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Abstract

The goal of this work is to find all people in archive
films. Challenges include low image quality, motion blur,
partial occlusion, non-standard poses and crowded scenes.
We base our approach on face detection and take a track-
ing/temporal approach to detection. Our tracker operates
in two modes, following face detections whenever possi-
ble, switching to low-level tracking if face detection fails.
With temporal correspondences established by tracking,
we formulate detection as an inference problem in one-
dimensional chains/tracks. We use a conditional random
field model to integrate information across frames and to
re-score tentative detections in tracks. Quantitative eval-
uations on full-length films show that the CRF-based tem-
poral detector greatly improves face detection, increasing
precision for about 30% (suppressing isolated false posi-
tives) and at the same time boosting recall for over 10%
(recovering difficult cases where face detectors fail).

1. Introduction

Finding people is an important problem in computer vi-
sion and it offers an abundance of intellectual challenges,
including, but not limited to, pose variation, self-occlusion
and clothing. Archive films, such as Casablanca (1942),
provides a particularly interesting setting: a quick look at
the examples in Figure 1 would reveal several difficulties
that are typical for these footages, such as low image qual-
ity, lack of color, frequent occlusion and crowded scenes.

Face detection is a natural starting point for analyzing
these films: most of the time, faces of the actors and ac-
tresses are visible, either in a frontal or a profile view; only
occasionally are they occluded or turn around and show the
audience the back. In Figure 2(a) we show face detection re-
sults from the popular face detector of Viola and Jones [38].
Despite poor image quality, face detection performs reason-
ably well, finding most frontal faces under normal lighting
conditions. Profile and rear views are problematic, how-
ever; and many false detections are present.

Figure 1. Archive films such as Casablanca (1942) offer an in-
teresting and challenging setting for finding and tracking people.
In this work we seek to find all people in such archive films, the
groundtruth of which is visualized in these examples.

(a) single-frame detection (Viola-Jones)

(b) temporal detection through tracking
Figure 2. (a) Single-frame face detection (Viola-Jones) for three
frames in Casablanca. It misses several people while introducing
a fair number of false positives. (b) By tracking people through
the scene, we integrate information temporally and achieve much
better detection. Here we show top-ranked tracks indexed by color.

Temporal coherence comes to help where per-frame de-
tection fails: real occurrences of people form consistent
tracks in a video, while false positives tend to be isolated. If
we can reliably track people through time, we can integrate
information temporally and use it to find people missed by
the single-image detector and to suppress false positives, as
illustrated in Figure 2(b).

Tracking in these archive films, of course, is a highly
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non-trivial problem itself. Low-level tracking is likely to
fail because of the large variations in scale and appearance
as well as partial occlusions. We take a detection-based
strategy: whenever face detection is possible, we follow de-
tections, hence avoiding the problem of modeling and up-
dating appearance; we only switch to low-level tracking in
cases where face detection is near-impossible, such as when
a person turns around 180 degrees.

Once tracking has established temporal correspon-
dences, detection becomes a one-dimensional inference
problem on the tracks. We use a conditional random field
(CRF) [23] to integrate information across frames. Quan-
titative evaluations on full-length films show that tempo-
ral integration greatly improves detection accuracy while at
the same time finds people under difficult pose/illumination
conditions. We also show the CRF-based integration out-
performs several baselines including a local SVM classifier.

2. Related Work

Finding people in images is a broad field of research that
can be roughly grouped into three areas: face detection,
part-based detection, and whole-body template matching.
Face detection is a well understood problem and efficient
solutions have been found that perform really well under
normal pose/illumination conditions [32, 38, 33]. Face de-
tection under profile or non-standard views remains chal-
lenging [16, 40].

For body detection, when pose variation is limited (e.g.
pedestrians) , template matching has been successful [14,
39, 11]. Part-based detection, explicitly modeling a person
as an articulated object, can naturally tolerate pose varia-
tion [13, 19, 28] but becomes less robust. When only the
upper body is visible, detection and pose estimation is diffi-
cult and largely unsolved [34, 24].

