
A Denoising View of Matrix Completion

Weiran Wang Miguel Á. Carreira-Perpi ñán
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Abstract

In matrix completion, we are given a matrix where the values of only some of the
entries are present, and we want to reconstruct the missing ones. Much work has
focused on the assumption that the data matrix has low rank. We propose a more
general assumption based on denoising, so that we expect that the value of a miss-
ing entry can be predicted from the values of neighboring points. We propose a
nonparametric version of denoising based on local, iterated averaging with mean-
shift, possibly constrained to preserve local low-rank manifold structure. The few
user parameters required (the denoising scale, number of neighbors and local di-
mensionality) and the number of iterations can be estimatedby cross-validating
the reconstruction error. Using our algorithms as a postprocessing step on an
initial reconstruction (provided by e.g. a low-rank method), we show consistent
improvements with synthetic, image and motion-capture data.

Completing a matrix from a few given entries is a fundamentalproblem with many applications in
machine learning, computer vision, network engineering, and data mining. Much interest in matrix
completion has been caused by recent theoretical breakthroughs in compressed sensing [1, 2] as well
as by the now celebrated Netflix challenge on practical prediction problems [3, 4]. Since completion
of arbitrary matrices is not a well-posed problem, it is often assumed that the underlying matrix
comes from a restricted class. Matrix completion models almost always assume a low-rank structure
of the matrix, which is partially justified through factor models [4] and fast convex relaxation [2], and
often works quite well when the observations are sparse and/or noisy. The low-rank structure of the
matrix essentially asserts that all the column vectors (or the row vectors) live on a low-dimensional
subspace. This assumption is arguably too restrictive for problems with richer structure, e.g. when
each column of the matrix represents a snapshot of a seriously corrupted motion capture sequence
(see section 3), for which a more flexible model, namely a curved manifold, is more appropriate.

In this paper, we present a novel view of matrix completion based on manifold denoising, which
conceptually generalizes the low-rank assumption to curved manifolds. Traditional manifold de-
noising is performed on fully observed data [5, 6], aiming tosend the data corrupted by noise back
to the correct surface (defined in some way). However, with a large proportion of missing entries,
we may not have a good estimate of the manifold. Instead, we start with a poor estimate and improve
it iteratively. Therefore the “noise” may be due not just to intrinsic noise, but mostly to inaccurately
estimated missing entries. We show that our algorithm can bemotivated from an objective purely
based on denoising, and prove its convergence under some conditions. We then consider a more
general case with a nonlinear low-dimensional manifold anduse a stopping criterion that works
successfully in practice. Our model reduces to a low-rank model when we require the manifold to
be flat, showing a relation with a recent thread of matrix completion models based on alternating
projection [7]. In our experiments, we show that our denoising-based matrix completion model can
make better use of the latent manifold structure on both artificial and real-world data sets, and yields
superior recovery of the missing entries.

The paper is organized as follows: section 1 reviews nonparametric denoising methods based on
mean-shift updates, section 2 extends this to matrix completion by using denoising with constraints,
section 3 gives experimental results, and section 4 discusses related work.
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1 Denoising with (manifold) blurring mean-shift algorithm s (GBMS/MBMS)

In Gaussian blurring mean-shift (GBMS), denoising is performed in a nonparametric way by local
averaging: each data point moves to the average of its neighbors (to a certain scale), and the process
is repeated. We follow the derivation in [8]. Consider a dataset {xn}

N
n=1 ⊂ R

D and define a
Gaussian kernel density estimate

p(x) =
1

N

N
∑

n=1

Gσ(x,xn) (1)

with bandwidthσ > 0 and kernelGσ(x,xn) ∝ exp
(

− 1
2 (‖x− xn‖ /σ)

2
)

(other kernels may
be used, such as the Epanechnikov kernel, which results in sparse affinities). The (non-blurring)
mean-shift algorithmrearranges the stationary point equation∇p(x) = 0 into the iterative scheme
x
(τ+1) = f(x(τ)) with

x
(τ+1) = f(x(τ)) =

N
∑

n=1

p(n|x(τ))xn p(n|x(τ)) =
exp

(

− 1
2

∥

∥(x(τ) − xn)/σ
∥

∥

2)

∑N

n′=1 exp
(

− 1
2

∥

∥(x(τ) − xn′)/σ
∥

∥

2) . (2)

This converges to a mode ofp from almost every initialx ∈ R
D, and can be seen as taking self-

adapting step sizes along the gradient (since themean shiftf(x) − x is parallel to∇p(x)). This
iterative scheme was originally proposed by [9] and it or variations of it have found widespread
application in clustering [8, 10–12] and denoising of 3D point sets (surface fairing; [13, 14]) and
manifolds in general [5, 6].

