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Abstract

In matrix completion, we are given a matrix where the valuesnty some of the

entries are present, and we want to reconstruct the missieg} dMuch work has
focused on the assumption that the data matrix has low raekpidpose a more
general assumption based on denoising, so that we expétt¢halue of a miss-
ing entry can be predicted from the values of neighboringgoiWe propose a
nonparametric version of denoising based on local, itdrateraging with mean-
shift, possibly constrained to preserve local low-rank ificdeh structure. The few

user parameters required (the denoising scale, numbeigifbws and local di-

mensionality) and the number of iterations can be estimbyecross-validating

the reconstruction error. Using our algorithms as a posgssing step on an
initial reconstruction (provided by e.g. a low-rank methode show consistent
improvements with synthetic, image and motion-captura.dat

Completing a matrix from a few given entries is a fundameptablem with many applications in
machine learning, computer vision, network engineerimg, @ata mining. Much interest in matrix
completion has been caused by recent theoretical breaighsan compressed sensing [1, 2] as well
as by the now celebrated Netflix challenge on practical ptish problems [3, 4]. Since completion
of arbitrary matrices is not a well-posed problem, it is nfeesssumed that the underlying matrix
comes from a restricted class. Matrix completion modelatralways assume a low-rank structure
of the matrix, which is partially justified through factor aels [4] and fast convex relaxation [2], and
often works quite well when the observations are sparsevandisy. The low-rank structure of the
matrix essentially asserts that all the column vectorsherdw vectors) live on a low-dimensional
subspace. This assumption is arguably too restrictive faiblpms with richer structure, e.g. when
each column of the matrix represents a snapshot of a serioosiupted motion capture sequence
(see section 3), for which a more flexible model, namely a@dimanifold, is more appropriate.

In this paper, we present a novel view of matrix completiosdahon manifold denoising, which
conceptually generalizes the low-rank assumption to curaanifolds. Traditional manifold de-
noising is performed on fully observed data [5, 6], aimingémd the data corrupted by noise back
to the correct surface (defined in some way). However, witlirgel proportion of missing entries,
we may not have a good estimate of the manifold. Instead,avevgith a poor estimate and improve
it iteratively. Therefore the “noise” may be due not justritrinsic noise, but mostly to inaccurately
estimated missing entries. We show that our algorithm camdiivated from an objective purely
based on denoising, and prove its convergence under sondéions. We then consider a more
general case with a nonlinear low-dimensional manifold asel a stopping criterion that works
successfully in practice. Our model reduces to a low-rankehahen we require the manifold to
be flat, showing a relation with a recent thread of matrix cletipn models based on alternating
projection [7]. In our experiments, we show that our demgjgbased matrix completion model can
make better use of the latent manifold structure on botfi@sti and real-world data sets, and yields
superior recovery of the missing entries.

The paper is organized as follows: section 1 reviews nompetréc denoising methods based on
mean-shift updates, section 2 extends this to matrix camopléy using denoising with constraints,
section 3 gives experimental results, and section 4 dissustated work.



1 Denoising with (manifold) blurring mean-shift algorithm s (GBMS/MBMS)

In Gaussian blurring mean-shift (GBMS), denoising is perfed in a nonparametric way by local
averaging: each data point moves to the average of its neiglfto a certain scale), and the process
is repeated. We follow the derivation in [8]. Consider a datdx,}Y_, c R” and define a
Gaussian kernel density estimate

1 N
p(X) = N Z GU(X, Xn) (1)
n=1

with bandwidthoe > 0 and kernelG, (x,x,) o exp (— 3(|[x — x,|| /o)?) (other kernels may
be used, such as the Epanechnikov kernel, which resultsairsesffinities). The (non-blurring)
mean-shift algorithnmearranges the stationary point equatigp(x) = 0 into the iterative scheme
x(T+D) = £(x(M) with

XD = f(x() = immxm)x N Ol 1 (G x)/ol") )
n=1 25:1 exp (7 [|(x() *X"’)/UHz)

This converges to a mode pffrom almost every initiak € R”, and can be seen as taking self-
adapting step sizes along the gradient (sincentean shiftf(x) — x is parallel toVp(x)). This
iterative scheme was originally proposed by [9] and it oriatézns of it have found widespread
application in clustering [8, 10-12] and denoising of 3Driaets (surface fairing; [13, 14]) and
manifolds in general [5, 6].