Tracking is a huge research field itself. The work of
Lucas and Kanade [26] remains popular for low-level fea-
ture tracking. Linear systems and Kalman Filtering [15]
are standard techniques to model dynamics. Particle Filter-
ing has been shown to handle well non-Gaussian and multi-
modal distributions [20]. Region tracking can be made
robust when there is enough information in color appear-
ance [10]. Online appearance modeling has been shown to
be useful [21, 9].

If we know we are tracking a person, there are several
sources of knowledge that can be incorporated. Face track-
ing is popular and well explored (e.g. [17, 41, 25]). A lot of
works in face tracking focus on facial features and expres-
sions (e.g. [6]). Head tracking has been shown to be robust
to changes in head pose and illumination [4]. On the other
hand, tracking can be combined with a body model, either
template-based [18, 5, 36, 29, 42] or part-based [7, 31].
Body tracking remains difficult under partial occlusions.

With efficient face detectors available, recently there

has been an increasing interest in studying faces in large
datasets or video (e.g. [3, 2, 12, 35, 30]). Most of these
works focus on face identification rather than detection.
Many take a clustering view and avoid tracking.

The work of Choudhury, Mikolajczyk and Schmid [8]
presents an interesting and most relevant perspective. They
use a particle filter to accumulate face detection probabil-
ities temporally, and show that it improves detection per-
formance. They use scores from a face detector only and
there is no low-level appearance-based tracking. In partic-
ular, their approach only tolerates very short gaps between
detections. Finding people in full-length archive films is
more challenging and calls for a closer collaboration be-
tween detection and tracking.

3. Tracking People using Detection

Our tracking approach combines face detection and low-
level tracking. The tracker operates in two modes: either a
detection step, or a track step. Whenever the tracker can find
and match a face detection, it follows the detection. This
makes tracking robust to variations in scale, appearance and
pose. If no face detection is available, the tracker has to rely
on pixel appearance and continues tracking at low-level.

Low-level tracking is a well studied problem and many
approaches have been proposed to reliably track objects
(e.g. [20, 10, 21]). Our goal here is slightly different: we
are not particularly interested in long-range tracking at low-
level; instead our goal is to use low-level tracking to fill in
gaps between face detections. Most of the time the gaps are
short and tracking is easy. Only rarely people turn around
or are occluded completely; in such cases tracking is very
hard and it is unclear how much it affects the final detection
performance. Based on these considerations, we choose to
use methods that are simple and efficient: we use normal-
ized correlation to track appearance, and use linear dynam-
ics models and Kalman Filtering for smoothing.

3.1. Single-frame Face Detection

The initial step of our approach is to apply to each indi-
vidual frame the Viola-Jones cascade face detector [38], as
implemented in the Intel OPENCV library [1]. Both frontal
and profile detectors are used. To compensate for poor im-
age quality, we keep all the face candidates that pass into
the last cascade (as suggested in [38] ), effectively setting a
very low threshold.

For each detection F , the real-valued output of the last
cascade is an indicator of the “saliency” of the detection.
We convert the output f into a log-likelihood score:

L(f) = log [Pf (face|f)/(1 − Pf (face|f))]

where the empirical distribution Pf is estimated from data
(being approximately Gaussian). We set a minimum of −3.



3.2. A Linear System for Tracking

We use a first-order linear dynamics model for position,
and a zeroth order model for scale. Let {xt,vt, st} be the
position, velocity and scale of a face being tracked, we have

xt+1 = xt +vt+ N (0;Qx)
vt+1 = vt + N (0;Qv)
st+1 = st + N (0;Qs)

We assume that x̃t and s̃t are the observations of xt and st,
with additive Gaussian noises of covariance Rx and Rs.

The classical Kalman Filter [15] provides an optimal es-
timate of the linear system. For each track, at time t we have
model predictions

{
x̂t|t−1, ŝt|t−1

}
, based on observations

from time 1, · · · , t − 1. We then search for face detections
around the position x̂t|t−1 and scale ŝt|t−1.

