
On the Finite Time Convergence of Cyclic Coordinate Descent
Methods

Ankan Saha
Department of Computer Science

University of Chicago
ankans@cs.uchicago.edu

Ambuj Tewari
Toyota Technological Institute

Chicago, USA
tewari@ttic.edu

Abstract

Cyclic coordinate descent is a classic optimization method that has witnessed a resurgence of in-
terest in machine learning. Reasons for this include its simplicity, speed and stability, as well as its
competitive performance on `1 regularized smooth optimization problems. Surprisingly, very little
is known about its finite time convergence behavior on these problems. Most existing results either
just prove convergence or provide asymptotic rates. We fill this gap in the literature by proving
O(1/k) convergence rates (where k is the iteration counter) for two variants of cyclic coordinate
descent under an isotonicity assumption. Our analysis proceeds by comparing the objective values
attained by the two variants with each other, as well as with the gradient descent algorithm. We
show that the iterates generated by the cyclic coordinate descent methods remain better than those
of gradient descent uniformly over time.

1 Introduction
The dominant paradigm in Machine Learning currently is to cast learning problems as optimization problems.
This is clearly borne out by approaches involving empirical risk minimization, maximum likelihood, maximum
entropy, minimum description length, etc. As machine learning faces ever increasing and high-dimensional
datasets, we are faced with novel challenges in designing and analyzing optimization algorithms that can
adapt efficiently to such datasets. A mini-revolution of sorts is taking place where algorithms that were
“slow” or “old” from a purely optimization point of view are witnessing a resurgence of interest. This paper
considers one such family of algorithms, namely the coordinate descent methods. There has been recent
work demonstrating the potential of these algorithms for solving `1-regularized loss minimization problems:

1
n

n∑
i=1

`(x, Zi) + λ‖x‖1 (1)

where x is possibly high dimensional predictor that is being learned from the samples Zi = (Xi, Yi) con-
sisting of input, output pairs, ` is a convex loss function measuring prediction performance, and λ ≥ 0 is
a “regularization” parameter. The use of the `1 norm ‖x‖1 (sum of absolute values of xi) as a “penalty” or
“regularization term” is motivated by its sparsity promoting properties and there is a large and growing liter-
ature studying such issues (see, e.g., Tropp (2006) and references therein). In this paper, we restrict ourselves
to analyzing the behavior of coordinate descent methods on problems like (1) above. The general idea behind
coordinate descent is to choose, at each iteration, an index j and change xj such that objective F decreases.
Choosing j can be as simple as cycling through the coordinates or a more sophisticated coordinate selection
rule can be employed. Friedman et al. (2007) use the cyclic rule which we analyze in this paper.

Our emphasis is on obtaining finite time rates, i.e. guarantees about accuracy of iterative optimization
algorithms that hold right from the first iteration. This is in contrast to asymptotic guarantees that only hold
once the iteration count is “large enough” (and often, what is meant by “large enough”, is left unspecified).
We feel such an emphasis is in the spirit of Learning Theory that has distinguished itself by regarding finite
sample generalization bounds as important. For our analysis, we abstract away the particulars of the setting
above, and view (1) as a special case of the convex optimization problem:

min
x∈Rd

F (x) := f(x) + λ‖x‖1 . (2)

0Eligible for Student Paper Award

In order to obtain finite time convergence rates, one must assume that f is “nice” is some sense. This
can be quantified in different ways including assumptions of Lipschitz continuity, differentiability or strong
convexity. We will assume that f is differentiable with a Lipschitz continuous gradient. In the context of
problem (1), it amounts to assuming that the loss ` is differentiable. Many losses, such as squared loss and
logistic loss, are differentiable. Our results therefore apply to `1 regularized squared loss (“Lasso”) and to `1
regularized logistic regression.

For a method as old as cyclic coordinate descent, it is surprising that little is known about finite time
convergence even under smoothness assumptions. As far as we know, finite time results are not available even
when λ = 0. i.e. for unconstrained smooth convex minimization problem. Given recent empirical successes
of the method, we feel that this gap in the literature needs to be filled urgently. In fact, this sentiment is shared
in (Wu & Lange (2008)) by the authors who lamented, “Better understanding of the convergence properties
of the algorithms is sorely needed.” They were talking about greedy coordinate descent methods but their
comment applies to cyclic methods as well.

The situation with gradient descent methods is much better. There are a variety of finite time convergence
results available in the literature (Nesterov (2003)). Our strategy in this paper is to leverage these results to
shed some light on the convergence of coordinate descent methods. We do this via a series of comparison the-
orems that relate variants of coordinate descent methods to each other and to the gradient descent algorithm.
To do this, we make assumptions both on the starting point and an additional isotonicity assumption on the
gradient of the function f . Since finite time O(1/k) accuracy guarantees are available for gradient descent,
we are able to prove the same rates for two variants of cyclic coordinate descent. Here k is the iteration count
and the constants hidden in the O(·) notation are small and known. We feel it should be possible to relax,
or even eliminate, the additional assumptions we make (these are detailed in section 4) and doing this is an
important open problem left for future work.

We find it important to state at the outset that our aim here is not to give the best possible rates for the
problem (2). For example, even among gradient-based methods, faster O(1/k2) finite time accuracy bounds
can be achieved using Nesterov’s celebrated 1983 method (Nesterov (1983)) or its later variants. Instead, our
goal is to better understand cyclic coordinate descent methods and their relationship to gradient descent.

Related Work Coordinate descent methods are quite old and we cannot attempt a survey here. Instead, we
refer the reader to Tseng (2001) and Tseng & Yun (2009b) that summarize previous work and also present
analyses for coordinate descent methods. These consider cyclic coordinate descent as well as versions that
use more sophisticated coordinate selection rules. However, as mentioned above, the analyses either establish
convergence without rates or give asymptotic rates that hold after sufficiently many iterations have occurred.
An exception is Tseng & Yun (2009a) that does give finite time rates but for a version of coordinate descent
that is not cyclic. Finite time guarantees for a greedy version (choosing j to be the coordinate of the current
gradient with the maximum value) also appear in Clarkson (2008). The author essentially considers min-
imizing a smooth convex function over the probability simplex and also surveys previous work on greedy
coordinate descent in that setting. For finite time (expected) accuracy bounds for stochastic coordinate de-
scent (choose j uniformly at random) for `1 regularization, see Shalev-Shwartz & Tewari (2009).

