Metric and Normed Spaces II, Bourgain’s Theorem
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1 Notation
Given a metric space (X, d) and S C X, the distance from x € X to S equals

d(z,S) = inf d(z, s).

ses

The distance between two sets S, 52 C X equals

d(Sl,Sg) = inf d(Sl,Sg).
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Exercise 1. Show that distances between sets do not necessarily satisfy the triangle inequal-
ity. That is, it is possible that d(S1,S2) + d(Ss2,S3) > d(Si,S3) for some sets Sy, Sy and
Ss.

Exercise 2. Prove that d(x,y) > d(S,z) — d(S,y) and thus d(x,y) > |d(S,z) — d(S,y)].

Proof. Fix ¢ > 0. Let ¢/ € S be such that d(vy/,y) < d(S,y) + ¢ (if S is a finite set, there is
y €S st d(y,y) =d(S,y)). Then

d(z,S) < d(z,y) <d(z,y) +dly,y') < d(z,y) +d(S,y) +e
We proved that d(z,S) < d(x,y) + d(S,y) + ¢ for every € > 0. Therefore,

d(z,S) <d(xz,y)+d(S,y).

2 Bourgain’s Theorem

Definition 2.1. Let X be a finite metric space and p > 1. Suppose that Z # @ is a random
subset of X (chosen according to some probability distribution). For every u € X, define
random variable &, = d(u, Z) = min,cz d(u, z). Consider the map f from X to the space of
random variables L,(), 1) that sends u to &, (where S is the probability space and i is the
probability measure on Q). We say that f is a Fréchet embedding.
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Lemma 2.2. Every Fréchet embedding f is non-expanding. That is, || f||L;, < 1.
Proof. Consider a Fréchet embedding that sends u to &, = d(u, Z). For every u,v € X, we
have
pIN1/p by Exercise 2 pI\L/p
160 = &ollp = E[ld(u, Z) — d(v, Z)|"]) < (Efld(u,0)P])7? = d(u,v).
m

Remark 2.3. If X is infinite, then the random variable £, = d(u, Z) does not necessarily
belong to L,(S2, ) (its p-norm might be infinite). However, we can define Euas &y = d(u, Z)—
d(xg, Z), where xo is some point in X. Then the proof of Lemma 2.2 shows that Hqup <
d(u, z9) < 0o and the map f : u s &, is non-expanding.

Theorem 2.4 (Bourgain’s Theorem). Every metric space X onmn points embeds into L, (X, i)
with distortion O(logn) (for every p > 1). That is, c,(X) = O(logn).

Proof. Let | = [logyn] + 1. Construct a random set Z as follows.
e Choose s uniformly at random from {1,...,1}.
e Initially, let Z = @.
e Add every point of X to Z with probability 1/2° independently.

Now let f be the Fréchet embedding that maps u € X to random variable &, = d(Z,u). By
Lemma 2.2, f is non-expanding. We are going to prove that for every u and v,

() = @)y = - dlu,v),

for some absolute constant c¢. Note that it is sufficient to prove this statement for p = 1,
since by Lyapunov’s iequality || f(u) — f(0) ], > || f(u) — £(0)1.

Consider two points v and v. Let A = d(u,v)/2. Define interval I as follows: I =
[d(u, Z),d(v, Z)] if d(u,Z) < d(v,Z), and Iz = [d(v, Z),d(u, Z)] if d(v,Z) < d(u, Z). That
is, I is the interval between d(u, Z) and d(v, Z). Denote the length of I by |Iz|. Let 1,
be the indicator function of I;. Write,

(0, 2) - d(v, 2)| = |12| = [

Iz

Lt = / 1, (t)dt.
0

Then,

1f(w) = F)lls = Efld(u, Z) — d(v, Z)|] = E [/OOO 1y, (t)dt

(b Fubiniy /0 E[1,,(t)] dt — /0 Pl [ Prer)a



We now prove that Pr(t € 1) > @ if t € (0,A). That will imply that ||f(u) — f(v)|1 >
@-A:%-d(u v).

Fix t € (0,A). Consider balls By(u) and By(v). They are disjoint since 2t < 2A =
d(u,v). Assume without loss of generality that |B;(u)| < |Bi(v)|. Denote m = |B;(u)|. Let
so = [logom] + 1. Then m < 2% < 2m. Let &, be the event that d(u, Z) > t, and &, be

the event that d(v,Z) < t. We have,

Pr(t € Iz) = Pr(d(u, 2)
> Pr(d(v, 2)

(v,Z) ord(v,Z) <t <d(u,Z))

<d
<d(u,Z)) =Pr(&, and &,).

<t
<t
Event &£, occurs if and only if there is a point in Z at distance at most ¢ from v; that is,
when Bi(v) N Z # @. Event &, occurs if and only if B,(u) N Z = @.

Consider the event s = so. It happens with probability 1/I. Conditioned on this event,
events &, and &, are independent (since B;(u) and By(v) are disjoint) and

Pr(E.]s = s9) = H Pr(w ¢ Z|s = s9) = H)<1—2—10):<1—2—L>m23

wEBt(u wEB(u
1 1\"
Pr(&,|s = so) = H Pr(w¢ Z|s =s0) =1 — H (1_%>21_(1_2T0)
wEBy(v) weB(v)
1

We get

Pr(t € lz) > Pr (&, and &,) > Pr(s = s9) Pr (&, and &,|s = s0)
1

1
> iPr (Euls = s0) Pr(&E|s = s0) > 0 (7) :

]

Exercise 3. The set Z might be equal to & in our proof, then random variables &, = d(u, Z)
are not well defined. Show how to fix this problem.

Proof. There are many ways to fix this problem. For instance, we can add an extra point z
to the metric space X, and define d(u, zo,) = 2 diam(X), where diam(X) = max, yex d(u,v).
Then construct the set Z as before, except that always add x,, to Z. Thus we ensure that
Z # @. In other words, we can define ¢, as before if Z # @, and §, = 2diam(X) if Z = @.
The rest of the proof goes through without any other changes. O

The proof of Bourgain’s theorem provides an efficient randomized procedure for gener-
ating set Z. As presented here, this procedure gives an embedding only in L,(2, 1) and
not in £)Y. We already know that if a set of n points embeds in L, (€2, 1) with distortion D

then it embeds in EI(,Z) with distortion D. However, in fact, we need only N = O((logn)?)
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dimensions: for every value of s € {1,...,l} we make O(logn) samples of the set Z. Then
the total number of samples equals ©((logn)?). Using the Chernoff bound, it is easy to show
that the distortion of the obtained embedding is O(logn) w.h.p.

Fact 2.5 (Matousek). Let D, , be the smallest number D such that every metric space on n
points embeds in £, with distortion at most D, ,. Then

Dy, = © (logn) '
p
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