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1 AdaBoost
AdaBoost (Adaptive Boosting) is for the case where the parameter γ is not known. The algorithm adapts to the
performace of the weak learner.

Algorithm 1 AdaBoost
Input parameters: T

Initialize w1 ← 1
m1

for t = 1 to T do
Call γ-WeakLearner with distribution wt, and receive hypothesis ht : X → [−1, 1].
Calculate the error

γt =
1
2
−

m∑
i=1

wt,i
|h(xi)− yi|

2

Set

βt =
1
2 − γt
1
2 + γt

, lt,i = 1− |ht(xi)− yi|
2

and update the weights

wt+1,i =
wt,iβ

lt,i

t

Zt
, Zt =

∑
i

wt,iβ
lt,i

t

end for
OUTPUT the hypothesis:

h(x) = sgn

(
T∑
t=1

(
log

1
βt

)
ht(x)

)

AdaBoost enjoys the following performance guarantee:

Theorem 1.1. Let h be the output hypothesis of AdaBoost. Let M be the set of mistakes on the traning set, i.e.
M = {i : h(xi) 6= yi}. We have:

|M |
m
≤ ΠT

t=1

√
1− 4γ2

t ≤ e−2
∑T

t=1γ
2
t

Proof. We first bound the normalizing constant Zt using βx ≤ 1− (1− β)x for any x ∈ [0, 1],

Zt =
m∑
i=1

wt,iβ
lt,i ≤

m∑
i=1

wt,i (1− (1− βt)lt,i) = 1− (1− βt)
(

1
2

+ γt

)
. (1)

Next we observe that

wT+1,i = w1,i

∏t
t=1 β

lt,i∏T
t=1 Zt

. (2)
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If the output hypothesis h makes a mistake on example i, then

yi

(
T∑
t=1

(
log

1
βt

)
ht(xi)

)
≤ 0 .

Since yi ∈ {−1,+1}, this implies, for all i ∈M ,

T∏
t=1

β
1− |ht(xi)−yi|

2
t ≥

(
T∏
t=1

βt

)1/2

. (3)

Combining (2) and (3), we get

m∑
i=1

wT+1,i

T∏
t=1

Zt =
T∏
t=1

Zt

=
m∑
i=1

w1,i

T∏
t=1

βlt,i

≥
∑
i∈M

w1,i

(
T∏
t=1

βlt,i

)1/2

=
|M |
m

(
T∏
t=1

βlt,i

)1/2

.

Rearranging, this gives,
|M |
m
≤

T∏
t=1

Zt√
βt
.

Combining this with (1), we get
|M |
m
≤

T∏
t=1

(1− (1− βt)(1/2 + γt)√
βt

.

Now substituting βt = (1/2− γt)/(1/2 + γt) proves the theorem.

2 L1 Margins and Weak Learning
While it may seem that the weak learning is assumption is rather mild, we now show that it is considerably stronger than
what one might initially think. In particular, the weak learning assumption is equavalent to a seperability assumption.

We say that we have a γ-weak learner if for every distribution w over the traning set, we can find a hypothesis
h : X → [−1, 1] such that:

m∑
i=1

wi
|h(xi)− yi|

2
≤ 1

2
− γ

which is equivalent to the condition
m∑
i=1

wiyih(xi) ≥ 2γ

which is straightforward to show since |h(xi)− yi| = 1− yih(xi)
Let us assume that we have a set of hypothesis

H = {h1(·), h2(·), . . . hk(·)}
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such that if h is in this set then −h is in this set. Also assume that our weak learning assumpiton holds with respect to
this set of hypothesis, meaning that the output of our weak learning always lies in this set H. Note then that our final
prediction will be of the form:

houtput(x) =
k∑
j=1

wjhj(x)

where w is a weight vector.
Define the matrix A such that:

Ai,j = yihj(xi) .

so A is an m × k. Letting S denote the n-dimensional simplex, the weak γ-learning assumption can be stated as
follows:

2γ ≤ min
p∈S

max
j∈[k]

m∑
i=1

piyihj(xi)

= min
p∈S

max
j∈[k]
|
m∑
i=1

piyihj(xi)|

= min
p∈S

max
j∈[k]
|
m∑
i=1

piAi,j |

= min
p∈S

max
j∈[k]
|[p†A]j |

where γ ≥ 0 and we have stated the assumption in matrix notation, in terms of A.
Now let B1 deonte the L1 ball of dimension k. We can say that our data-set A is linearly separable with L1 margin

α ≥ 0 if:

α ≤ max
w∈B1

min
i∈[m]

yi(
k∑
j=1

wjhj(xi))

= max
w∈B1

min
i∈[m]

k∑
j=1

wjAi,j

= max
w∈B1

min
i∈[m]

[Aw]i

Theorem 2.1. A is γ weak learnable if and only if A is linearly separable with L1 margin 2γ.

Proof. Using the minimax theorem:

min
p∈S

max
j∈[k]
|[p†A]j | = min

p∈S
max
w∈B1

p†Aw

= max
w∈B1

min
p∈S

p†Aw

= max
w∈B1

min
i∈[m]

[Aw]i

which completes the proof.
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