We mentioned that the empirical success reported in Friedman et al. (2007) was our motivation to consider
cyclic coordinate descent for `1 regularized problems. They consider the Lasso problem:

min
x∈Rd

1
2n
‖Xx− Y ‖2 + λ‖x‖1 , (3)

where X ∈ Rn×d and Y ∈ Rn. In this case, the smooth part f is a quadratic

f(x) = 1
2 〈Ax, x〉+ 〈b, x〉 (4)

where A = X>X and b = −X>Y . Note that A is symmetric and positive semidefinite. Cyclic coordinate
descent has also been applied to the `1-regularized logistic regression problem (Genkin et al., 2007). Since
the logistic loss is differentiable, this problem also falls into the framework of this paper.

Outline Notation and necessary definitions are given in section 2. The gradient descent algorithm along
with two variants of cyclic coordinate descent are presented in section 3. Section 4 spells out the additional
assumptions on f that our current analysis needs. It also proves results comparing the iterates generated by the
three algorithms considered in the paper when they are all started from the same point. Similar comparison
theorems in the context of solving a system of non-linear equations using Jacobi and Gauss-Seidel methods
appear in Rheinboldt (1970). The results in section 4 set the stage for the main results given in section 5.
This section converts the comparison between iterates into a comparison between objective function values
achieved by the iterates. The finite time convergence rates of cyclic coordinate descent are then inferred from
rates for gradient descent. There are plenty of issues that are still unresolved. Section 6 discusses some of
them and provides a conclusion.

2 Preliminaries and Notation
We use the lowercase letters x, y, z, g and γ to refer to vectors throughout the paper. Normally paren-
thesized superscripts, like x(k) refer to vectors as well, whereas subscripts refer to the components of the
corresponding vectors. For any positive integer k, [k] := {1, . . . , k}. sign(a) is the interval-valued sign
function, i.e. sign(a) = {1} or {−1} corresponding to a > 0 or a < 0. For a = 0, sign(a) = [−1, 1].

Unless otherwise specified, ‖ · ‖ refers to the Euclidean norm ‖x‖ :=
(∑

i x
2
i

) 1
2 , ‖ · ‖1 will denote the l1

norm, ‖x‖1 = (
∑
i |xi|), 〈·, ·〉 denotes the Euclidean dot product 〈x, y〉 =

∑
i xiyi. Through out the paper

inequalities between vectors are to be interpreted component wise i.e. x ≥ y means that xi ≥ yi for all
i ∈ [d]. The following definition will be used extensively in the paper:

Definition 1 Suppose a function f : Rd → R is differentiable on Rd. Then f is said to have Lipschitz
continuous gradient (l.c.g) with respect to a norm ‖ · ‖ if there exists a constant L such that

‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖ ∀ x, x′ ∈ Rd. (5)

An important fact (see, e.g., (Nesterov, 2003, Thm. 2.1.5)) we will use is that if a function f has Lipschitz
continuous gradient with respect to a norm ‖ · ‖, then it satisfies the following generalized bounded Hessian
property

f(x) ≤ f(x′) + 〈∇f(x′), x− x′〉+ L

2
‖x− x′‖2. (6)

An operator T : Rd → R is said to be isotone iff

x ≥ y ⇒ T (x) ≥ T (y). (7)

An important isotone operator that we will frequently deal with is the shrinkage operator Sτ : Rd → R
defined, for τ > 0, as

[Sτ (x)]i := Sτ (xi) (8)

where Sτ (a) is the scalar shrinkage operator:

Sτ (a) :=

a− τ a > τ

0 a ∈ [−τ, τ]
a+ τ a < −τ.

(9)

3 Algorithms
We will consider three iterative algorithms for solving the minimization problem (2). All of them enjoy the
descent property: F (x(k+1)) ≤ F (x(k)) for successive iterates x(k) and x(k+1).

Algorithm 1: Gradient Descent (GD)

Initialize: Choose an appropriate initial point x(0).
for k = 0, 1, . . . do
x(k+1) ← Sλ/L(x(k) − ∇f(x(k))

L)
end for

Algorithm 1, known as Gradient Descent (GD), is one of the most common iterative algorithms used for
convex optimization (See Beck & Teboulle (2009), Duchi & Singer (2009) and references therein). It is based
on the idea that using corollary (6) to generate a linear approximation of f at the current iterate x(k), we can
come up with the following global upper approximation of F :

F (x) ≤ f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
+
L

2
‖x− x(k)‖2 + λ‖x‖1 .

It is easy to show that the above approximation is minimized at x = Sλ/L(x(k) − ∇f(x(k))/L) (Beck &
Teboulle (2009)). This is the next iterate for the GD algorithm. We call it “Gradient Descent” as it reduces
to the following algorithm

x(k+1) = x(k) − ∇f(x(k))
L

when there is no regularization (i.e. λ = 0). Finite time convergence rate for the GD algorithm are well
known.

Theorem 2 Let
{
x(k)

}
be a sequence generated by the GD algorithm. Then, for any minimizer x? of (2),

and ∀k ≥ 1,

F (x(k))− F (x?) ≤ L‖x? − x(0)‖2

2 k

The above theorem can be found in, e.g., (Beck & Teboulle, 2009, Thm. 3.1).

Algorithm 2: Cyclic Coordinate Descent (CCD)

Initialize: Choose an appropriate initial point y(0).
for k = 0, 1, . . . do
y(k,0) ← y(k)

for j = 1 to d do
y
(k,j)
j ← Sλ/L(y(k,j−1)

j − [∇f(y(k,j−1))]j /L)

∀i 6= j, y(k,j)
i ← y

(k,j−1)
i

end for
y(k+1) ← y(k,d)

end for

The second algorithm, Cyclic Coordinate Descent (CCD), instead of using the current gradient to update
all components simultaneously, goes through them in a cyclic fashion. The next “outer” iterate y(k+1) is
obtained from y(k) by creating a series of d intermediate or “inner” iterates y(k,j), j ∈ [d], where y(k,j)

differs from y(k,j−1) only in the jth coordinate whose value can be found by minimizing the following one-
dimensional over-approximation of F over the scalar α:

f(y(k,j−1)) + λ
∑
i 6=j

|y(k,j−1)
i |+ [∇f(y(k,j−1))]j · (α− y(k,j−1)

j) +
L

2
(α− y(k,j−1))2j + λ|α| . (10)

It can again be verified that the above minimization has the closed form solution

α = Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
which is what CCD chooses y(k,j)

j to be. Once all coordinates have been cycled through, y(k+1) is simply set
to be y(k,d). Let us point out that in an actual implementation, the inner iterates y(k,j) would not be computed
separately but y(k) would be updated “in place”. For analysis purposes, it is convenient to give names to the
intermediate iterates. Note that for all j ∈ {0, 1, . . . , d}, the inner iterate looks like

y(k,j) =
[
y
(k+1)
1 , . . . , y

(k+1)
j , y

(k)
j+1, . . . , y

(k)
d

]
.