The blurring mean-shift algorithmapplies one step of the previous scheme, initialized froemev
point, in parallel for all points. That is, given the data¥et= {x,...,xx}, for eachx, € X

we obtain a new poing,, = f(x, ) by applying one step of the mean-shift algorithm, and then we
replaceX with the new dataséX, which is a blurred (shrunk) version &. By iterating this process
we obtain a sequence of datas&s’, X1, ... (and a corresponding sequence of kernel density
estimate(? (x), p("(x), ...) whereX(©) is the original dataset ar (") is obtained by blurring
X(7=1) with one mean-shift step. We can see this process as margriize following objective
function [10] by taking parallel steps of the form (2) for bgmint:

N 1 N N B R
BX) =Y pxn) = 5 Y. Golxaxn)x Y e dl==2I (3)
n=1 n,m=1 n,m=1

This process eventually converges to a dat&sét) where all points are coincident: a completely
denoised dataset where all structure has been erased. g blgd8], this process can be stopped
early to return clusters (= locally denoised subsets of tsisinthe number of clusters obtained is
controlled by the bandwidth. However, here we are interested in the denoising behaf{&BdS.

The GBMS step can be formulated in a matrix form reminiscérspectral clustering [8] aX =

X P whereX = (x1,...,xy)isaD x N matrix of data pointsW is the N x N matrix of Gaussian
affinities wy,,, = Gy (Xn,Xm); D = diag (Efj:l Wpm) is the de%ree matrix; ant = WD~ ! is
an N x N stochastic matrix;p,,, = p(n|xm,) € (0,1) and> ", pn,m = 1. P (or rather its
transpose) is the stochastic matrix of the random walk ine@lyf15], which in GBMS represents
the posterior prlobabilitiles of each point under the kermegisity estimate (1)P is similar to the
matrix N = D~z WD~z derived from the normalized graph Laplacian commonly usexpectral
clustering, e.g. in the normalized cut[16]. Since, by thedteFrobenius theorem [17, ch. 8], all left
eigenvalues oP (X) have magnitude less than 1 except for one that equals 1 asddsiated with
an eigenvector of constant entries, iteratfig= X P (X) converges to the stationary distribution of
eachP(X), where all points coincide.

From this point of view, the produg = X P(X) can be seen as filtering the dataXewith a data-
dependent low-pass filtd(X), which makes clear the denoising behavior. This also suggssg
other filters [12]X = X ¢(P(X)) aslong ag(1) = 1 and|¢(r)| < 1forr € [0, 1), such as explicit
schemes)(P) = (1 — n)I + nP for n € (0, 2], power schemes(P) = P" forn = 1,2,3... or

implicit schemes)(P) = ((1 + n)I — nP)~! forn > 0.

One important problem with GBMS is that it denoises equallgli directions. When the data lies
on a low-dimensional manifold, denoising orthogonally t@emoves out-of-manifold noise, but



denoising tangentially to it perturbs intrinsic degreefreédom of the data and causes shrinkage of
the entire manifold (most strongly near its boundary). Tevpnt this, thenanifold blurring mean-
shift algorithm (MBMS]5] first computes a predictor averaging step with GBMS, dnashtfor each
pointx,, a corrector projective step removes the step directionlidgin the local tangent space of
x,, (obtained from local PCA run on its nearest neighbors). In practice, both GBMS and MBMS
must be stopped early to prevent excessive denoising aniflatebdistortions.

2 Blurring mean-shift denoising algorithms for matrix completion

We consider the natural extension of GBMS to the matrix cetigrh case by adding the constraints
given by the present values. We use the subindex notaipnand X to indicate selection of the
missing or present values of the mat®x, . y, whereP Cc U, M =U \ P andUf = {(d,n): d =

., D, n=1,...,N}. The indicesP and valueX, of the present matrix entries are the data
of the problem. Then we have the following constrained ojzi@tion problem:

maXE Z Go(Xn,Xm) St Xp=Xp. 4)

n,m=1

This is similar to low-rank formulations for matrix compilen that have the same constraints but
use as objective function the reconstruction error withve-lank assumption, e.¢ X — ABX||?
with Ap«r, BrLxp andL < D.