Theblurring mean-shift algorithmapplies one step of the previous scheme, initialized from every
point, in parallel for all points. That is, given the datasetX = {x1, . . . ,xN}, for eachxn ∈ X

we obtain a new point̃xn = f(xn) by applying one step of the mean-shift algorithm, and then we
replaceX with the new dataset̃X, which is a blurred (shrunk) version ofX. By iterating this process
we obtain a sequence of datasetsX

(0),X(1), . . . (and a corresponding sequence of kernel density
estimatesp(0)(x), p(1)(x), . . .) whereX(0) is the original dataset andX(τ) is obtained by blurring
X

(τ−1) with one mean-shift step. We can see this process as maximizing the following objective
function [10] by taking parallel steps of the form (2) for each point:

E(X) =
N
∑

n=1

p(xn) =
1

N

N
∑

n,m=1

Gσ(xn,xm) ∝
N
∑

n,m=1

e−
1

2‖
xn−xm

σ
‖2 . (3)

This process eventually converges to a datasetX
(∞) where all points are coincident: a completely

denoised dataset where all structure has been erased. As shown by [8], this process can be stopped
early to return clusters (= locally denoised subsets of points); the number of clusters obtained is
controlled by the bandwidthσ. However, here we are interested in the denoising behavior of GBMS.

The GBMS step can be formulated in a matrix form reminiscent of spectral clustering [8] as̃X =
XP whereX = (x1, . . . ,xN ) is aD×N matrix of data points;W is theN×N matrix of Gaussian
affinitieswnm = Gσ(xn,xm); D = diag (

∑N

n=1 wnm) is the degree matrix; andP = WD
−1 is

an N × N stochastic matrix:pnm = p(n|xm) ∈ (0, 1) and
∑N

n=1 pnm = 1. P (or rather its
transpose) is the stochastic matrix of the random walk in a graph [15], which in GBMS represents
the posterior probabilities of each point under the kernel density estimate (1).P is similar to the
matrixN = D

− 1

2WD
− 1

2 derived from the normalized graph Laplacian commonly used in spectral
clustering, e.g. in the normalized cut [16]. Since, by the Perron-Frobenius theorem [17, ch. 8], all left
eigenvalues ofP(X) have magnitude less than 1 except for one that equals 1 and is associated with
an eigenvector of constant entries, iteratingX̃ = XP(X) converges to the stationary distribution of
eachP(X), where all points coincide.

From this point of view, the product̃X = XP(X) can be seen as filtering the datasetX with a data-
dependent low-pass filterP(X), which makes clear the denoising behavior. This also suggests using
other filters [12]X̃ = Xφ(P(X)) as long asφ(1) = 1 and|φ(r)| < 1 for r ∈ [0, 1), such as explicit
schemesφ(P) = (1 − η)I + ηP for η ∈ (0, 2], power schemesφ(P) = P

n for n = 1, 2, 3 . . . or
implicit schemesφ(P) = ((1 + η)I− ηP)−1 for η > 0.

One important problem with GBMS is that it denoises equally in all directions. When the data lies
on a low-dimensional manifold, denoising orthogonally to it removes out-of-manifold noise, but
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denoising tangentially to it perturbs intrinsic degrees offreedom of the data and causes shrinkage of
the entire manifold (most strongly near its boundary). To prevent this, themanifold blurring mean-
shift algorithm (MBMS)[5] first computes a predictor averaging step with GBMS, and then for each
pointxn a corrector projective step removes the step direction thatlies in the local tangent space of
xn (obtained from local PCA run on itsk nearest neighbors). In practice, both GBMS and MBMS
must be stopped early to prevent excessive denoising and manifold distortions.