In the CCD algorithm updating the jth coordinate uses the newer gradient value ∇f(y(k,j−1)) rather
than∇f(y(k)) which is used in GD. This makes CCD inherently sequential. In contrast, different coordinate
updates in GD can easily be done by different processors in parallel. However, on a single processor, we
might hope CCD converges faster than GD due to the use of “fresh” information. Therefore, it is natural to
expect that CCD should enjoy the finite time convergence rate given in Theorem 2 (or better). We show this
is indeed the case under an isotonicity assumption stated in Section 4 below. Under the assumption, we are
actually able to show the correctness of the intuition that CCD should converge faster than GD.

The third and final algorithm that we consider is Cyclic Coordinate Minimization (CCM). The only way
it differs from CCD is that instead of minimizing the one-dimensional over-approximation (10), it chooses
z
(k,j)
j to minimize,

F (z(k,j−1)
1 , . . . , z

(k,j−1)
j−1 , α, z

(k,j−1)
j+1 , . . . , z

(k,j−1)
d)

over α. In a sense, CCM is not actually an algorithm as it does not specify how to minimize F for any
arbitrary smooth function f . An important case when the minimum can be computed exactly is when f is
quadratic as in (4). In that case, we have

z
(k,j)
j = Sλ/Aj,j

(
z
(k,j−1)
j − [Az(k,j−1) + b]j

Aj,j

)
.

If there is no closed form solution, then we might have to resort to numerical minimization in order to
implement CCM. This is usually not a problem since one-dimensional convex functions can be minimized

Algorithm 3: Cyclic Coordinate Minimization

Initialize: Choose an appropriate initial point z(0).
for k = 0, 1, . . . do
z(k,0) ← z(k)

for j = 1 to d do
z
(k,j)
j ← argminα F (z(k,j−1)

1 , . . . , z
(k,j−1)
j−1 , α, z

(k,j−1)
j+1 , . . . , z

(k,j−1)
d)

∀i 6= j, z(k,j)
i ← z

(k,j−1)
i

end for
z(k+1) ← z(k,d)

end for

numerically to an extremely high degree of accuracy in a few steps. For the purpose of analysis, we will
assume that an exact minimum is found. Again, intuition suggests that the accuracy of CCM after any fixed
number of iterations should be better than that of CCD since CCD only minimizes an over-approximation.
Under the same isotonicity assumption that we mentioned above, we can show that this intuition is indeed
correct.

We end this section with a cautionary remark regarding terminology. In the literature, CCM appears
much more frequently than CCD and it is actually the former that is often referred to as “Cyclic Coordinate
Descent” (See Friedman et al. (2007) and references therein). Our reasons for considering CCD are: (i) it is
a nice, efficient alternative to CCM, and (ii) a stochastic version of CCD(where the coordinate to update is
chosen randomly and not cyclically) is already known to enjoy finite time O(1/k) expected convergence rate
(Shalev-Shwartz & Tewari (2009)).

4 Analysis
We already mentioned the known convergence rate for GD (Theorem 2) above. Before delving into the
analysis, it is necessary to state an assumption on f which accompanied by appropriate starting conditions
results in particularly interesting properties of the convergence behavior of GD, as described in lemma 7. The
GD algorithm generates iterates by applying the operator

TGD(x) := Sλ/L

(
x− ∇f(x)

L

)
(11)

repeatedly. It turns out that if TGD is an isotone operator then the GD iterates satisfy lemma 7 which is
essential for our convergence analysis. The above operator is a composition of Sλ/L, an isotone operator,
and I−∇f/L (where I denotes the identity operator). To ensure overall isotonicity, it suffices to assume that
I−∇f/L is isotone. This is formally stated as:

Assumption 3 The operator x 7→ x− ∇f(x)
L is isotone.

Similar assumptions appear in the literature comparing Jacobi and Gauss-Seidel methods for solving
linear equations (Bertsekas & Tsitsiklis, 1989, Chap. 2). When the function f is quadratic as in (4), our
assumption is equivalent to assuming that the off-diagonal entries in A are non-positive, i.e. Ai,j ≤ 0 for
all i 6= j. For a general smooth f , the following condition is sufficient to make the assumption true: f is
twice-differentiable and the Hessian∇2f(x) at any point x has non-positive off-diagonal entries.

In the next few subsections, we will see how the isotonicity assumption leads to an isotonically decreasing
(or increasing) behavior of GD, CCD and CCM iterates under appropriate starting conditions. To specify
what these starting conditions are, we need the notions of super- and subsolutions.

Definition 4 A vector x is a supersolution iff x ≥ Sλ (x−∇f(x)). Analogously, x is a subsolution iff
x ≤ Sλ (x−∇f(x)).

Since the inequalities above are vector inequalities, an arbitrary x may neither be a supersolution nor a
subsolution. The names “supersolution” and “subsolution” are justified because equality holds in the defini-
tions above, i.e. x = Sλ (x−∇f(x)) iff x is a minimizer of F . To see this, note that subgradient optimality
conditions say that x is a minimizer of F = f + λ‖ · ‖1 iff for all j ∈ [d]

0 ∈ [∇f(x)]j + λ sign(xj) . (12)

Further, it is easy to see that,

∀a, b ∈ R, τ > 0, 0 ∈ b+ λ sign(a) ⇔ a = Sλ/τ (a− b/τ) (13)

We prove a couple of properties of super- and subsolutions that will prove useful later. The first property refers
to the scale invariance of the definition of super- and subsolutions and the second property is the monotonicity
of a single variable function.

Lemma 5 If for any τ > 0,

x ≥ Sλ/τ

(
x− ∇f(x)

τ

)
(14)

then x is a supersolution. If x is a supersolution then the above inequality holds for all τ > 0.
Similarly, if for any τ > 0,

x ≤ Sλ/τ

(
x− ∇f(x)

τ

)
then x is a subsolution. If x is a subsolution then the above inequality holds for all τ > 0.