We initialize X , to the output of some other method for matrix completionhsag singular value
projection (SVP; [7]). For simple constraints such as ogiradient projection algorithms are attrac-
tive. The gradient off wrt X is a matrix of D x N whosenth column is:

N
Vx” = 2 Z e || s ” (Xm - Xn) o8 %P(Xn) <_Xn + Z p(m|xn>xm> (5)

m=1 m=1

and its projection on the constraint space is given by zgrasentries having indices i®; call
IIp this projection operator. Then, we have the following stefengtha > 0 along the projected
gradient:

X)) = X0 4 ollp(Vx E(X7)) = X7 = X) + o (Hp(VxE(X(T))))M 6)

which updates only the missing entri€s,,. Since our search direction is ascent and makes an angle
with the gradient that is bounded away freri2, and E' is upper bounded, continuously differen-
tiable and has bounded Hessian (thus a Lipschitz contingiaatient) inR N >, by carrying out a line
search that satisfies the Wolfe conditions, we are guardictaevergence to a local stationary point,
typically a maximizer [18, th. 3.2]. However, as reasonddrlave do not perform a line search
at all, instead we fix the step size to the GBMS self-adaptiap size, which results in a simple
and faster algorithm consisting of carrying out a GBMS stefXo(i.e., X"+ = X P(X (7))
and then refillingXp to the present values. While we describe the algorithm invilaig for ease
of explanation, in practice we do not actually compute theMSBstep for allz 4, values, but only
for the missing ones, which is all we need. Thus, our algoritarries out GBMS denoising steps
within the missing-data subspacéVe can derive this result in a different way by starting from
the unconstrained optimization problemxx,, E(X) =3, _| G, (xn, %) (equivalent to (4)),
computing its gradient wiK p, equating it to zero and rearranging (in the same way the rakiin
algorithm is derived) to obtain a fixed-point iteration itieal to our update above.

Fig. 1 shows the pseudocode for our denoising-based maimpletion algorithms (using three
nonparametric denoising algorithms: GBMS, MBMS and LTP).

Convergence and stopping criterion As noted above, we have guaranteed convergence by simply
satisfying standard line search conditions, but a lineckear costly. At present we do not have

a proof that the GBMS step size satisfies such conditionspdeed that the new |teraﬁé

increases or leaves unchanged the objective, althoughweeleser encountered a counterexample.
In fact, it turns out that none of the work about GBMS that wewrabout proves that either: [10]
proves thatz (X(7+1)) < @(X()) for 0 < p < 1, wherea(-) is the set diameter, while [8, 12]



notes that?(X) has a single eigenvalue of value 1 and all others of magniessithan 1. While
this shows that all points converge to the same locationchvimdeed is the global maximum of (3),

it does not necessarily follow that each step decreases

GBMS (k, o) with full or k-nn graph: giveX p« n, M
repeat
forn=1,....N
N, < {1,..., N} (full graph) or
k nearest neighbors &f,, (k-nn graph)

Go (Xn:Xm)
6X’rb — —X’rL + Z’H’LEN” Zm’GNn Ga (xn,xm/)
end

X X + (0X)
until validation error increases
return X

mean-shift
step

X"L

move points’ missing entries

MBMS (L, k, o) with full or k-nn graph: giverX p n, M
repeat
forn=1,...,N
N, <« {1,..., N} (full graph) or
k nearest neighbors of, (k-nn graph)

Go (Xn,Xm)

