THE ROLE OF DIMENSIONALITY

Abstract

e Dimensionality reduction (DR) Is often used as a preprocessing
step In classification, but usually in a filter approach. Best per-
formance would be obtained by optimizing the classification error
jointly over a DR mapping F (into latent space R*) and classifier g
IN a wrapper approach, but this is a difficult nonconvex problem:
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where here we use a linear SVM classifier g(F(x)) = w!F(x) + b.
(With K classes, we use the one-vs-all scheme and train K binary
linear SVMs, one for each class.)

e Using the method of auxiliary coordinates , we give a simple, ef-
ficient algorithm to train a combination of nonlinear DR and a clas-
sifier, and apply it to a RBF mapping with a linear SVM.

e The resulting nonlinear low-dimensional classifier achieves clas-
sification errors competitive with the state-of-the-art but Is fast at
training and testing , and allows the user to trade off runtime for
classification accuracy easily.

¢ \When trained jointly, the DR mapping takes an extreme role in elimi-
nating variation: it tends to collapse classes in latent space , eras-
Ing all manifold structure, and lay out class centroids so they are
linearly separable with maximum margin.

Role of dimension reduction In classification

e Formulation (1) does not explicitly seek to collapse classes, but this
behavior emerges anyway from the assumption of low-dimensional
representation, If trained jointly with the classifier.
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e For K-class problems, the classification performance improves dras-
tically as the latent dimensionality L increases in the beginning, and
then stabllizes after some critical L.

o Typically with . = K — 1 dimensions, the classes form point-like
clusters that approximately lie on the vertices of a regular simplex.
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Optimization: method of auxiliary coordinates

Problem (1) can be significantly simplified with the method of auxiliary
variables [1]. This breaks the nested functional dependence g(F(-))
into simpler shallow mappings g(z) and F(-), by introducing an auxiliary
vector z,, € R” per input pattern and defining the equivalent problem
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We solve (2) with the quadratic-penalty method We optimize the
following problem for fixed penalty parameter ¢ > 0 and drive u — oo:
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Alternating optimization  for (3): (F,g) step is a usual regression and
linear SVM classification done independently from each other (reusing
existing algorithms); optimizing over Z decouples on each n and solves
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Experimental results

Methods Error (%)

NN 19.16 (0.74) | - mac
_inear SVM | 13.5 (0.72)
PCA (L =2) 42.10(1.22)
DA (L=1) 14.21 (1.63) L
Ours (L =1) 13.12 (0.67) |7 oo - %
Ours (L =2) 12.94 (0.82) o
Ours (L =20) 12.76 (0.81)

Binary classification results on the PC/MAC subset of 20 newsgroups.

Method Error | # BFs 20|
Nearest Neighbor 5.34 10000 50!
Linear SVM 9.20

Gaussian SVM 2.93 13827

LDA (9) + Gaussian SVM 10.67 8740
PCA (10) + Gaussian SVM| 7.44 5894
PCA (40) + Gaussian SVM| 2.58 |12 549
Ours (10, 18) 2.99 2500

PCA (40) + Ours (10, 17) | 2.60 2500 -

Test error rates (%) and number of basis functions used on MNIST.
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Embedding of our algorithm on MNIST and speedups obtained with
the Matlab Parallel Processing Toolbox.




