CMSC 35900 (Spring 2008) Learning Theory

Lecture: 2

Perceptron and Winnow

Instructors: Sham Kakade and Ambuj Tewari

1 The Perceptron Algorithm

Algorithm 1 PERCEPTRON

```
\begin{array}{l} w_1 \leftarrow \mathbf{0} \\ \mathbf{for} \ t = 1 \ \mathrm{to} \ T \ \mathbf{do} \\ \mathrm{Receive} \ x_t \in \mathbb{R}^d \\ \mathrm{Predict} \ \mathrm{sgn}(w_t \cdot x_t) \\ \mathrm{Receive} \ y_t \in \{-1, +1\} \\ \mathbf{if} \ \mathrm{sgn}(w_t \cdot x_t) \neq y_t \ \mathbf{then} \\ w_{t+1} \leftarrow w_t + y_t x_t \\ \mathbf{else} \\ w_{t+1} \leftarrow w_t \\ \mathbf{end} \ \mathbf{if} \\ \mathbf{end} \ \mathbf{for} \end{array}
```

The following theorem gives a dimension independent bound on the number of mistakes the PERCEPTRON algorithm makes.

Theorem 1.1. Suppose Assumption M holds. Let

$$M_T := \sum_{t=1}^T \mathbf{1} \left[\operatorname{sgn}(w_t \cdot x_t) \neq y_t \right]$$

denote the number of mistakes the PERCEPTRON algorithm makes. Then we have,

$$M_T \le \frac{\|x_{1:T}\|^2 \cdot \|w^*\|^2}{\gamma^2}$$

Proof. The key idea of the proof is to look at how the quantity $w^* \cdot w_t$ evolves over time. We first provide an lower bound for it. Define $m_t = \mathbf{1} [\operatorname{sgn}(w_t \cdot x_t) \neq y_t]$. Note that $w_{t+1} = w_t + y_t x_t m_t$ and $M_T = \sum_t m_t$. We have,

$$w^* \cdot w_{t+1} = w^* \cdot w_t + y_t x_t m_t$$

= $w^* \cdot w_t + y_t (w^* \cdot x_t) m_t$
 $\geq w^* \cdot w_t + \gamma m_t$. (Assumption M)

Unwinding the recursion, we get

$$w^* \cdot w_{T+1} \ge w^* \cdot w_1 + \gamma M_T = \gamma M_T . \tag{1}$$

Now, we use Cauchy-Schwarz inequality to get the upper bound,

$$w^* \cdot w_{T+1} \le \|w^*\| \cdot \|w_{T+1}\| \,. \tag{2}$$

Moreover,

$$||w_{t+1}||^2 = ||w_t + y_t x_t m_t||^2$$

= $||w_t||^2 + 2y_t (w_t \cdot x_t) m_t + ||x_t||^2 m_t$
 $\leq ||w_t||^2 + 0 + ||x_{1:T}||^2 m_t$,

where the last step follows because $y_t(w_t \cdot x_t) < 0$ when a mistake is made and $||x_t|| \le ||x_{1:T}||$. Unwinding the recursion once again, we get,

$$||w_{T+1}||^2 \le ||w_1||^2 + ||x_{1:T}||^2 M_T = ||x_{1:T}||^2 M_T.$$
(3)

Combining (1), (2) and (3) gives,

$$\gamma M_T \le w^* \cdot w_{T+1} \le \|w^*\| \cdot \|w_{T+1}\| \le \|w^*\| \cdot \|x_{1:T}\| \sqrt{M_T} .$$
$$T_T \le \|w^*\|^2 \cdot \|x_{1:T}\|^2 / \gamma^2.$$

This implies that $M_T \le ||w^*||^2 \cdot ||x_{1:T}||^2 / \gamma^2$.

2 Lower Bound

Theorem 2.1. Suppose $\mathcal{X} = \{x \in \mathbb{R}^d \mid ||x|| \le 1\}$ and $\frac{1}{\gamma^2} \le d$. Then for any deterministic algorithm, there exists a data set which is separable by a margin of γ on which the algorithm makes at least $\lfloor \frac{1}{\gamma^2} \rfloor$ mistakes.

Proof. Let $n = \lfloor \frac{1}{\gamma^2} \rfloor$. Note that $n \le d$ and $\gamma^2 n \le 1$. Let \mathbf{e}_i be the unit vector with a 1 in the *i*th coordinate and zeroes in others. Consider $\mathbf{e}_1, \ldots, \mathbf{e}_n$. We now claim that, for any $b \in \{-1, +1\}^n$, there is a w with $||w|| \le 1$ such that

$$\forall i \in [n], \ b_i(w_i \cdot \mathbf{e}_i) = \gamma \ .$$

To see this, simply choose $w_i = \gamma b_i$. Then the above equality is true. Moreover, $||w||^2 = \gamma^2 \sum_{i=1}^n b_i^2 = \gamma^2 n \le 1$.

Now given an algorithm \mathcal{A} , define the data set $\{(x_i, y_i)\}_{i=1}^n$ as follows. Let $x_i = \mathbf{e}_i$ for all i and $y_1 = -\mathcal{A}(x_1)$. Define y_i for i > 1 recursively as

$$y_i = -\mathcal{A}(x_1, y_1, \dots, x_{i-1}, y_{i-1}, x_i)$$
.

It is clear that the algorithm makes n mistakes when run on this data set. By the above claim, no matter what y_i 's turn out to be, the data set is separable by a margin of γ .