Oxp = —Xpn + ZmGNn 2omien, Go (xn,xm/)xm
X, < k nearest neighbors of,
(1, Up) = PCA(X,,, L)
ox, + I-U,UNox,
end
until validation error increases
return X

mean-shift
step

estimate L-dim tangent space at x,,

subtract parallel motion

move points’ missing entries

LTP (L, k) with k-nn graph: giveX p, v, M
repeat
forn=1,...,N
X, < k nearest neighbors of,
(m,,,U,) < PCA(X,, L)
ox, + (I-U, U, —x,)
end
until validation error increases
return X

estimate L-dim tangent space at x,,

project point onto tangent space

move points’ missing entries

Figure 1: Our denoising matrix completion algorithms, lobse

However, the question of con-
vergence asr — oo has no
practical interest in a denois-
ing setting, because achieving
a total denoising almost never
yields a good matrix comple-
tion. What we want is to achieve
just enoughdenoising and stop
the algorithm, as was the case
with GBMS clustering, and as is
the case in algorithms for image
denoising. We propose to de-
termine the optimal number of
iterations, as well as the band-
width o and any other parame-
ters, by cross-validation. Specif-
ically, we select a held-out set
by picking a random subset of
the present entries and consider-
ing them as missing; this allows
us to evaluate an error between
our completion for them and the
ground truth. We stop iterating
when this error increases.

This argument justifies an algo-
rithmic, as opposed to an op-
timization, view of denoising-
based matrix completion:ap-

ply a denoising step, refill the
present values, iterate until the
validation error increasesThis

allows very general definitions
of denoising, and indeed a low-
rank projection is a form of de-
noising where points are not al-
lowed outside the linear man-
ifold. Our formulation using

the objective function (4) is still

Manifold Blurring Mean Shift (MBMS) and its particular caseuseful in that it connects our
Local Tangent Projection (LTR-nn graphg = oo) and Gauss- denoising assumption with the

ian Blurring Mean Shift (GBMSL = 0); see [5] for detailsN,,

more usual low-rank assumption

contains allV points (full graph) or only,,’s nearest neighborsthat has been used in much ma-
(k-nn graph). The index\! selects the components of its inputrix completion work, and jus-

corresponding to missing values. Parameters: denoisalg ¢
number of neighbors, local dimensionality’.

tifies the refilling step as re-
sulting from the present-data
constraints under a gradient-
projection optimization.

MBMS denoising for matrix completion Following our algorithmic-based approach to denois-
ing, we could consider generalized GBMS steps of the f&dm= X ¢(P(X)). For clustering,
Carreira-Perpian [12] found an overrelaxed explicit stépP) = (1 — n)I + nP with n =~ 1.25 to
achieve similar clusterings but faster. Here, we focusesdton the MBMS variant of GBMS that
allows only for orthogonal, not tangential, point motioniefined wrt their local tangent space as
estimated by local PCA), with the goal of preserving low-dimeional manifold structure. MBMS
has 3 user parameters: the bandwidtfor denoising), and the latent dimensionalityand the



number of neighborg (for the local tangent space and the neighborhood graph)pekial case

of MBMS calledlocal tangent projection (LTPjesults by using a neighborhood graph and setting
o = oo (so only two user parameters are neededindk). LTP can be seen as doing a low-rank
matrix completion locally. LTP was found in [5] to have ne@aaik good performance as the besh
several problems. MBMS also includes as particular casdd&8. = 0), PCA (k = N, 0 = 00),

and no denoisings(= 0 or L = D).

Note that if we apply MBMS to a dataset that lies on a linear ifaéh of dimensionalityd using

L > d then no denoising occurs whatsoever because the GBMS spaatan thed-dimensional
manifold and are removed by the corrector step. In practieen if the data are assumed noiseless,
the reconstruction from a low-rank method will lie close tt bot exactly on thel-dimensional
manifold. However, this suggests using largish ranks feddw-rank method used to reconstrixt
and lowerL values in the subsequent MBMS run.

In summary, this yields a matrix completion algorithm where apply an MBMS step, refill the
present values, and iterate until the validation errordases. Again, in an actual implementation
we compute the MBMS step only for the missing entrieXofThe shrinking problem of GBMS is
less pronounced in our matrix completion setting, becaleseamstrain some values not to change.
Still, in agreement with [5], we find MBMS to be generally stipeto GBMS.

