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1 Abstract
In matrix completion, we are given a matrix where the val-
ues of only some of the entries are present, and we want
to reconstruct the missing ones. Much work has focused
on the assumption that the data matrix has low rank. We
propose a more general assumption based on denoising,
so that we expect that the value of a missing entry can be
predicted from the values of neighboring points. We pro-
pose a nonparametric version of denoising based on local,
iterated averaging with mean-shift, possibly constrained
to preserve local low-rank manifold structure. The few
user parameters required (the denoising scale, number
of neighbors and local dimensionality) and the number of
iterations can be estimated by cross-validating the recon-
struction error.

2 Denoising with (manifold) blurring mean-shift algorithms (GBMS/MBMS)
•Consider a (fully observed) dataset {xn}Nn=1 ⊂ R

D and de-
fine a kernel density estimate p(x) = 1

N

∑N
n=1Gσ(x,xn), with

Gaussian kernel Gσ(x,xn) ∝ exp
(

− 1
2(‖x− xn‖ /σ)2

)

. The
mean-shift (GMS) algorithm rearranges the stationary point
equation of ∇p(x) = 0 into the iterative scheme x

(τ+1) =

f(x(τ )) =
∑N

n=1 p(n|x
(τ ))xn with p(n|x(τ )) = Gσ(x

(τ),xn)
∑N

n′=1Gσ(x(τ),xn′)
.

•The blurring mean-shift algorithm (GBMS) applies one step
of the previous scheme, initialized from every point, in par-
allel for all points, and replaces X with the updated dataset
X̃, which is a blurred (shrunk) version of X. And the algo-
rithm iterates this process to maximize the objective func-
tion E(X) =

∑N
n=1 p(xn) = 1

N

∑N
n,m=1Gσ(xn,xm) by taking a

mean-shift step for every point in parallel.

•GBMS can be seen as a data-dependent low-pass fil-
ter which denoises equally in all directions. When the
data lies on a low-dimensional manifold, denoising or-
thogonally to it removes out-of-manifold noise, while
denoising tangentially to it perturbs intrinsic degrees
of freedom and causes shrinkage.

•The manifold blurring mean-shift algorithm (MBMS)
first computes a predictor averaging step with GBMS,
and then for each point xn a corrector projective step
removes the step direction lying in the tangent space
of xn (estimated locally with PCA). Both GBMS and
MBMS must be stopped early to prevent excessive
denoising and distortions.

3 GBMS/MBMS for matrix completion
Consider the natural extension of GBMS to matrix com-
pletion by adding the constraints given by present values:

max
X

E(X) =
N
∑

n,m=1

Gσ(xn,xm) s.t. XP = XP,

where XM and XP indicate selection of the missing or
present values and XP are the present matrix entries.

•Similar to low-rank formulations for matrix completion
that have the same constraints but use as objective func-
tion the reconstruction error, e.g. ‖X−ABX‖2 with AD×L,
BL×D and L < D.

•We initialize XM to the output of other matrix completion
method, and apply gradient projected method, with gra-
dient ∇xn

E(X) ∝ 2
σ2p(xn)

(

−xn +
∑N

m=1 p(m|xn)xm

)

and

projection X
(τ+1) = X

(τ ) + αΠP(∇XE(X(τ ))).

•We omit the line search and perform GBMS within the
missing value space: apply a denoising step, refill the
present values, iterate until the validation error increases.

•We also generalize the GBMS step to MBMS step in the
algorithm and obtain superior results.

•Computational cost per iteration is, with fixed k-nn graph,
O(NkD) for GBMS and O(NkD + N(D + k) min(D, k)2)
for MBMS, times the proportion of missing data.