2 Blurring mean-shift denoising algorithms for matrix completion

We consider the natural extension of GBMS to the matrix completion case by adding the constraints
given by the present values. We use the subindex notationXM andXP to indicate selection of the
missing or present values of the matrixXD×N , whereP ⊂ U ,M = U \ P andU = {(d, n): d =
1, . . . , D, n = 1, . . . , N}. The indicesP and valuesXP of the present matrix entries are the data
of the problem. Then we have the following constrained optimization problem:

max
X

E(X) =

N
∑

n,m=1

Gσ(xn,xm) s.t. XP = XP . (4)

This is similar to low-rank formulations for matrix completion that have the same constraints but
use as objective function the reconstruction error with a low-rank assumption, e.g.‖X−ABX‖2

with AD×L, BL×D andL < D.

We initializeXM to the output of some other method for matrix completion, such as singular value
projection (SVP; [7]). For simple constraints such as ours,gradient projection algorithms are attrac-
tive. The gradient ofE wrt X is a matrix ofD ×N whosenth column is:

∇xn
E(X) =

2

σ2

N
∑

m=1

e−
1

2‖
xn−xm

σ
‖2(xm − xn) ∝

2

σ2
p(xn)

(

−xn +
N
∑

m=1

p(m|xn)xm

)

(5)

and its projection on the constraint space is given by zeroing its entries having indices inP; call
ΠP this projection operator. Then, we have the following step of lengthα ≥ 0 along the projected
gradient:

X
(τ+1) = X

(τ) + αΠP(∇XE(X(τ)))⇐⇒ X
(τ+1)
M = X

(τ)
M + α

(

ΠP(∇XE(X(τ)))
)

M
(6)

which updates only the missing entriesXM. Since our search direction is ascent and makes an angle
with the gradient that is bounded away fromπ/2, andE is upper bounded, continuously differen-
tiable and has bounded Hessian (thus a Lipschitz continuousgradient) inRNL, by carrying out a line
search that satisfies the Wolfe conditions, we are guaranteed convergence to a local stationary point,
typically a maximizer [18, th. 3.2]. However, as reasoned later, we do not perform a line search
at all, instead we fix the step size to the GBMS self-adapting step size, which results in a simple
and faster algorithm consisting of carrying out a GBMS step on X (i.e.,X(τ+1) = X

(τ)
P(X(τ)))

and then refillingXP to the present values. While we describe the algorithm in thisway for ease
of explanation, in practice we do not actually compute the GBMS step for allxdn values, but only
for the missing ones, which is all we need. Thus, our algorithm carries out GBMS denoising steps
within the missing-data subspace. We can derive this result in a different way by starting from
the unconstrained optimization problemmaxXP

E(X) =
∑N

n,m=1 Gσ(xn,xm) (equivalent to (4)),
computing its gradient wrtXP , equating it to zero and rearranging (in the same way the mean-shift
algorithm is derived) to obtain a fixed-point iteration identical to our update above.

Fig. 1 shows the pseudocode for our denoising-based matrix completion algorithms (using three
nonparametric denoising algorithms: GBMS, MBMS and LTP).

Convergence and stopping criterion As noted above, we have guaranteed convergence by simply
satisfying standard line search conditions, but a line search is costly. At present we do not have
a proof that the GBMS step size satisfies such conditions, or indeed that the new iterateX(τ+1)

M
increases or leaves unchanged the objective, although we have never encountered a counterexample.
In fact, it turns out that none of the work about GBMS that we know about proves that either: [10]
proves that∅(X(τ+1)) ≤ ∅(X(τ)) for 0 < ρ < 1, where∅(·) is the set diameter, while [8, 12]
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notes thatP(X) has a single eigenvalue of value 1 and all others of magnituedless than 1. While
this shows that all points converge to the same location, which indeed is the global maximum of (3),
it does not necessarily follow that each step decreasesE.