Computational cost With a full graph, the cost per iteration of GBMS and MBMS($N2 D)
andO(N2D + N(D + k) min(D, k)?), respectively. In practice with high-dimensional datastbe
denoising results are obtained using a neighborhood gEpéd that the sums over points in egs. (3)
or (4) extend only to the neighbors. Withkanearest-neighbor graph and if we do not update
the neighbors at each iteration (which affects the restili¢)j the respective cost per iteration is
O(NkD)andO(NkD + N(D + k) min(D, k)?), thus linear inN. The graph is constructed on the
initial X we use, consisting of the present values and an imputatiotnéomissing ones achieved
with a standard matrix completion method, and has a oneestfaf O(/N2D). The cost when we
have a fractionu = % € [0, 1] of missing data is simply the above timgs Hence the run time
of our mean-shift-based matrix completion algorithms sdathe more present data we have, and
thus faster than the usual GBMS or MBMS case, where all dataféectively missing.

3 Experimental results

We compare with representative methods of several appesach low-rank matrix completion
method, singular value projection (SVP [7], whose perfarogawe found similar to that of alternat-
ing least squares, ALS [3, 4]); fitting A-dimensional Gaussian model with EM and imputing the
missing values of eack,, as the conditional meaf {x,, v, |xn.p, } (We use the implementation
of [19]); and the nonlinear method of [20] (nIPCA). We inlizzzg GBMS and MBMS from some or
all of these algorithms. For methods with user parameteesset them by cross-validation in the
following way: we randomly select 10% of the present entaied pretend they are missing as well,
we run the algorithm on the remaining 90% of the present &laied we evaluate the reconstruction
at the 10% entries we kept earlier. We repeat this over éiffeparameters’ values and pick the one
with lowest reconstruction error. We then run the algoritwith these parameters values on the
entire present data and report the (test) error with thergtdruth for the missing values.

100D Swissroll We created a 3D swissroll data set wih00 points and lifted it to 100D with

a random orthonormal mapping, and added a little noise (8@tiéSaussian with stdef.1). We
selected uniformly at random 6.76% of the entries to be pted#/e use the Gaussian model and
SVP (fixed rank= 3) as initialization for our algorithm. We typically find th#tese initialX are
very noisy (fig. 3), with some reconstructed points lyingimstn different branches of the manifold
and causing a big reconstruction error. We fixed= 2 (the known dimensionality) for MBMS
and cross-validated the other parametersndk for MBMS and GBMS (both using-nn graph),
and the number of iterationsto be used. Table 1 gives the performance of MBMS and GBMS for
testing, along with their optimal parameters. Fig. 3 shdvesresults of different methods at a few
iterations. MBMS initialized from the Gaussian model gitles most remarkable denoising effect.
To show that there is a wide range @fand number of iterations that give good performance
with GBMS and MBMS, we fixk = 50 and run the algorithm with varying values and plot
the reconstruction error for missing entries over iteraion fig. 2. Both GBMS can achieve good



Methods RSSH mean stdev

Gaussian 168.1] 2.63| 1.59

+ GBMS (00, 10, 0, 1)| 165.8| 2.57| 1.61 Methods RSSH mean stdev
+ MBMS (1, 20, 2, 25)157.2| 2.36| 1.63 nIPCA 7.77 | 26.1| 42.6
SVP 156.8| 1.94| 2.10 SVP 6.99 | 21.8| 39.3
+ GBMS (3,50, 0, 1) | 151.4| 1.89]| 2.02 + GBMS (400,140,0,1) 6.54 | 18.8| 37.7
+ MBMS (3, 50, 2, 2) | 151.8| 1.87| 2.05 + MBMS (500,140,9,5) 6.03 | 17.0| 34.9

Table 1: Swissroll data set: reconstruction errorslable 2: MNIST-7 data set: errors of the dif-
obtained by different algorithms along with their ferent algorithms and their optimal parameters
optimal parameterss( k, L, no. iterationg’). The (o, k, L, no. iterationsr). The three columns
three columns show the root sum of squared errorshow the root sum of squared errors on miss-
on missing entries, the mean, and the standard déag entries «10~%), the mean, and the stan-
viation of the pointwise reconstruction error, resp.dard deviation of pixel errors, respectively.