For any face detection F found in the initial detection
stage, let xf be its position and sf be its scale. we use
a fixed threshold αmatch: F is a match for this track if
‖x̂t|t−1 − xf‖∞ < αmatchŝt|t−1 and |ŝt|t−1 − sf | <
αmatchŝt|t−1. αmatch is set to 0.3 in our experiments.

At any time, there are potentially a large number of ac-
tive tracks competing for face detections. Only a few are
“good” tracks that have been reliably tracked; many are spu-
rious ones. We would like the “good” tracks to have priority
in matching detections. To capture this intuition, We use a
greedy strategy for data association: we assign a track score
to each active track, and let the tracks match and select face
detections in the descending order of their scores. We score
an active track by counting Ndetect, the number of detec-
tions it has matched and accumulated.

3.3. Low-level Tracking with Correlation

In archive films, there are many situations in which a
face detector could fail: the image quality may be poor;
the lighting may be wrong, or the person may be facing
away. If, at time t, an active track cannot find and match
a detection, we switch to a low-level tracking mode, and
use image pixels to continue tracking. We maintain a head
template Thead, and use normalized correlation to search for
the best appearance-based match in the image. Specifically,
we search in a small window (10 × 20 pixels) around the
predicted location x̂t|t−1. The best matched location is the
new observation x̃t.

After incorporating the observation in the current frame,
we have the updated estimates x̂t|t and ŝt|t, based on all
observations at time 1, · · · , t. Let I(x̂t|t, ŝt|t) be the image
patch at location x̂t|t and size ŝt|t. If t is a detection step,
we set Thead = I(x̂t|t, ŝt|t) (i.e. completely trusting the
current detection). Otherwise, if t is a track step, we update
the template linearly to be Thead = (1 − βupdate)Thead +
βupdateI(x̂t|t, ŝt|t). βupdate is set to be 0.1.

3.4. Initialization and Termination

Our initialization strategy is simple: whenever a face de-
tection in the current frame cannot be matched to any of the
active tracks, we use it to start a new track. A more conser-
vative strategy would be to start a track only at highly reli-
ably detections. It would be less prone to error but may miss
many true faces and may require tracking both forward and
backward. We keep tracking in the on-line fashion and rely
on the greedy data association to tolerate spurious tracks.

To check for termination, we keep track of Ndetect, the
number of detection steps, and Ntrack, the number of corre-
lation track steps. We terminate a track if Ntrack/Ndetect >
1.5. Most spurious tracks are terminated in a few steps.

3.5. Extensions

To improve our simple correlation-based tracker, we use
two extensions: first, we try to capture the intuition that,
during a track step, a low correlation score indicates low
confidence in the observation. Therefore, if t is a track
step and the maximum correlation score is Ct, we add an
additional term to the observation covariance Rx, using
Rx(t) = Rx + Rcorr ∗ (1 − Ct). We set Rcorr = 100.

In a second extension, we try to compensate for the drift-
ing issue in low-level tracking [27]. Instead of one template
for the head, we use two templates T 0

head and T 1
head. We up-

date one of the templates, say T 1
head, as normal. The other

template T 0
head is kept fixed during track steps. The cor-

relation score Chead becomes a weighted average of two,
w0C0

head + (1 − w0)C1
head. We set w0 to be 0.75.

4. Detection through Temporal Integration

In the previous section we have discussed our simple
tracker combining per-frame face detection and correlation-
based tracking. Tracking establishes temporal correspon-
dences across frames, and we will now explore this corre-
spondence to integrate information over time.

Previous approaches to face detection and tracking take
a simplified view of temporal reasoning: either tracking is
successful, and every face in the track is declared a positive;
or it is found unsuccessful, and the whole track is discarded.
They typically put a stringent condition on tracking to en-
sure no error in temporal correspondence. For example, the
work of [8] allows a maximum of five track steps.

In our setting of archive films, it is fairly common for
the face detector to miss a person for a long period of time.
As we observe from the examples in Figure 3, low-level
tracking finds temporal correspondences under many diffi-
cult conditions, and long-range correspondences can be suc-
cessful. Of course, the longer we track without correction
from a detection, the less reliable the correspondence be-
comes. Any model of temporal integration would have to
take this uncertainty into account.