Proof: See Appendix B

Lemma 6 If x is a supersolution (resp. subsolution) then for any j, the function

τ 7→ Sλ/τ

(
xj −

[∇f(x)]j
τ

)
is monotonically nondecreasing (resp. nonincreasing).

Proof: See Appendix C

4.1 Gradient Descent
Lemma 7 If x(0) is a supersolution and

{
x(k)

}
is the sequence of iterates generated by the GD algorithm

then ∀k ≥ 0,

1) x(k+1) ≤ x(k) 2) x(k) is a supersolution

If x(0) is a subsolution and
{
x(k)

}
is the sequence of iterates generated by the GD algorithm then ∀k ≥ 0,

1) x(k+1) ≥ x(k) 2) x(k) is a subsolution

Proof: We only prove the supersolution case. The proof for the subsolution case is analogous. We start with
a supersolution x(0). Consider the operator

TGD(x) := Sλ/L

(
x− ∇f(x)

L

)
given by (11). By the isotonicity assumption, TGD is an isotone operator. We will prove by induction that
TGD(x(k)) ≤ x(k). This proves that x(k+1) ≤ x(k) since x(k+1) = TGD(x(k)). Using lemma 5, the second
claim follows by the definition of the TGD operator.

The base case TGD(x(0)) ≤ x(0) is true by Lemma 5 since x(0) is given to be a supersolution. Now
assume TGD(x(k)) ≤ x(k). Applying the isotone operator TGD on both sides we get TGD(TGD(x(k))) ≤
TGD(x(k)). This is the same as TGD(x(k+1)) ≤ x(k+1) by definition of x(k+1) which completes our inductive
claim.

4.2 Cyclic Coordinate Descent (CCD)
Lemma 8 If y(0) is a supersolution and

{
y(k)

}
is the sequence of iterates generated by the CCD algorithm

then ∀k ≥ 0,

1) y(k+1) ≤ y(k) 2) y(k) is a supersolution

If y0 is a subsolution and
{
y(k)

}
is the sequence of iterates generated by the CCD algorithm then ∀k ≥ 0,

1) y(k+1) ≥ y(k) 2) y(k) is a subsolution

Proof: We will only prove the supersolution case as the subsolution proof is analogous. We start with a
supersolution y(0). We will prove the following: If y(k) is a supersolution then,

y(k+1) ≤ y(k) , (15)

y(k+1) is a supersolution (16)

Then the lemma follows by induction on k. Let us make the induction assumption that y(k) is a supersolution
and try to prove (15) and (16). To prove these, we will show that y(k,j) ≤ y(k) and y(k,j) is a supersolution
by induction on j ∈ {0, 1, . . . , d}. This proves (15) and (16) for y(k+1) since y(k+1) = y(k,d).

For the base case (j = 0) of the induction, note that y(k,0) ≤ y(k) is trivial since the two vectors are
equal. For the same reason, y(k,0) is a supersolution since we have assumed y(k) to be a supersolution. Now
assume y(k,j−1) ≤ y(k) and y(k,j−1) is a supersolution for some j > 0. We want to show that y(k,j) ≤ y(k)

and y(k,j) is a supersolution.
Since y(k,j−1) and y(k,j) differ only in the jth coordinate, to show that y(k,j) ≤ y(k) given y(k,j−1) ≤

y(k), it suffices to show that y(k,j) ≤ y(k,j−1), i.e.

y
(k,j)
j ≤ y(k,j−1)

j = y
(k)
j . (17)

Since y(k,j−1) ≤ y(k) applying the isotone operator I − ∇f/L on both sides and taking the jth coordinate
gives,

y
(k,j−1)
j − [∇f(y(k,j−1))]j

L
≤ y(k)

j −
[∇f(y(k))]j

L
Applying the scalar shrinkage operator on both sides gives,

Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
≤ Sλ/L

(
y
(k)
j −

[∇f(y(k))]j
L

)
≤ y(k)

j

The left hand side is y(k,j)
j by definition while the second inequality follows because y(k) is a supersolution.

Thus, we have proved (17).
Now we prove that y(k,j) is a supersolution. Note that we have already shown y(k,j) ≤ y(k,j−1). Applying

the isotone operator I− ∇fL on both sides gives,

y
(k,j)
j − [∇f(y(k,j))]j

L
≤ y(k,j−1)

j − [∇f(y(k,j−1))]j
L

, (18)

∀i 6= j, y
(k,j)
i − [∇f(y(k,j))]i

L
≤ y(k,j−1)

i − [∇f(y(k,j−1))]i
L

. (19)

Applying a scalar shrinkage on both sides of (18) gives,

Sλ/L

(
y
(k,j)
j − [∇f(y(k,j))]j

L

)
≤ Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
.

Since the right hand side is y(k,j)
j by definition, we have,

Sλ/L

(
y
(k,j)
j − [∇f(y(k,j))]j

L

)
≤ y(k,j)

j . (20)

For i 6= j, we have

y
(k,j)
i = y

(k,j−1)
i ≥ Sλ/L

(
y
(k,j−1)
i − [∇f(y(k,j−1))]i

L

)
≥ Sλ/L

(
y
(k,j)
i − [∇f(y(k,j))]i

L

)
. (21)

The first inequality above is true because y(k,j−1) is a supersolution (by Induction Assumption) (and Lemma 5).
The second follows from (19) by applying a scalar shrinkage on both sides. Combining (20) and (21), we get

y(k,j) ≥ Sλ/L

(
y(k,j) − ∇f(y(k,j))

L

)
which proves, using Lemma 5, that y(k,j) is a supersolution.

4.3 Comparison: GD vs. CCD

Theorem 9 Suppose
{
x(k)

}
and

{
y(k)

}
are the sequences of iterates generated by the GD and CCD algo-

rithms respectively when started from the same supersolution x(0) = y(0). Then, ∀k ≥ 0,

y(k) ≤ x(k) .

On the other hand, if they are started from the same subsolution x(0) = y(0) then the sequences satisfy,
∀k ≥ 0,

y(k) ≥ x(k) .

Proof: We will prove lemma 9 only for the supersolution case by induction on k. The base case is trivial
since y(0) = x(0). Now assume y(k) ≤ x(k) and we will prove y(k+1) ≤ x(k+1). Fix a j ∈ [d]. Note that we
have,

y
(k+1)
j = y

(k,j)
j = Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
.

By Lemma 8, y(k,j−1) ≤ y(k). Applying the isotone operator Sλ/L ◦ (I −∇f/L) on both sides and taking
the jth coordinate gives,

Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
≤ Sλ/L

(
y
(k)
j −

[∇f(y(k))]j
L

)
.