SVP + GBMS SVP + MBMS Gaussian + GBMS Gaussian + MBMS
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iterationr iterationr iterationr iterationr

Figure 2: Reconstruction error of GBMS/MBMS over iterasdeach curve is a differeatvalue).

denoising (and reconstruction), but MBMS is more robusthwood results occurring for a wide
range of iterations, indicating it is able to preserve thaifaéd structure better.

Mocap data We use the running-motion sequence@from the CMU mocap database with 148
samples4 1.7 cycles) with 150 sensor readings (3D positions of 50tgoim a human body). The
motion is intrinsically 1D, tracing a loop in 150D. We comeanlPCA, SVP, the Gaussian model,
and MBMS initialized from the first three algorithms. For GIR, we do a grid search for the weight
decay coefficient while fixing its structure to Rex 10 x 150 units, and use an early stopping
criterion. For SVP, we do grid search ¢, 2,3,5,7,10} for the rank. For MBMS [ = 1) and
GBMS (L = 0), we do grid search far andk.

We report the reconstruction error as a function of the prtogo of missing entries from 50% to
95%. For each missing-data proportion, we randomly selelifférent sets of present values and
run all algorithms for them. Fig. 4 gives the mean errors bakgorithms. All methods perform
well when missing-data proportion is small. nIPCA, beingrm@ to local optima, is less stable than
SVP and the Gaussian model, especially when the missiragpilaportion is large. The Gaussian
model gives the best and most stable initialization. At 9&%methods fail to give an acceptable
reconstruction, but up to 90% missing entries, MBMS and GBiW&ys beat the other algorithms.
Fig. 4 shows selected reconstructions from all algorithms.

MNIST digit ‘7’ The MNIST digit ‘7’ data set contain6265 greyscale (0—255) images of size
28 x 28. We create missing entries in a way reminiscent of run-lergtors in transmission. We
generate 16 to 26 rectangular boxes of an area approxinZagdixels at random locations in each
image and use them to black out pixels. In this way, we credtigla dimensional data set (784
dimensions) with about 50% entries missing on average. Becaf the loss of spatial correlations
within the blocks, this missing data pattern is harder ttzartiom.

The Gaussian model cannot handle such a big data set betawsdvies inverting large covariance
matrices. nIPCA is also very slow and we cannot afford cradiglating its structure or the weight
decay coefficient, so we picked a reasonable struciire 0 x 784 units), used the default weight
decay parameter in the code)(?), and allowed up to 500 iterations. We only use SVP as initial
ization for our algorithm. Since the intrinsic dimensionNNIST is suspected to be not very high,
we used rank 10 for SVP and = 9 for MBMS. We also use the sanie= 140 as in [5]. So we
only had to choose and the number of iterations via cross-validation.



SVP SVP + GBMS SVP + MBMS Gaussian Gaussian + GBMS  Gaussian + MBMS
T=0 T=1 T =2 T7=0 T=1 T =25

Figure 3: Denoising effect of the different algorithms. W@sualization, we project the 100D data
to 3D with the projection matrix used for creating the datesent values are refilled for all plots.

frame 2 (leg distance)rame 10 (foot posd)frame 147 (leg pose)
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7000/ nipca + GBMS < g < S S g N < < N
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Figure 4:Left mean of errors (RSSE) of 5 runs obtained by different ators for varying percent-
age of missing values. Errorbars shown only for Gaussian M@Bo avoid clutterRight sample
reconstructions when 85% percent data is missikmw 1 initialization. Row 2 init+GBMS. Row
3: init+MBMS. Color indicates different initialization: bBtk, original data; red, nIPCA; blue, SVP;
green, Gaussian.

Table 2 shows the methods and their corresponding error.5Fgows some representative recon-
structions from different algorithms, with present valuefilled. The mean-shift averaging among
closeby neighbors (a soft form of majority voting) helps timméate noise, unusual strokes and
other artifacts created by SVP, which by their nature terattur in different image locations over
the neighborhood of images.