#1 #48 #203 #334 #378

#1 #48 #81 #347 #373
Figure 3. Tracking examples combining detection and correlation tracking. A detection step (when the track finds and matches a face
detection close by) is shown in green, and a track step (using correlation) is shown in red. First row: #1, initial detection; #48, detection
avoids drifting under poor image quality and background change; #203, the face, under a strange pose, is not detected, and the tracker
switches to correlation tracking; #334, tracking continues when the head turns 180 degrees; #378, a detection corrects tracking and fixates
it back on the person. Second row: a dynamic model helps tracking under occlusions. The track is lost after #48 and restarts at #81. After
that, the track successfully goes through the shot, under severe occlusions such as in #347-#373.

(a)

(b)
Figure 4. (a) Tracking establishes temporal correspondences between tentative faces, organizing them into linear chains. Temporal co-
herence can then be explored to improve detection and suppress noise. (b) We use a conditional random field (CRF) model for temporal
integration. An observation Yt affects both the likelihood for the binary label Xt and the coupling between adjacent labels Xt−1 and Xt.
A CRF model provides a principled way to model the couplings and to integrate local evidences over time.

We formulate temporal integration as a probabilistic in-
ference problem. For each step t in a track, we associate
a binary random variable Xt, Xt = 1 if it predicts a per-
son, and Xt = 0 if not1. Tracking provides temporal corre-
spondence that couples these variables in a one-dimensional
track/chain. Linear-chain probabilistic models are well-
understood and widely used. Many can readily apply here.

4.1. Conditional random field for temporal scoring

We develop a one-dimensional conditional random field
(CRF) [23] to model temporal integration and to detect peo-
ple in tracks. Consider a track of length n: let X = {Xt}
be the hidden variables, and let Y = {Yt} be the observa-
tions. We define the joint distribution of {Xt} as follows:

P (X|Y) =
1

Z(Y; Λ)
exp

{∑
λkfk (Xt−1,Xt,Yt)

}

1Note that faces in a single track may take on different labels.

where Λ = {λk} is a set of weights for the features {fk},
and Z(X; Λ) is the normalization constant or the partition
function (see Figure 4). Inference in this one-dimensional
CRF model is solved by belief propagation.

Each observation Yt has several components: δt, = 1
if t is a detection step, = 0 if a track step; Lt, the face
saliency/likelihood score from Viola-Jones, defined when
δt = 1; and Ct, the correlation score, defined when δt = 0.

We use two sets of features in the CRF model. One set
of features relates the observation Yt to the hidden variable
Xt: we use f1 = 1(Xt=1); f2 = δt1(Xt=1); and f3 =
Ltδt1(Xt=1), in which we incorporate detection scores. We
also add a prior on the first and last nodes of the track, f0 =
1(X0=1) + 1(Xn=1).

The other set of features models the interactions or
couplings between adjacent variables: we let f4 =
δt1(Xt−1=Xt), f5 = (1− δt)1(Xt−1=Xt), and f6 = Ct(1−
δt)1(Xt−1=Xt). By introducing these features, we make the
coupling between Xt−1 and Xt dependent on the observa-



tions δt and Ct. Hence the model is capable of representing
a stronger coupling during a detection step (δt = 1) and a
weaker coupling during a track step (δt = 0). The coupling
during a track step may also be dependent on the correlation
score Ct; the lower Ct is, the less confident we are about the
temporal coherence between t − 1 and t.

Tracks co-exist in the same frames, so naturally there are
interactions. One such interaction is mutual exclusion: un-
less being severely occluded, a person spans a certain zone
of support, and it is unlikely to find another person within
his zone. For example, in Figure 2(a), if we have detected
the lady at the center, we would have a lower confidence for
the detections on her dress.