GBMS (k, σ) with full or k-nn graph: given XD×N ,M
repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors of xn (k-nn graph)
∂xn ← −xn +

∑

m∈Nn

Gσ(xn,xm)
∑

m′∈Nn
Gσ(xn,xm′)

xm
mean-shift

step

end
XM← XM + (∂X)M move points’ missing entries

until validation error increases
return X

MBMS (L, k, σ) with full or k-nn graph: given XD×N ,M
repeat

for n = 1, . . . , N
Nn ← {1, . . . , N} (full graph) or

k nearest neighbors of xn (k-nn graph)
∂xn ← −xn +

∑

m∈Nn

Gσ(xn,xm)
∑

m′∈Nn
Gσ(xn,xm′)

xm
mean-shift

step

Xn← k nearest neighbors of xn

(µn,Un)← PCA(Xn, L) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )∂xn subtract parallel motion

end
XM← XM + (∂X)M move points’ missing entries

until validation error increases
return X

LTP (L, k) with k-nn graph: given XD×N ,M
repeat

for n = 1, . . . , N
Xn← k nearest neighbors of xn

(µn,Un)← PCA(Xn, L) estimate L-dim tangent space at xn

∂xn ← (I−UnU
T
n )(µn − xn) project point onto tangent space

end
XM← XM + (∂X)M move points’ missing entries

until validation error increases
return X

4 Convergence and stopping criterion
•Running the algorithm to convergence would equalize all

values; instead, we want to achieve just enough denois-
ing and stop the algorithm, as was the case with GBMS
clustering.

•We determine the optimal number of iterations and all other
parameters by cross-validation: select a held-out set by
picking a random subset of the present entries and consid-
ering them as missing; this allows us to evaluate an error
between our completion for them and the ground truth. We
stop iterating when this error increases.

5 Experimental results

•Compare with representative methods:

– low-rank matrix completion method—
singular value projection (SVP);

– fitting the data with a D-dimensional
Gaussian model with EM and im-
puting the missing values of each
xn as the conditional mean;

– nonlinear PCA (nlPCA) (Scholz 2005).

•We initialize our algorithms from them.

•Train on 90% present entries and cross
validate user parameters on the re-
maining 10% present entries. Then
run the algorithms with optimal pa-
rameters values on the entire present
data and report the test error with the
ground truth.
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Denoising effect of different algorithms over iterations. The initializations given by SVP and
Gaussian model are both quite noisy.
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Reconstruction error of GBMS/MBMS over iterations (each curve is a different σ value).

Methods RSSE mean stdev
Gaussian 168.1 2.63 1.59

+ GBMS (∞, 10, 0, 1) 165.8 2.57 1.61
+ MBMS (1, 20, 2, 25) 157.2 2.36 1.63

SVP 156.8 1.94 2.10
+ GBMS (3, 50, 0, 1) 151.4 1.89 2.02
+ MBMS (3, 50, 2, 2) 151.8 1.87 2.05

Reconstruction errors obtained by different al-
gorithms along with their optimal parameters
(σ, k, L, no. iterations τ ).

MNIST digit ‘7’
Orig Missing nlPCA SVP GBMS MBMS

Selected reconstructions of MNIST block-
occluded digits ‘7’ (50% of the pixels are
missing) with different methods. We use
rank 10 for SVP and L = 9 for MBMS.

Methods RSSE mean stdev
nlPCA 7.77 26.1 42.6
SVP 6.99 21.8 39.3

+ GBMS (400,140,0,1) 6.54 18.8 37.7
+ MBMS (500,140,9,5) 6.03 17.0 34.9

Reconstruction errors (×10−4) and optimal
parameters.
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Left : mean of errors of 5 runs obtained by different algorithms for varying percentage
of missing values. Right : sample reconstructions when 85% percent data is missing.
Row 1 : initialization. Row 2 : init+GBMS. Row 3 : init+MBMS. Color indicates different
initialization: black, original data; red, nlPCA; blue, SVP; green, Gaussian.

6 Discussion
•A special case of our algorithm (k = N and σ = ∞) is directly related to low-rank matrix completion algorithms (alternate

between SVD projection and resetting values).

•The idea of averaging values of neighboring points is similar to one category of collaborative filtering methods that essentially
use similar users/items to predict missing values.

•The MBMS-based algorithm bridges the gap between pure denoising (GBMS) and local low rank. Other definitions of
denoising should be possible.

NIPS 2011, Granada, Spain.

Work supported by NSF CAREER award IIS0754089.