4 Related work

Matrix completion is widely studied in theoretical comed sensing [1, 2] as well as practical

recommender systems [3, 4]. Most matrix completion modgisan a low-rank assumption, and

cannot fully exploit a more complex structure of the problesmch as curved manifolds. Related
work is on multi-task learning in a broad sense, which exérdlce common structure shared by
multiple related objects and achieves simultaneous legran them. This includes applications

such as alignment of noise-corrupted images [21], recavEimages with occlusion [22], and even

learning of multiple related regressors or classifiers.[28]ain, all these works are essentially based
on a subspace assumption, and do not generalize to moreeosiplations.

A line of work based on a nonlinear low-rank assumption (veitlatent variablez of dimension-
alit]¥ L < D) involves setting up a least-squares error funciicing z Zflv:l % — £(z0)||> =
Zn,’dD:1 (xan — fa(zn))? Where one ignores the terms for whieh, is missing, and estimates the
function f and the low-dimensional data projectiofisby alternating optimization. Linear func-
tions f have been used in the homogeneity analysis literature {2dgre this approach is called
“missing data deleted”. Nonlinear functiofidave been used recently (neural nets [20]; Gaussian
processes for collaborative filtering [25]). Better reswdte obtained if adding a projection term
SN llzn — F(x,)||* and optimizing over the missing data as well [26].

n=1
Prior to our denoising-based work there have been effortiend the low-rank models to smooth
manifolds, mostly in the context of compressed sensingaiak and Wakin [27] show that certain
random measurements, e.g. random projection to a low-diioeal subspace, can preserve the
metric of the manifold fairly well, if the intrinsic dimensn and the curvature of the manifold



with different methods.

Figure 5: Selected reconstructions of MNIST block-occtud@its ‘7

are both small enough. However, these observations areuitabke for matrix completion and
no algorithm is given for recovering the signal. Chen et 28] [explicitly model a pre-determined
manifold, and use this to regularize the signal when redogéhe missing values. They estimate the
manifold given complete data, while no complete data ismgslin our matrix completion setting.
Another related work is [29], where the manifold modeledhwigomap is used in estimating the
positions of satellite cameras in an iterative manner.

A special case of our algorithm is directly related to lowkanatrix completion algorithms. If we
takek = N neighbors and = oo then MBMS becomes PCA i dimensions, and our algorithm
iterates between projecting onto the PCA subspace it defines (equivalent to the SVIX dff it
has zero mean) and resetting the present entries. This ighepdhef alternating projections [30],
similar to previous SVD-based work such as SVP [7], and tdlitrear version of the method of
[26]. Finally, our expectation that the value of a missingrgran be predicted from the values of
neighboring points is similar to one category of collabiweafiltering methods that essentially use
similar users/items to predict missing values [3, 4].

5 Conclusion

We have proposed a new paradigm for matrix completion, é&mpi which generalizes the com-
monly used assumption of low rank. Assuming low-rank inmpkerestrictive form of denoising
where the data is forced to have zero variance away from arlimanifold. More general def-
initions of denoising can potentially handle data thatdive a low-dimensional manifold that is
nonlinear, or whose dimensionality varies (e.g. a set ofifolls), or that does not have low rank
at all, and naturally they handle noise in the data. Dengigiarks because of the fundamental fact
that a missing value can be predicted by averaging nearlsgptealues.

Although we motivate our framework from a constrained otation point of view (lenoise subject
to respecting the present datave argue for an algorithmic view of denoising-based matam-
pletion: apply a denoising step, refill the present values, iterat# thre validation error increases
In turn, this allows different forms of denoising, such asdzhon low-rank projection (earlier work)
or local averaging with blurring mean-shift (this paper)ur@onparametric choice of mean-shift
averaging further relaxes assumptions about the data @unitsén a simple algorithm with very
few user parameters that afford user control (denoisinggst@cal dimensionality) but can be set
automatically by cross-validation. Our algorithms arentted to be used as a postprocessing step
over a user-provided initialization of the missing valuasd we show they consistently improve
upon existing algorithms.

The MBMS-based algorithm bridges the gap between pure dieigo{GBMS) and local low rank.
Other definitions of denoising should be possible, for eXanusing temporal as well as spatial
neighborhoods, and even applicable to discrete data if weider denoising as a majority voting
among the neighbours of a vector (with suitable definitiongotes and neighborhood).
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