Combining this with the previous equation gives,

y
(k+1)
j ≤ Sλ/L

(
y
(k)
j −

[∇f(y(k))]j
L

)
. (22)

Since y(k) ≤ x(k) by induction hypothesis, applying the isotone operator Sλ/L ◦ (I −∇f/L) on both sides
and taking the jth coordinate gives,

Sλ/L

(
y
(k)
j −

[∇f(y(k))]j
L

)
≤ Sλ/L

(
x

(k)
j −

[∇f(x(k))]j
L

)
.

By definition,

x
(k+1)
j = Sλ/L

(
x

(k)
j −

[∇f(x(k))]j
L

)
. (23)

Combining this with the previous inequality and (22) gives,

y
(k+1)
j ≤ x(k+1)

j .

Since j was arbitrary this means y(k+1) ≤ x(k+1) and the proof is complete.

4.4 Cyclic Coordinate Minimization (CCM)
Since CCM minimizes a one-dimensional restriction of the function F , let us define some notation for this
subsection. Let,

f|j(α;x) := f(x1, . . . , xj−1, α, xj+1, . . . , xd)

F|j(α;x) := F (x1, . . . , xj−1, α, xj+1, . . . , xd) .

With this notation, CCM update can be written as:

z
(k,j)
j = argmin

α
F|j(α; z(k,j−1)) (24)

∀i 6= j, z
(k,j)
i = z

(k,j−1)
i .

In order to avoid dealing with infinities in our analysis, we want to ensure that the minimum in (24) above is
attained at a finite real number. This leads to the following assumption.

Assumption 10 For any x ∈ Rd and any j ∈ [d], the one-variable function f|j(α;x) (and hence F|j(α;x))
is strictly convex.

This is a pretty mild assumption: considerably weaker than assuming, for instance, that the function f
itself is strictly convex. For example, when f is quadratic as in (4), then the above assumption is equivalent
to saying that the diagonal entries Aj,j of the positive semi definite matrix A are all strictly positive. This is
much weaker than saying that f is strictly convex (which would mean A is invertible).

The next lemma shows that the CCM update can be represented in a way that makes it quite similar to
the CCD update.

Lemma 11 Fix k ≥ 0, j ∈ [d] and consider the CCM update (24). Let g(α) = f|j(α; z(k,j−1)). If the

update is non-trivial, i.e. z(k,j)
j 6= z

(k,j−1)
j , it can be written as

z
(k,j)
j = Sλ/τ

(
z
(k−1,j)
j −

[
∇f(z(k,j−1))

]
j

τ

)
for

τ =
g′(z(k,j)

j)− g′(z(k,j−1)
j)

z
(k,j)
j − z(k,j−1))

j

. (25)

Furthermore, we have 0 < τ ≤ L.

Proof: See Appendix A

We point out that this lemma is useful only for the analysis of CCM and not for its implementation (as
τ depends recursively on z(k,j)

j) except in an important special case. In the quadratic example (4), g(α) is a

one-dimensional quadratic function. In this case τ does not depend on z(k,j)
j and is simply Aj,j . This leads

to an efficient implementation of CCM for quadratic f .
We are now equipped with everything to prove the following behavior of the CCM iterates.

Lemma 12 If z0 is a supersolution and
{
z(k)

}
is the sequence of iterates generated by the CCM algorithm

then ∀k ≥ 0,

1) z(k+1) ≤ z(k) 2) z(k) is a supersolution

If z0 is a subsolution and
{
z(k)

}
is the sequence of iterates generated by the CCD algorithm then ∀k ≥ 0,

1) z(k+1) ≥ z(k) 2) z(k) is a subsolution

Proof: Again, we will only prove the supersolution case as the subsolution case is analogous. We are given
that z(0) is a supersolution. We will prove the following: if z(k) is a supersolution then,

z(k+1) ≤ z(k) , (26)

z(k+1) is a supersolution . (27)

Then the lemma follows by induction on k. Let us assume that z(k) is a supersolution and try to prove (26)
and (27). To prove these we will show that z(k,j) ≤ z(k) and z(k,j) is a supersolution by induction on
j ∈ {0, 1, . . . , d}. This proves (26) and (27) for z(k+1) since z(k+1) = z(k,d). .

The base case (j = 0) of the induction is trivial since z(k,0) ≤ z(k) since the two vectors are equal. For
the same reason, z(k,0) is a supersolution since we have assumed z(k) to be a supersolution. Now assume
z(k,j−1) ≤ z(k) and z(k,j−1) is a supersolution for some j > 0. We want to show that z(k,j) ≤ z(k) and
z(k,j) is a supersolution. If the update to z(k,j) was trivial, i.e. z(k,j−1) = z(k,j) then there is nothing to
prove. Therefore, for the remainder of the proof assume that the update is non-trivial (and hence Lemma 11
applies).

Since z(k,j−1) and z(k,j) differ only in the jth coordinate, to show that z(k,j) ≤ z(k) given that z(k,j−1) ≤
z(k), it suffices to show that z(k,j) ≤ z(k,j−1), i.e.

z
(k,j)
j ≤ z(k,j−1)

j = z
(k)
j . (28)

As in Lemma (11), let us denote f|j(α; z(k,j−1) by g(α). The lemma gives us a τ ∈ (0, L] such that,

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ

)
. (29)

Since z(k,j−1) is a supersolution by induction hypothesis and τ ≤ L, using Lemma 6 we get

z
(k,j)
j ≤ Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
≤ Sλ/L

(
z
(k)
j − [∇f(z(k))]j

L

)
≤ z(k)

j .

where the second inequality above holds because z(k,j−1) ≤ z(k) by induction hypothesis and since Sλ/L ◦
(I − ∇f/L) is an isotone operator. The third holds since z(k) is a supersolution (coupled with Lemma 5).
Thus, we have proved (28).

We now need to prove that z(k,j) is a supersolution. To this end, we first claim that

z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ
= z

(k,j)
j − [∇f(z(k,j))]j

τ
. (30)

This is true since

z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ
− z(k,j)

j +
[∇f(z(k,j))]j

τ

= z
(k,j−1)
j − z(k,j)

j − 1
τ

(g′(z(k,j−1)
j)− g′(z(k,j)

j))

= z
(k,j−1)
j − z(k,j)

j − (z(k,j−1)
j − z(k,j)

j) = 0 .

