Problem Set 1 Computational and Metric Geometry You can discuss homework problems with other students, but you must write solutions on your own. This homework is due on Monday, February 6. **Definition.** The ℓ_{∞} distance between two points $u=(u_1,u_2)$ and $v=(v_1,v_2)$ is equal to $||u-v||=\max(|u_1-v_1|,|u_2-v_2|)$. The ℓ_{∞} distance between two sets of points $U\subset\mathbb{R}^2$ and $V\subset\mathbb{R}^2$ is $$d(U,V) = \inf_{u \in U, v \in V} \|u - v\|_{\infty} = \inf_{u \in U, v \in V} \max(|u_1 - v_1|, |u_2 - v_2|).$$ **Problem 1.** We are given a set of n points in the plane. Design an algorithm that finds a pair of points with maximum ℓ_{∞} distance in time O(n). Prove the correctness of your algorithm. **Problem 2.** Design an algorithm that given a set of n axis–parallel rectangles in the plane finds a pair of rectangles with minimum ℓ_{∞} distance in time $O(n \log n)$. Prove the correctness of your algorithm. Partial credit: Solve the following simpler problem for a partial credit. Design an algorithm that given a set of n axis–parallel rectangles in the plane and a parameter t finds a pair of rectangles with ℓ_{∞} distance less than t in time $O(n \log n)$. If there is no such pair of rectangles, the algorithm should output that. Prove the correctness of your algorithm. **Problem 3.** Design an algorithm for the following problem. The algorithm is given a set \mathcal{C} of m circles and a set \mathcal{P} of n points in \mathbb{R}^2 . A circle in \mathcal{C} may lie within another circle in \mathcal{C} , but no two circles may intersect. The algorithm must report all circles $C \in \mathcal{C}$ that contain at least one point from \mathcal{P} in time $O((m+n)\ln(m+n))$. Prove the correctness of your algorithm. Figure 1: In this example, the algorithm must report circles shown in violet.