GBMS (k, σ) with full or k-nn graph: givenXD×N ,M
repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors ofxn (k-nn graph)
∂xn ← −xn +

∑

m∈Nn

Gσ(xn,xm)∑
m

′∈Nn

Gσ(xn,xm
′ )
xm

mean-shift
step

end
XM ← XM + (∂X)M move points’ missing entries

until validation error increases
return X

MBMS (L, k, σ) with full or k-nn graph: givenXD×N ,M
repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors ofxn (k-nn graph)
∂xn ← −xn +

∑

m∈Nn

Gσ(xn,xm)∑
m

′∈Nn

Gσ(xn,xm
′ )
xm

mean-shift
step

Xn ← k nearest neighbors ofxn

(µn,Un)← PCA(Xn, L) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )∂xn subtract parallel motion

end
XM ← XM + (∂X)M move points’ missing entries

until validation error increases
return X

LTP (L, k) with k-nn graph: givenXD×N ,M
repeat

for n = 1, . . . , N
Xn ← k nearest neighbors ofxn

(µn,Un)← PCA(Xn, L) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )(µn − xn) project point onto tangent space

end
XM ← XM + (∂X)M move points’ missing entries

until validation error increases
return X

Figure 1: Our denoising matrix completion algorithms, based on
Manifold Blurring Mean Shift (MBMS) and its particular cases
Local Tangent Projection (LTP,k-nn graph,σ = ∞) and Gauss-
ian Blurring Mean Shift (GBMS,L = 0); see [5] for details.Nn

contains allN points (full graph) or onlyxn’s nearest neighbors
(k-nn graph). The indexM selects the components of its input
corresponding to missing values. Parameters: denoising scaleσ,
number of neighborsk, local dimensionalityL.

However, the question of con-
vergence asτ → ∞ has no
practical interest in a denois-
ing setting, because achieving
a total denoising almost never
yields a good matrix comple-
tion. What we want is to achieve
just enoughdenoising and stop
the algorithm, as was the case
with GBMS clustering, and as is
the case in algorithms for image
denoising. We propose to de-
termine the optimal number of
iterations, as well as the band-
width σ and any other parame-
ters, by cross-validation. Specif-
ically, we select a held-out set
by picking a random subset of
the present entries and consider-
ing them as missing; this allows
us to evaluate an error between
our completion for them and the
ground truth. We stop iterating
when this error increases.

This argument justifies an algo-
rithmic, as opposed to an op-
timization, view of denoising-
based matrix completion:ap-
ply a denoising step, refill the
present values, iterate until the
validation error increases. This
allows very general definitions
of denoising, and indeed a low-
rank projection is a form of de-
noising where points are not al-
lowed outside the linear man-
ifold. Our formulation using
the objective function (4) is still
useful in that it connects our
denoising assumption with the
more usual low-rank assumption
that has been used in much ma-
trix completion work, and jus-
tifies the refilling step as re-
sulting from the present-data
constraints under a gradient-
projection optimization.

MBMS denoising for matrix completion Following our algorithmic-based approach to denois-
ing, we could consider generalized GBMS steps of the formX̃ = Xφ(P(X)). For clustering,
Carreira-Perpĩnán [12] found an overrelaxed explicit stepφ(P) = (1− η)I+ ηP with η ≈ 1.25 to
achieve similar clusterings but faster. Here, we focus instead on the MBMS variant of GBMS that
allows only for orthogonal, not tangential, point motions (defined wrt their local tangent space as
estimated by local PCA), with the goal of preserving low-dimensional manifold structure. MBMS
has 3 user parameters: the bandwidthσ (for denoising), and the latent dimensionalityL and the
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number of neighborsk (for the local tangent space and the neighborhood graph). A special case
of MBMS calledlocal tangent projection (LTP)results by using a neighborhood graph and setting
σ = ∞ (so only two user parameters are needed:L andk). LTP can be seen as doing a low-rank
matrix completion locally. LTP was found in [5] to have nearly as good performance as the bestσ in
several problems. MBMS also includes as particular cases GBMS (L = 0), PCA (k = N , σ =∞),
and no denoising (σ = 0 orL = D).

Note that if we apply MBMS to a dataset that lies on a linear manifold of dimensionalityd using
L ≥ d then no denoising occurs whatsoever because the GBMS updates lie on thed-dimensional
manifold and are removed by the corrector step. In practice,even if the data are assumed noiseless,
the reconstruction from a low-rank method will lie close to but not exactly on thed-dimensional
manifold. However, this suggests using largish ranks for the low-rank method used to reconstructX

and lowerL values in the subsequent MBMS run.