The first equality is true by definition of g and the second by (25). Now, applying Sλ/τ to both sides of (30)
and using (29), we get

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ

)
= Sλ/τ

(
z
(k,j)
j − [∇f(z(k,j))]j

τ

)
. (31)

For i 6= j, z(k,j)
i = z

(k,j−1)
i and thus we have

z
(k,j−1)
i − [∇f(z(k,j−1))]i

τ
− z(k,j)

i +
[∇f(z(k,j))]j

τ

= −1
τ

[
[∇f(z(k,j−1))]i − [∇f(z(k,j))]i

]
≥ 0

The last inequality holds because we have already shown that z(k,j−1) ≥ z(k,j) and thus by isotonicity of
I−∇f/L, we have

[∇f(z(k,j−1))]i − [∇f(z(k,j))]i ≤ L(z(k,j−1)
i − z(k,j)

i) = 0 .

Using the monotonic scalar shrinkage operator we have

Sλ/τ

(
z
(k,j−1)
i − [∇f(z(k,j−1))]i

τ

)
≥ Sλ/τ

(
z
(k,j)
i − [∇f(z(k,j))]i

τ

)
which, using the inductive hypothesis that z(k,j−1) is a supersolution, further yields

z
(k,j)
i = z

(k,j−1)
i ≥ Sλ/τ

(
z
(k,j−1)
i − [∇f(z(k,j−1))]i

τ

)
≥ Sλ/τ

(
z
(k,j)
i − [∇f(z(k,j))]i

τ

)
. (32)

Combining (31) and (32), we get

z(k,j) ≥ Sλ/τ

(
z(k,j) − ∇f(z(k,j))

τ

)
which proves, using Lemma 5, that z(k,j) is a supersolution.

4.5 Comparison: CCD vs. CCM
Theorem 13 Suppose

{
y(k)

}
and

{
z(k)

}
are the sequences of iterates generated by the CCD and CCM

algorithms respectively when started from the same supersolution y(0) = z(0). Then, ∀k ≥ 0,

z(k) ≤ y(k) .

On the other hand, if they are started from the same subsolution y(0) = z(0) then the sequences satisfy,
∀k ≥ 0,

z(k) ≥ y(k) .

Proof: We will only prove the supersolution case as the subsolution case is analogous. Given that y(0) = z(0)

is a supersolution, we will prove the following: if z(k) ≤ y(k) then,

z(k+1) ≤ y(k+1) . (33)

Then the lemma follows by induction on k. Let us assume z(k) ≤ y(k) and try to prove (33). To this end we
will show that z(k,j) ≤ y(k,j) by induction on j ∈ {0, 1, . . . , d}. This infers (33) since z(k+1) = z(k,d) and
y(k+1) = y(k,d).

The base case (j = 0) is true by the given condition in the lemma since z(k,0) = z(k) as well as y(k,0) =
y(k). Now, assume z(k,j−1) ≤ y(k,j−1) for some j > 0. We want to show that z(k,j) ≤ y(k,j).

Since z(k,j−1), z(k,j) and y(k,j−1), y(k,j) differ only in the jth coordinate, to show that z(k,j) ≤ y(k,j)

given that z(k,j−1) ≤ y(k,j−1), it suffices to show that

z
(k,j)
j ≤ y(k,j)

j . (34)

If the update to z(k,j) is non-trivial then using Lemma 11, there is a τ ∈ (0, L], such that

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ

)
≤ Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
, (35)

where the last inequality holds because of Lemma 6 and the fact that z(k,j−1) is a supersolution (Lemma 12).
If the update is trivial, i.e. z(k,j)

j = z
(k,j−1)
j then using (24) and (12) we have

0 ∈ [∇f(z(k,j))]j + λ sign(z(k,j)
j) .

which coupled with (13) gives

z
(k,j)
j = Sλ/L

(
z
(k,j)
j − [∇f(z(k,j))]j

L

)
≤ Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
where the last inequality is obtained by applying the isotone operator Sλ/L ◦ (I − ∇f/L) to the inequality
z(k,j) ≤ z(k,j−1) which holds by lemma 12. Thus (35) holds irrespective of the triviality of the update.

Now applying the same isotone operator to the inequality z(k,j−1) ≤ y(k,j−1) and taking the jth coordi-
nate gives,

Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
≤ Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
.

The right hand side above is, by definition, y(k,j)
j . So, combining the above with (35) gives (34) and proves

our inductive claim.

5 Convergence Rates
Our results so far have given inequalities comparing the iterates generated by the three algorithms. We finally
want to compare the function values obtained by these iterates. For doing that, the next lemma is useful.

Lemma 14 If y is a supersolution and y ≤ x then F (y) ≤ F (x).

Proof: Since F is convex, we have

F (y)− F (x) ≤ 〈∇f(y) + λρ, y − x〉 (36)

for any ρ ∈ ∂‖y‖1. We have assumed that y ≤ x. Thus in order to prove F (y) − F (x) ≤ 0, it suffices to
show that

∀i ∈ [d], ∃ρi ∈ sign(yi) s.t. γi + λρi ≥ 0 (37)

where, for convenience, we denote the gradient∇f(y) by γ. Since y is a supersolution, Lemma 5 gives,

∀i ∈ [d], yi ≥ Sλ/L
(
yi −

γi
L

)
(38)

For any i ∈ [d], there are three mutually exclusive and exhaustive cases.

Case (1) : yi > γi+λ
L Plugging this value in (38) and using the definition of scalar shrinkage (9), we get

yi ≥ yi −
γi + λ

L

which gives γi + λ ≥ 0 and hence yi > 0. Thus, we can choose ρi = 1 ∈ sign(yi) and we indeed have
γi + λρi ≥ 0.

Case (2) : yi ∈ [γi−λ
L , γi+λ

L] In this case, we have yi ≥ Sλ/L(y(k)
i −

γi

L) = 0. Thus,

γi + λ

L
≥ yi ≥ 0 .

Thus we can choose ρi = 1 ∈ sign(yi) and we have γi + λρi ≥ 0.

Case (3) : yi < γi−λ
L Plugging this value in (38) and using the definition of scalar shrinkage (9), we get

yi ≥ yi −
γi − λ
L

which gives γi − λ ≥ 0. Now if yi ≤ 0, we can set ρ = −1 ∈ sign(yi) and will have γi + λρi ≥ 0. On
the other hand, if yi > 0, we need to choose ρi = 1 and thus γi+λ ≥ 0 should hold if (37) is to be true.
However, we know γi − λ ≥ 0, and λ ≥ 0 so γi + λ ≥ 0 is also true.