It would be hard to model such inter-track relations ex-
actly, and it would greatly increase the computational cost.
Hence we use an approximation: we keep each track sepa-
rate, and add an additional observation et for mutual exclu-
sion. Let x(i)

t be the center location of face t in track i. If
there exists another track j such that x(i)

t falls in the spatial
support of x(j)

t′ (defined by two rectangles for head-body),
and if j is a “better” track (here we approximate the score
of a track with Ndetect, the number of detections), we set
the conflict variable e

(i)
t = 1, and introduce a new feature

f7 = etδt1(Xt=1) in track i.
One nice property of the conditional random field model

is that it comes with an elegant solution for parameter esti-
mation, with the gradient of the log-likelihood being a dif-
ference between two expectations, one under the empirical
distribution, and one under the model. Working with full-
length films, we only have groundtruth labels on a sparse set
of frames. Nevertheless, we can still compute the gradient
and maximize the log-likelihood for the partial labeling. (A
similar example of partial labeling can be found in [37]).

Let U be the set of all indices {1, · · · , n}, S be the subset
of U that we have groundtruth on, and S̄ = U\S. Let xS

be the groundtruth labels for the variables XS . Omitting Y
in the formulas for clarity, the likelihood P (XS = xs) is
the marginalization over the variables in S̄:

P (xS) =
∑

Xt:t∈S̄

1
Z(Λ)

e
P

λkfk =

∑
Xt:t∈S̄ e

P
λkfk

∑
Xt:t∈U e

P
λkfk

The gradient of the log-likelihood L(xS) = log P (xs) w.r.t
to a parameter λq is

∂

∂λq
L(xS) =

∑
Xt:t∈S̄ fqe

P
λkfk

∑
Xt:t∈S̄ e

P
λkfk

−
∑

Xt:t∈U fqe
P

λkfk

∑
Xt:t∈U e

P
λkfk

= 〈fq〉 |XS=xS
− 〈fq〉

where the second term is the expectation of fq, and the first
is the expectation of fq conditioned on the observed labels
xS . Both expectations can be computed using belief propa-
gation. We use stochastic gradient to maximize L(xS).

4.2. Baseline models

In our experiments we compare our CRF temporal in-
tegration model to several baseline scoring schemes. One
obvious choice of a baseline is Ndetect, the number of de-
tections accumulated in a track. This matches the intuition
that the longer a track is (counting actual detections), the
more likely it is a consistent track of people. We have used
it as an approximate score in computing mutual exclusion.
This score becomes less meaningful when comparing tracks
from different shots, as the lengths of the shots vary greatly.

Another obvious choice is the average face score in a
track, L̄ = (

∑
Ltδt)/Ndetect. This will boost the score for

weak detections in a track, by combining evidences from
strong detections. This score ignores the length of the track.

One may also try putting these two together, by comput-
ing the sum of the face scores Lsum =

∑
Ltδt. This score

favors both long tracks and tracks with strong face detec-
tions. On the other hand, it has a strong bias toward long
tracks and ignores any of the track steps.

Finally, we can combine the features above in a local
classification model using a support vector machine (SVM).
The features Ndetect, L̄ and Lsum are all global features,
i.e. defined on entire tracks; we use another global fea-
ture Ntrack, the number of track steps. We also include
local features, defined at each t, including δt, Lt, et and Ct.
These features are combined in a SVM with a linear kernel,
using SV M light [22].

5. Experiments

We conduct our experiments on three full-length black-
white archive films: Casablanca (1942), 147600 frames of
resolution 464 × 640; Kind Hearts and Coronets (1949),
153478 frames of resolution 448 × 655; and The Great
Dictator (1940), 215405 frames of resolution 480 × 720.
Human subjects mark groundtruth faces in a subset of the
frames (every 50th in Casablanca, and every 100th in the
other two films). We use the first half of Casablanca for
training and use the rest for testing.

To avoid tracking across shots, we use two simple fea-
tures to locate shot boundaries: normalized correlation be-
tween adjacent frames, and the derivative of the normalized
correlation. Casablanca is automatically divided into 744
shots. The other two films are partitioned similarly.

