost everywhere. Let x be any point where φ is differentiable. Consider the differential of $d_x\varphi$ of φ at x. It is not hard to verify that linear map $\psi = d_x\varphi: \ell_p^d \to \ell_p^q$ has distortion at most D.

Fact 5.7 (John Ellipsoid or Löwner-John Ellipsoid). For every convex centrally-symmetric set $S \subset \mathbb{R}^d$ that contains a neighborhood of the origin, there exists an ellipsoid \mathcal{E} centered at the origin such that $\mathcal{E} \subseteq S \subseteq \sqrt{d} \cdot \mathcal{E}$. Specifically, one may choose (a) \mathcal{E} to be the maximum volume ellipsoid inside S or (b) $\sqrt{d} \cdot \mathcal{E}$ to be the minimum volume ellipsoid containing S. Equivalently, let $\|\cdot\|$ be an arbitrary norm in \mathbb{R}^d . Then

$$d_{BM}((\mathbb{R}^d, \|\cdot\|), \ell_2^d) \le \sqrt{d}.$$