Thus in all three cases we have that there is a ρi ∈ sign(yi) such that (37) is true.

There is a similar lemma for subsolutions whose proof, being similar to the proof above, is skipped.

Lemma 15 If y is a subsolution and y ≥ x then F (y) ≤ F (x).

If we start from a supersolution, the iterates for CCD and CCM always maintain the supersolution prop-
erty. Thus Lemma 14 ensures that starting from the same initial iterate, the function values of the CCD and
CCM iterates always remain less than the corresponding GD iterates. Since the GD algorithm has O(1/k)
accuracy guarantees according to Theorem 2, the same rates must hold true for CCD and CCM. This is
formalized in the following theorem.

Theorem 16 Starting from the same super- or subsolution x(0) = y(0) = z(0), let
{
x(k)

}
,
{
y(k)

}
and

{
z(k)

}
denote the GD, CCD and CCM iterates respectively. Then for any minimizer x∗ of (2), and ∀k ≥ 1,

F (z(k)) ≤ F (y(k)) ≤ F (x(k)) ≤ F (x?) +
L‖x? − x(0)‖2

2 k

6 Conclusion

Coordinate descent based methods have seen a resurgence of popularity in recent times in both the machine
learning and the statistics community, due to the simplicity of the updates and implementation of the overall
algorithms. Absence of finite time convergence rates is thus one of the most important theoretical issues to
address.

In this paper, we provided a comparative analysis of GD, CCD and CCM algorithms to give the first
known finite time guarantees on the convergence rates of cyclic coordinate descent methods. However, there
still are a significant number of unresolved questions. Our comparative results require that the algorithms
start from a supersolution so that the property is maintained for all the subsequent iterates. We also require an
isotonicity assumption on the I−∇f/L operator. Although this is a fairly common assumption in numerical
optimization (Bertsekas & Tsitsiklis, 1989), it is desirable to have a more generalized analysis without any
restrictions. Since stochastic coordinate descent (Shalev-Shwartz & Tewari, 2009) converges at the same
O(1/k) rate as GD without additional assumptions, intuition suggests that same should be true for CCD and
CCM. A theoretical proof of the same remains an open question.

Some greedy versions of the coordinate descent algorithm (e.g., (Wu & Lange, 2008)) still lack a theo-
retical analysis of their finite time convergence guarantees. Although Clarkson (2008) has a O(1/k) rates for
a greedy version, the analysis is restricted to a simplex domain and does not generalize to arbitrary domains.
The phenomenal performance of greedy coordinate descent algorithms on real life datasets makes it all the
more essential to validate these experimental results theoretically.

References
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm with application to

wavelet-based image deblurring. In ICASSP ’09: Proceedings of the 2009 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, 693–696. IEEE Computer Society.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and distributed computation: numerical methods. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc. ISBN 0-13-648700-9.

Clarkson, K. L. (2008). Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. In SODA
’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, 922–931.

Duchi, J., & Singer, Y. (2009). Efficient learning using forward-backward splitting. In Y. Bengio, D. Schu-
urmans, J. Lafferty, C. K. I. Williams, & A. Culotta, eds., Advances in Neural Information Processing
Systems 22, 495–503.

Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. In Annals
of Applied Statistics.

Genkin, A., Lewis, D. D., & Madigan, D. (2007). Large-scale bayesian logistic regression for text catego-
rization. Technometrics, 49(3), 291–304.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Soviet Math. Docl., 269, 543–547.

Nesterov, Y. (2003). Introductory Lectures On Convex Optimization: A Basic Course. Springer.

Rheinboldt, W. C. (1970). On M-functions and their application to nonlinear Gauss–Seidel iterations and to
network flows. J. Math. Anal. Appl., 32, 274–307.

Shalev-Shwartz, S., & Tewari, A. (2009). Stochastic methods for l1 regularized loss minimization. In Pro-
ceedings of the 26th International Conference on Machine Learning, 929–936. ACM Press.

Tropp, J. A. (2006). Just relax: convex programming methods for identifying sparse signals in noise. IEEE
Transactions on Information Theory, 52(3), 1030–1051.

Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. J.
Optim. Theory Appl., 109(3), 475–494.

Tseng, P., & Yun, S. (2009a). A block-coordinate gradient descent method for linearly constrained nonsmooth
separable optimization. Journal of Optimization Theory and Applications, 140(3), 513–535.

Tseng, P., & Yun, S. (2009b). A coordinate gradient descent method for nonsmooth separable minimization.
Math. Prog. B, 117, 387–423.

Wu, T. T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. In Annals of
Applied Statistics, vol. 2, 224–244.

Appendix

A Proof of Lemma 11
Since g(α) = f|i(α; z(k,j−1)) we have

g′(α) =
[
∇f(z(k,j−1)

1 , z
(k,j−1)
2 , . . . z

(k,j−1)
j−1 , α, z

(k,j−1)
j+1 , . . . z

(k,j−1)
d)

]
j

Therefore,

g′(z(k,j−1)
j) = [∇f(z(k,j−1))]j (39)

Since, by definition, z(k,j)
j is the minimizer of g(α) + λ|α|, we have

0 ∈ g′(z(k,j)
j) + λ sign(z(k,j)

j)

For notational convenience we denote z(k,j)
j as α?, since it is the minimizer of g(α)+λ|α|. With this notation

we have,

τ =
g′(α?)− g′(z(k,j−1)

j)

α? − z(k,j−1)
j

. (40)

Note that τ is well defined since the denominator is non-zero by our assumption of a non-trivial update.
Further, τ > 0 by Assumption 10 and τ ≤ L since∇f (and hence g′(α)) is L-Lipschitz continuous.

Depending on the sign of α?, there are three possible cases:

Case (1): α? > 0: This implies that

g′(α?) + λ = 0 (41)

By (40),

g′(α?) = g′(z(k,j−1)
j) + τ(α? − z(k,j−1)

j)

Plugging this in (41), we get

g′(z(k,j−1)
j) + τ(α? − z(k,j−1)

j) + λ = 0 .