3 The Winnow Algorithm

Input parameter: $\eta > 0$ (learning rate)

Algorithm 2 WINNOW

```
\begin{split} w_{1} \leftarrow \frac{1}{d} \mathbf{1} \\ \text{for } t &= 1 \text{ to } T \text{ do} \\ \text{Receive } x_{t} \in \mathbb{R}^{d} \\ \text{Predict } \operatorname{sgn}(w_{t} \cdot x_{t}) \\ \text{Receive } y_{t} \in \{-1, +1\} \\ \text{if } \operatorname{sgn}(w_{t} \cdot x_{t}) \neq y_{t} \text{ then} \\ \forall i \in [d], w_{t+1,i} \leftarrow \frac{w_{t,i} \exp(\eta y_{t} x_{t,i})}{Z_{t}} \text{ where } Z_{t} = \sum_{i=1}^{d} w_{t,i} \exp(\eta y_{t} x_{t,i}) \\ \text{else} \\ w_{t+1} \leftarrow w_{t} \\ \text{end if} \\ \text{end for} \end{split}
```

Theorem 3.1. Suppose Assumption M holds. Further assume that $w^* \ge 0$. Let

$$M_T := \sum_{t=1}^T \mathbf{1} \left[\operatorname{sgn}(w_t \cdot x_t) \neq y_t \right]$$

denote the number of mistakes the WINNOW algorithm makes. Then, for a suitable choice of η , we have,

$$M_T \le \frac{2\|x_{1:T}\|_{\infty}^2 \cdot \|w^*\|_1^2}{\gamma^2} \ln d$$

Proof. Let $u^* = w^*/||w^*||$. Since we assume $w^* \ge 0$, u^* is a probability distribution. At all times, the weight vector w_t maintained by WINNOW is also a probability distribution. Let us measure the progress of the algorithm by analyzing the *relative entropy* between these two distributions at time t. Accordingly, define

$$\Phi_t := \sum_{i=1}^d u_i^* \ln \frac{u_i^*}{w_{t,i}} \, .$$

When there is no mistake $\Phi_{t+1} = \Phi_t$. On a round when a mistake occurs, we have

$$\Phi_{t+1} - \Phi_t = \sum_{i=1}^d u_i^* \ln \frac{w_{t,i}}{w_{t+1,i}}$$

= $\sum_{i=1}^d u_i^* \ln \frac{Z_t}{\exp(\eta y_t x_{t,i})}$
= $\ln(Z_t) \sum_{i=t}^d u_i^* - \eta y_t \sum_{i=1}^d u_i^* x_{t,i}$
= $\ln(Z_t) - \eta y_t (u^* \cdot x_t)$
 $\leq \ln(Z_t) - \eta \gamma / \|w^*\|_1$, (4)

where the last inequality follows from the definition of u^* and Assumption M. Let $L = ||x_{1:T}||_{\infty}$. Then $y_t x_{t,i} \in [-L, L]$ for all t, i. Then we can bound

$$Z_t = \sum_{i=1}^d w_{t,i} e^{\eta y_t x_{t,i}}$$

using the convexity of the function $t \mapsto e^{\eta t}$ on the interval [-L, L] as follows.

$$\begin{split} Z_t &\leq \sum_{i=1}^d \frac{1 + y_t x_{t,i}/L}{2} e^{\eta L} + \frac{1 - y_t x_{t,i}/L}{2} e^{-\eta L} \\ &= \frac{e^{\eta L} + e^{-\eta L}}{2} \sum_{i=1}^d w_{t,i} + \frac{e^{\eta L} - e^{-\eta L}}{2} \left(y_t \sum_{i=1}^d w_{t,i} x_{t,i} \right) \\ &= \frac{e^{\eta L} + e^{-\eta L}}{2} + \frac{e^{\eta L} - e^{-\eta L}}{2} y_t(w_t \cdot x_t) \\ &\leq \frac{e^{\eta L} + e^{-\eta L}}{2} \end{split}$$

because having a mistake implies $y_t(w_t \cdot x_t) \leq 0$ and $e^{\eta L} - e^{-\eta L} > 0$. So we have proved

$$\ln(Z_t) \le \ln\left(\frac{e^{\eta L} + e^{-\eta L}}{2}\right) \,. \tag{5}$$

Define

$$C(\eta) := \eta \gamma / \|w^*\|_1 - \ln\left(\frac{e^{\eta L} + e^{-\eta L}}{2}\right) .$$

Combining (4) and (5) then gives us

$$\Phi_{t+1} - \Phi_t \le -C(\eta)\mathbf{1} \left[y_t \neq \operatorname{sgn}(w_t \cdot x_t) \right] \,.$$

Unwinding the recursion gives,

$$\Phi_{T+1} \leq \Phi_1 - C(\eta) M_T \; .$$

Since relative entropy is always non-negative $\Phi_{T+1} \ge 0$. Further,

$$\Phi_1 = \sum_{i=1}^d u_i^* \ln(du_i^*) \le \sum_{i=1}^d u_i^* \ln d = \ln d$$

which gives us

$$0 \le \ln d - C(\eta)M_T$$

and therefore $M_T \leq \frac{\ln d}{C(\eta)}$. Setting

$$\eta = \frac{1}{2L} \ln \left(\frac{L + \gamma / \|w^*\|_1}{L - \gamma / \|w^*\|_1} \right)$$

to maximize the denominator $C(\eta)$ gives

$$M_T \le \frac{\ln d}{g\left(\frac{\gamma}{L\|w^*\|_1}\right)}$$

where $g(\epsilon) := \frac{1+\epsilon}{2} \ln(1+\epsilon) + \frac{1-\epsilon}{2} \ln(1-\epsilon)$. Finally, noting that $g(\epsilon) \ge \epsilon^2/2$ proves the theorem.