In summary, this yields a matrix completion algorithm wherewe apply an MBMS step, refill the
present values, and iterate until the validation error increases. Again, in an actual implementation
we compute the MBMS step only for the missing entries ofX. The shrinking problem of GBMS is
less pronounced in our matrix completion setting, because we constrain some values not to change.
Still, in agreement with [5], we find MBMS to be generally superior to GBMS.

Computational cost With a full graph, the cost per iteration of GBMS and MBMS isO(N2D)
andO(N2D + N(D + k)min(D, k)2), respectively. In practice with high-dimensional data, best
denoising results are obtained using a neighborhood graph [5], so that the sums over points in eqs. (3)
or (4) extend only to the neighbors. With ak-nearest-neighbor graph and if we do not update
the neighbors at each iteration (which affects the result little), the respective cost per iteration is
O(NkD) andO(NkD+N(D+k)min(D, k)2), thus linear inN . The graph is constructed on the
initial X we use, consisting of the present values and an imputation for the missing ones achieved
with a standard matrix completion method, and has a one-off cost ofO(N2D). The cost when we
have a fractionµ = |M|

ND
∈ [0, 1] of missing data is simply the above timesµ. Hence the run time

of our mean-shift-based matrix completion algorithms is faster the more present data we have, and
thus faster than the usual GBMS or MBMS case, where all data are effectively missing.

3 Experimental results

We compare with representative methods of several approaches: a low-rank matrix completion
method, singular value projection (SVP [7], whose performance we found similar to that of alternat-
ing least squares, ALS [3, 4]); fitting aD-dimensional Gaussian model with EM and imputing the
missing values of eachxn as the conditional meanE {xn,Mn

|xn,Pn
} (we use the implementation

of [19]); and the nonlinear method of [20] (nlPCA). We initialize GBMS and MBMS from some or
all of these algorithms. For methods with user parameters, we set them by cross-validation in the
following way: we randomly select 10% of the present entriesand pretend they are missing as well,
we run the algorithm on the remaining 90% of the present values, and we evaluate the reconstruction
at the 10% entries we kept earlier. We repeat this over different parameters’ values and pick the one
with lowest reconstruction error. We then run the algorithmwith these parameters values on the
entire present data and report the (test) error with the ground truth for the missing values.

100D Swissroll We created a 3D swissroll data set with3 000 points and lifted it to 100D with
a random orthonormal mapping, and added a little noise (spherical Gaussian with stdev0.1). We
selected uniformly at random 6.76% of the entries to be present. We use the Gaussian model and
SVP (fixed rank= 3) as initialization for our algorithm. We typically find thatthese initialX are
very noisy (fig. 3), with some reconstructed points lying between different branches of the manifold
and causing a big reconstruction error. We fixedL = 2 (the known dimensionality) for MBMS
and cross-validated the other parameters:σ andk for MBMS and GBMS (both usingk-nn graph),
and the number of iterationsτ to be used. Table 1 gives the performance of MBMS and GBMS for
testing, along with their optimal parameters. Fig. 3 shows the results of different methods at a few
iterations. MBMS initialized from the Gaussian model givesthe most remarkable denoising effect.
To show that there is a wide range ofσ and number of iterationsτ that give good performance
with GBMS and MBMS, we fixk = 50 and run the algorithm with varyingσ values and plot
the reconstruction error for missing entries over iterations in fig. 2. Both GBMS can achieve good
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Methods RSSE mean stdev
Gaussian 168.1 2.63 1.59
+ GBMS (∞, 10, 0, 1) 165.8 2.57 1.61
+ MBMS (1, 20, 2, 25) 157.2 2.36 1.63

SVP 156.8 1.94 2.10
+ GBMS (3, 50, 0, 1) 151.4 1.89 2.02
+ MBMS (3, 50, 2, 2) 151.8 1.87 2.05

Table 1: Swissroll data set: reconstruction errors
obtained by different algorithms along with their
optimal parameters (σ, k, L, no. iterationsτ ). The
three columns show the root sum of squared errors
on missing entries, the mean, and the standard de-
viation of the pointwise reconstruction error, resp.

