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1 Abstract

•Dimensionality reduction (DR) is often used as a preprocessing
step in classification, but usually in a filter approach. Best per-
formance would be obtained by optimizing the classification error
jointly over a DR mapping F (into latent space R

L) and classifier g
in a wrapper approach, but this is a difficult nonconvex problem:

min
F,g,ξ

λR(F) +
1

2
‖w‖2 + C

N
∑

n=1

ξn (1)

s.t.
{

yn(w
TF(xn) + b) ≥ 1− ξn, ξn ≥ 0

}N

n=1

where here we use a linear SVM classifier g(F(x)) = wTF(x) + b.
(With K classes, we use the one-vs-all scheme and train K binary
linear SVMs, one for each class.)

•Using the method of auxiliary coordinates , we give a simple, ef-
ficient algorithm to train a combination of nonlinear DR and a clas-
sifier, and apply it to a RBF mapping with a linear SVM.

•The resulting nonlinear low-dimensional classifier achieves clas-
sification errors competitive with the state-of-the-art but is fast at
training and testing , and allows the user to trade off runtime for
classification accuracy easily.

•When trained jointly, the DR mapping takes an extreme role in elimi-
nating variation: it tends to collapse classes in latent space , eras-
ing all manifold structure, and lay out class centroids so they are
linearly separable with maximum margin.

2 Optimization: method of auxiliary coordinates
Problem (1) can be significantly simplified with the method of auxiliary
variables [1]. This breaks the nested functional dependence g(F(·))

into simpler shallow mappings g(z) and F(·), by introducing an auxiliary
vector zn ∈ R

L per input pattern and defining the equivalent problem

min
F,g,ξ,Z

λR(F) +
1

2
‖w‖2 + C

N
∑

n=1

ξn (2)

s.t.
{

yn(w
Tzn + b) ≥ 1− ξn, ξn ≥ 0, zn = F(xn)

}N

n=1
.

We solve (2) with the quadratic-penalty method . We optimize the
following problem for fixed penalty parameter µ > 0 and drive µ → ∞:

min
F,g,ξ,Z
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2
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ξn +
µ

2

N
∑

n=1

‖zn − F(xn)‖
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s.t.
{

yn(w
Tzn + b) ≥ 1− ξn, ξn ≥ 0

}N
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.

Alternating optimization for (3): (F,g) step is a usual regression and
linear SVM classification done independently from each other (reusing
existing algorithms); optimizing over Z decouples on each n and solves

min
z,ξ

‖z− F(x)‖2 + 2C/µξ s.t. y(wTz + b) ≥ 1− ξ, ξ ≥ 0,

a convex quadratic program with solution zopt = F(x) + γyw.
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•Formulation (1) does not explicitly seek to collapse classes, but this
behavior emerges anyway from the assumption of low-dimensional
representation, if trained jointly with the classifier.

F linear #BFs= 10 #BFs= 40 #BFs= 100 #BFs= 2000

•For K-class problems, the classification performance improves dras-
tically as the latent dimensionality L increases in the beginning, and
then stabilizes after some critical L.

•Typically with L = K − 1 dimensions, the classes form point-like
clusters that approximately lie on the vertices of a regular simplex.
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4 Experimental results

Methods Error (%)
NN 19.16 (0.74)

Linear SVM 13.5 (0.72)
PCA (L = 2) 42.10 (1.22)
LDA (L = 1) 14.21 (1.63)
Ours (L = 1) 13.12 (0.67)
Ours (L = 2) 12.94 (0.82)
Ours (L = 20) 12.76 (0.81)
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Binary classification results on the PC/MAC subset of 20 newsgroups.

Method Error # BFs
Nearest Neighbor 5.34 10 000

Linear SVM 9.20 –
Gaussian SVM 2.93 13 827

LDA (9) + Gaussian SVM 10.67 8 740
PCA (10) + Gaussian SVM 7.44 5 894
PCA (40) + Gaussian SVM 2.58 12 549

Ours ( 10, 18) 2.99 2 500
PCA (40) + Ours ( 10, 17) 2.60 2 500 5 10 15 20 25 30
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Test error rates (%) and number of basis functions used on MNIST.
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Embedding of our algorithm on MNIST and speedups obtained with
the Matlab Parallel Processing Toolbox.