The groundtruth faces are too sparse (in time) to be use-
ful for training our tracking algorithm. Most of the param-
eters in our tracking model are covariances of the transi-
tion and observation models; standard linear system theory
estimates them using Expectation-Maximization. We train
the parameters as follows: first we start with a set of hand-
set parameters. Given the initial tracking results, we use
“good” tracks (tracks with length > 50) to estimate the sys-
tem covariances Q. Finally, we use all the tracks to learn



the observation covariances R.
We use groundtruth labels to train our CRF model. We

again use “good” tracks (length > 50) only in training.
Stochastic gradient works well in our experiments, converg-
ing much faster than conjugate gradient. Despite the sparse-
ness in labeling, the parameters learned are quite sensible:
we find that coupling is stronger in a detection step, with
λ = 7.77, comparing to λ = 3.69 in a track step; we also
find a positive dependence between coupling and correla-
tion score.

We evaluate the performance of a face/person detector by
Precision-Recall. A detection matches to a groundtruth face
if the overlapping area is at least 40% of both rectangles. We
vary the threshold on the detector output, computing recall
as the percentage of groundtruth people being found, and
precision as the percentage of detections that are matched
to groundtruth.

In Figure 5(a) we show the quantitative evaluation of our
CRF-based temporal integration detector on Casablanca.
We greatly improve the detection precision,from about 60%
to 90%, while also improving recall from 58% to 70%.
In Figure 5(b), we show that the CRF-based integration
model indeed outperforms the baseline schemes, showing
that temporal integration in tracks is a non-trivial problem.

In Figure 6, we show the experimental results on the
other two films. We use the same tracking and integration
parameters as trained from Casablanca. Again we see that
temporal integration offers large improvements in both pre-
cision and recall. All the precision-recall curves look qual-
itatively the same.

In Table 1 we list the average precision (area under P/R
curves), up to 70% recall, for all methods tested. The em-
pirical results on the three films, hundreds of thousands of
frames in each, are surprisingly similar: in all three cases,
temporal integration improves average precision by about
30%, and improves asymptotic recall by about 12%.

The CRF-based scoring model assigns a score for each
face/person in each track. We can compute a track score by
averaging scores of the faces in it. In Figure 7 we show top-
ranked tracks indexed by color. Comparing to single-frame
detection (see the examples in Figure 2), we are able to find
most people in the scenes and rank them above false detec-
tions, in challenging situations such as low image quality,
motion blur, non-standard pose and partial occlusion. Com-
plete tracks are available as supplementary materials.

6. Discussions

In this work we have studied the challenging problem
of finding people in archive films. We take a temporal in-
tegration approach, exploring the synergies between face
detection and tracking. Detection makes tracking robust,
working under occlusion, pose/illumination variation and

poor image quality. Tracking establishes temporal corre-
spondences and a one-dimensional CRF model effectively
integrates information along tracks, greatly improving both
the precision and recall of face detection.

We have kept the components of our approach conceptu-
ally simple. There are a number of natural extensions, such
as employing a sophisticated low-level tracking (e.g. com-
bining region tracking with local features) or building better
online appearances models.

The asymptotic recall of our detector is about 70% in all
three films. As we can see in Figure 1, there are many peo-
ple in these films that would be very difficult to locate. It re-
mains to be seen how far we could push the recall rate with-
out lowering precision much. One would probably need a
more semantic understanding of the scenes.
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Figure 5. Quantitative evaluations on Casablanca (1942), using precision-recall: (a) we compare our CRF temporal integration approach
to the Viola-Jones face detector (which we use as input). Temporal integration greatly improves the detection: for a wide range of recall
(0%−70%), the average precision increases from about 60% to 90%. We also increase the asymptotic recall from 58% to 70%, suggesting
that the tracking algorithm finds a fair number of people where face detector fails (even with a low threshold). (b) We compare the CRF
model to a few baselines, including a local SVM classifier using a combination of local and global features. The CRF model performs the
best, especially at the high-recall range (i.e. the hard cases).
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(a) Kind Hearts and Coronets (b) The Great Dictator
Figure 6. Further evaluation of tracking-based detection on two other films, Kind Hearts and Coronets (1949) and The Great Dictator
(1940). We show precision-recall curves for both the single-image Viola-Jones detector and the CRF-based temporal detector. Just as in
Casablanca, temporal integration greatly improves detection performance, about 30% increase in precision and 12% in recall.
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