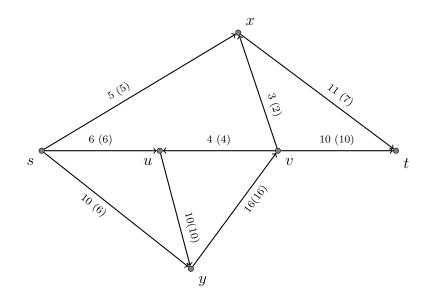
Homework Assignment 2


TTIC 31010

January 28, 2013

Problem 1. Let G = (V, E) be an arbitrary directed graph, with a source s, a sink t, and a positive integer capacity c(e) on every edge $e \in E$. Decide whether each of the following statements is true or false. If a statement is true, give a proof, and if it is false, show a counterexample.

- If all capacities c(e) are even, then the value of the maximum flow is even.
- If all capacities c(e) are odd, then the value of the maximum flow is odd.
- If f is a maximum s-t flow in G, then f saturates every edge in out(s) with flow. That is, for each $e \in out(s)$, f(e) = c(e).

Problem 2. Consider the flow network G shown in the figure below. For every edge e, its capacity c(e) and its flow value f(e) are written next to the edge (f(e) appears in parentheses).

Part a. Is the flow f a maximum flow in the graph? Prove your answer. **Part b.** What is the maximum flow value? Prove your answer.

Problem 3. Let G = (V, E) be a directed graph, with source $s \in V$, sink $t \in V$, and non-negative edge capacities $\{c(e)\}$. Let $f : E \to \mathbb{R}_{\geq 0}$ be a maximum flow in G. Let G_f be the residual graph. Denote by S the set of nodes reachable from s in G_f and by T the set of nodes from which t is reachable in G_f . That is,

$$S = \{u : \text{ there is a directed path from } s \text{ to } u \text{ in } G_f\},\$$
$$T = \{v : \text{ there is a directed path from } v \text{ to } t \text{ in } G_f\}.$$

Prove that $V = S \cup T$ if an only if G has a *unique s-t* minimum cut (an *s-t* cut whose capacity is strictly less than the capacity on any other *s-t* cut).