Using the definition of shrinkage operator (9) combined with the fact that α? > 0, we have

α? = z
(k,j−1)
j − 1

τ
g′(z(k,j−1)

j)− λ

τ

= Sλ/τ

(
z
(k,j−1)
j −

g′(z(k)
j)
τ

)

Case (2): α? = 0: The corresponding condition is

0 ∈ [g′(α?)− λ, g′(α?) + λ]

Again using (40), we have

g′(α?) = g′(z(k,j−1)
j) + τ(α? − z(k,j−1)

j) = g′(z(k,j−1)
j)− τ(z(k,j−1)

j) [since α? = 0]

=⇒ α? = 0 ∈

[
g′(z(k,j−1)

j)
τ

− z(k,j−1)
j − λ

τ
,
g′(z(k,j−1)

j)
τ

− z(k,j−1)
j +

λ

τ

]

=⇒ α? = 0 = Sλ/τ

(
z
(k,j−1)
j −

g′(z(k,j−1)
j)
τ

)
where the last step follows from the definition of the shrinkage operator (9).

Case (3): α? < 0: This implies that

g′(α?)− λ = 0

y = xj y = Sλ (xj − [∇f(x)]j)

[∇f(x)]j − λ

[∇f(x)]j [∇f(x)]j + λ

Figure 1: Interval to right of zero

y = xj y = Sλ (xj − [∇f(x)]j)

[∇f(x)]j − λ

[∇f(x)]j [∇f(x)]j + λ

Figure 2: Interval crossing zero

Using (40) to substitute for g′(α?) as in the previous cases, we have,

g′(z(k,j−1)
j) + τ(α? − z(k,j−1)

j)− λ = 0

which yields

α? = z
(k,j−1)
j − 1

τ
g′(z(k,j−1)

j) +
λ

τ

= Sλ/τ

(
z
(k,j−1)
j −

g′(z(k,j−1)
j)
τ

)
where the last inequality follows because α? < 0.

Combining these three cases and using (39) we get

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j −

[
∇f(z(k,j−1))

]
j

τ

)
.

B Proof of lemma 5
We prove the supersolution case only as the subsolution case is analogous. Let for a particular τ > 0,
x ≥ Sλ/τ

(
x− ∇f(x)

τ

)
. We prove the inequality for the scalar S operator on an arbitrary coordinate j. The

subsequent proofs are divided into three disjoint cases related to the values taken by the shrinkage operator.

Case 1 [∇f(x)]j − λ > 0:

This is illustrated in figure 1. Depending on whether τ > 1 or not, the graph of the shrinkage operator
shifts left or right, but clearly division by τ does not change the sign of the shrinkage operator value

y = xjy = Sλ (xj − [∇f(x)]j)

[∇f(x)]j − λ [∇f(x)]j

[∇f(x)]j + λ

Figure 3: Interval to left of zero

at any point. As is evident from figure 1, the graph of y = xj always lies above that of the shrinkage
operator. Thus

xj ≥ Sλ/τ
(
xj −

[∇f(x)]j
τ

)
(42)

for all values of τ and in particular for τ = 1. Thus x is a supersolution.

Case 2 0 ∈ [[∇f(x)]j − λ, [∇f(x)]j + λ]:

The corresponding case is illustrated in figure 2. It is clear from the figure that xj ≥ Sλ/τ
(
xj − [∇f(x)]j

τ

)
for positive τ , only when xj ≥ 0. Just as in the previous case, changing the value of τ shifts the graph
by appropriate scale without changing its sign. Thus (42) holds for xj ≥ 0 irrespective of the value of
τ . In particular, it should hold for τ = 1 which proves that x is a supersolution.

Case 3 [∇f(x)]j + λ < 0:
As illustrated in figure 3, in this case the graph of the shrinkage operator will always lie below the value
of xj . Thus (42) will not be satisfied for any value of τ which makes the case vacuous.

To prove the converse direction, we look at the same three exclusively disjoint cases for an arbitrary
coordinate j.

Case 1 [∇f(x)]j − λ > 0:
As seen from figure 1, x is always a supersolution since [∇f(x)]j + λ > [∇f(x)]j − λ > 0 and the
graph of the shrinkage operator uniformly stays below the value of xj . Since the sign of the shrinkage
operator value does not change due to division by τ > 0, (42) holds for arbitrary positive τ .

Case 2 0 ∈ [[∇f(x)]j − λ, [∇f(x)]j + λ]:
If x is a supersolution, it means that the value attained by the shrinkage operator lies below the value of
xj , which is true when xj ≥ 0 (Figure 2). In this subset of the domain, division by τ maintains the sign
of the shrinkage value and thus (42) holds.

Case 3 [∇f(x)]j + λ < 0:
In this case the graph of the shrinkage operator always lies above the value of xj . Thus x can never be
a supersolution if this condition holds true.

C Proof of lemma 6
Let

h(τ) = Sλ/τ

(
xj −

[∇f(x)]j
τ

)
We again look at the three disjoint cases for arbitrary τ1, τ2 ∈ (0,∞) with τ1 ≥ τ2 and show that h(τ1) ≥
h(τ2).

y = xj y = Sλ/τ2

(
xj − [∇f(x)]j

τ2

)
y = Sλ/τ1

(
xj − [∇f(x)]j

τ1

)

[∇f(x)]j−λ
τ2

[∇f(x)]j+λ

τ2
[∇f(x)]j−λ

τ1

[∇f(x)]j+λ

τ1

Figure 4: Interval to right of zero

y = xj
y = Sλ/τ2

(
xj − [∇f(x)]j

τ2

)y = Sλ/τ1

(
xj − [∇f(x)]j

τ1

)

[∇f(x)]j−λ
τ2

[∇f(x)]j+λ

τ2
[∇f(x)]j−λ

τ1

[∇f(x)]j+λ

τ1

Figure 5: Interval crossing zero

Case 1 [∇f(x)]j − λ > 0:

Since both the hinge points in the graph will be positive (figure 4), we have [∇f(x)]j−λ
τ1

≤ [∇f(x)]j−λ
τ2

and [∇f(x)]j+λ
τ1

≤ [∇f(x)]j+λ
τ2

. Thus it is trivial to see that the graph of h(τ1) is always greater than
h(τ2).

Case 2 0 ∈ [[∇f(x)]j − λ, [∇f(x)]j + λ]:
Since x needs to be a supersolution, we only need to consider the subset of the domain when xj ≥ 0.
We still have [∇f(x)]j+λ

τ1
≤ [∇f(x)]j+λ

τ2
and it is obvious from figure 5, that h(τ1) ≥ h(τ2).

Case3 [∇f(x)]j + λ < 0 :
Since x can never be a supersolution in this case as shown in the proof of lemma 5, this case is vacuous.