Methods RSSE mean stdev
nlPCA 7.77 26.1 42.6
SVP 6.99 21.8 39.3
+ GBMS (400,140,0,1) 6.54 18.8 37.7
+ MBMS (500,140,9,5) 6.03 17.0 34.9

Table 2: MNIST-7 data set: errors of the dif-
ferent algorithms and their optimal parameters
(σ, k, L, no. iterationsτ ). The three columns
show the root sum of squared errors on miss-
ing entries (×10−4), the mean, and the stan-
dard deviation of pixel errors, respectively.

SVP + GBMS SVP + MBMS Gaussian + GBMS Gaussian + MBMS
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Figure 2: Reconstruction error of GBMS/MBMS over iterations (each curve is a differentσ value).

denoising (and reconstruction), but MBMS is more robust, with good results occurring for a wide
range of iterations, indicating it is able to preserve the manifold structure better.

Mocap data We use the running-motion sequence 0901 from the CMU mocap database with 148
samples (≈ 1.7 cycles) with 150 sensor readings (3D positions of 50 joints on a human body). The
motion is intrinsically 1D, tracing a loop in 150D. We compare nlPCA, SVP, the Gaussian model,
and MBMS initialized from the first three algorithms. For nlPCA, we do a grid search for the weight
decay coefficient while fixing its structure to be2 × 10 × 150 units, and use an early stopping
criterion. For SVP, we do grid search on{1, 2, 3, 5, 7, 10} for the rank. For MBMS (L = 1) and
GBMS (L = 0), we do grid search forσ andk.

We report the reconstruction error as a function of the proportion of missing entries from 50% to
95%. For each missing-data proportion, we randomly select 5different sets of present values and
run all algorithms for them. Fig. 4 gives the mean errors of all algorithms. All methods perform
well when missing-data proportion is small. nlPCA, being prone to local optima, is less stable than
SVP and the Gaussian model, especially when the missing-data proportion is large. The Gaussian
model gives the best and most stable initialization. At 95%,all methods fail to give an acceptable
reconstruction, but up to 90% missing entries, MBMS and GBMSalways beat the other algorithms.
Fig. 4 shows selected reconstructions from all algorithms.

MNIST digit ‘7’ The MNIST digit ‘7’ data set contains6 265 greyscale (0–255) images of size
28 × 28. We create missing entries in a way reminiscent of run-length errors in transmission. We
generate 16 to 26 rectangular boxes of an area approximately25 pixels at random locations in each
image and use them to black out pixels. In this way, we create ahigh dimensional data set (784
dimensions) with about 50% entries missing on average. Because of the loss of spatial correlations
within the blocks, this missing data pattern is harder than random.

The Gaussian model cannot handle such a big data set because it involves inverting large covariance
matrices. nlPCA is also very slow and we cannot afford cross-validating its structure or the weight
decay coefficient, so we picked a reasonable structure (10×30×784 units), used the default weight
decay parameter in the code (10−3), and allowed up to 500 iterations. We only use SVP as initial-
ization for our algorithm. Since the intrinsic dimension ofMNIST is suspected to be not very high,
we used rank 10 for SVP andL = 9 for MBMS. We also use the samek = 140 as in [5]. So we
only had to chooseσ and the number of iterations via cross-validation.
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Figure 3: Denoising effect of the different algorithms. Forvisualization, we project the 100D data
to 3D with the projection matrix used for creating the data. Present values are refilled for all plots.
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Figure 4:Left: mean of errors (RSSE) of 5 runs obtained by different algorithms for varying percent-
age of missing values. Errorbars shown only for Gaussian + MBMS to avoid clutter.Right: sample
reconstructions when 85% percent data is missing.Row 1: initialization. Row 2: init+GBMS. Row
3: init+MBMS. Color indicates different initialization: black, original data; red, nlPCA; blue, SVP;
green, Gaussian.

Table 2 shows the methods and their corresponding error. Fig. 5 shows some representative recon-
structions from different algorithms, with present valuesrefilled. The mean-shift averaging among
closeby neighbors (a soft form of majority voting) helps to eliminate noise, unusual strokes and
other artifacts created by SVP, which by their nature tend tooccur in different image locations over
the neighborhood of images.

4 Related work

Matrix completion is widely studied in theoretical compressed sensing [1, 2] as well as practical
recommender systems [3, 4]. Most matrix completion models rely on a low-rank assumption, and
cannot fully exploit a more complex structure of the problem, such as curved manifolds. Related
work is on multi-task learning in a broad sense, which extracts the common structure shared by
multiple related objects and achieves simultaneous learning on them. This includes applications
such as alignment of noise-corrupted images [21], recoveryof images with occlusion [22], and even
learning of multiple related regressors or classifiers [23]. Again, all these works are essentially based
on a subspace assumption, and do not generalize to more complex situations.

A line of work based on a nonlinear low-rank assumption (witha latent variablez of dimension-
ality L < D) involves setting up a least-squares error functionminf ,Z

∑N

n=1 ‖xn − f(zn)‖
2
=

∑N,D

n,d=1 (xdn − fd(zn))
2 where one ignores the terms for whichxdn is missing, and estimates the

function f and the low-dimensional data projectionsZ by alternating optimization. Linear func-
tions f have been used in the homogeneity analysis literature [24],where this approach is called
“missing data deleted”. Nonlinear functionsf have been used recently (neural nets [20]; Gaussian
processes for collaborative filtering [25]). Better results are obtained if adding a projection term
∑N

n=1 ‖zn − F(xn)‖
2 and optimizing over the missing data as well [26].

Prior to our denoising-based work there have been efforts toextend the low-rank models to smooth
manifolds, mostly in the context of compressed sensing. Baraniuk and Wakin [27] show that certain
random measurements, e.g. random projection to a low-dimensional subspace, can preserve the
metric of the manifold fairly well, if the intrinsic dimension and the curvature of the manifold
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Figure 5: Selected reconstructions of MNIST block-occluded digits ‘7’ with different methods.

are both small enough. However, these observations are not suitable for matrix completion and
no algorithm is given for recovering the signal. Chen et al. [28] explicitly model a pre-determined
manifold, and use this to regularize the signal when recovering the missing values. They estimate the
manifold given complete data, while no complete data is assumed in our matrix completion setting.
Another related work is [29], where the manifold modeled with Isomap is used in estimating the
positions of satellite cameras in an iterative manner.

A special case of our algorithm is directly related to low-rank matrix completion algorithms. If we
takek = N neighbors andσ = ∞ then MBMS becomes PCA inL dimensions, and our algorithm
iterates between projectingX onto the PCA subspace it defines (equivalent to the SVD ofX if it
has zero mean) and resetting the present entries. This is a method of alternating projections [30],
similar to previous SVD-based work such as SVP [7], and to thelinear version of the method of
[26]. Finally, our expectation that the value of a missing entry can be predicted from the values of
neighboring points is similar to one category of collaborative filtering methods that essentially use
similar users/items to predict missing values [3, 4].

5 Conclusion

We have proposed a new paradigm for matrix completion, denoising, which generalizes the com-
monly used assumption of low rank. Assuming low-rank implies a restrictive form of denoising
where the data is forced to have zero variance away from a linear manifold. More general def-
initions of denoising can potentially handle data that lives in a low-dimensional manifold that is
nonlinear, or whose dimensionality varies (e.g. a set of manifolds), or that does not have low rank
at all, and naturally they handle noise in the data. Denoising works because of the fundamental fact
that a missing value can be predicted by averaging nearby present values.

Although we motivate our framework from a constrained optimization point of view (denoise subject
to respecting the present data), we argue for an algorithmic view of denoising-based matrix com-
pletion: apply a denoising step, refill the present values, iterate until the validation error increases.
In turn, this allows different forms of denoising, such as based on low-rank projection (earlier work)
or local averaging with blurring mean-shift (this paper). Our nonparametric choice of mean-shift
averaging further relaxes assumptions about the data and results in a simple algorithm with very
few user parameters that afford user control (denoising scale, local dimensionality) but can be set
automatically by cross-validation. Our algorithms are intended to be used as a postprocessing step
over a user-provided initialization of the missing values,and we show they consistently improve
upon existing algorithms.

The MBMS-based algorithm bridges the gap between pure denoising (GBMS) and local low rank.
Other definitions of denoising should be possible, for example using temporal as well as spatial
neighborhoods, and even applicable to discrete data if we consider denoising as a majority voting
among the neighbours of a vector (with suitable definitions of votes and neighborhood).
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