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Abstract

We consider the problem of embedding general met-
rics into trees. We give the first non-trivial approxi-
mation algorithm for minimizing the multiplicative dis-
tortion. Our algorithm produces an embedding with
distortion (c log n)O(

√
log ∆), where c is the optimal dis-

tortion, and ∆ is the spread of the metric (i.e. the
ratio of the diameter over the minimum distance). We
give an improved O(1)-approximation algorithm for the
case where the input is the shortest path metric over an
unweighted graph. Moreover, we show that by compos-
ing our approximation algorithm for embedding general
metrics into trees, with the approximation algorithm of
[BCIS05] for embedding trees into the line, we obtain an
improved approximation algorithm for embedding gen-
eral metrics into the line.

We also provide almost tight bounds for the relation
between embedding into trees and embedding into span-
ning subtrees. We show that for any unweighted graph
G, the ratio of the distortion required to embed G into a
spanning subtree, over the distortion of an optimal tree
embedding of G, is at most O(log n). We complement
this bound by exhibiting a family of graphs for which
the ratio is Ω(log n/ log log n).

1 Introduction

A low-distortion embedding between two metric spaces
M and M ′ with distance functions D and D′ is a (non-
contractive) mapping f such that for any pair of points
p, q in the original metric, their distance D(p, q) before
the mapping is the same as the distance D′(f(p), f(q))
after the mapping, up to a (small) multiplicative factor
c. Low-distortion embeddings have been a subject of
extensive mathematical studies, and found numerous
applications in computer science (cf. [Lin02, Ind01]).

More recently, a few papers (cf. Figure 1) addressed
the relative or approximation version of this problem. In
this setting, the question is: for a class of metrics C, and
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a host metric M ′, what is the smallest approximation
factor a ≥ 1 of an efficient1 algorithm minimizing the
distortion of embedding of a given input metric M ∈ C
into M ′ ? This formulation enables the algorithm to
adapt to a given input metric. In particular, if the host
metric is ”expressive enough” to accurately model the
input distances, the minimum achievable distortion is
low, and the algorithm will produce an embedding with
low distortion as well.

This problem has been a subject of extensive
applied research during the last few decades (e.g.,
see [MDS] web page, or [KTT98]). However, almost
all known algorithms for this problem are heuristic.
As such, they can get stuck in local minima, and do
not provide any global guarantees on solution quality
([KTT98], section 2).

In this paper we consider the problem of approxi-
mating minimum distortion for embedding general met-
rics into tree metrics, i.e., shortest path metric over
(weighted) trees. This is a natural problem with connec-
tions and applications to many areas. The classic ap-
plication is the recovery of evolutionary trees from evo-
lutionary distances between the data (e.g., see [Sci05],
or [DEKM98], section 7.3). Another motivation comes
from computational geometry. Specifically, Eppstein
([Epp00], Open Problem 4) posed a question about al-
gorithmic complexity of finding the minimum-dilation
spanning tree of a given set of points in the plane. This
problem is equivalent (up to a constant factor in the
approximation factor) to a special case of our problem,
where the input metric is induced by points in the plane.
Moreover, a closely related problem has been studied in
the context of graph spanners [PU87, PR98]. Namely,
the problem of computing a minimum-stretch spanning
tree of a graph can be phrased as the problem of com-
puting the minimum distortion embedding of a graph
into a spanning subtree.

1.1 Our results Our main results are the first non-
trivial approximation algorithms for embedding into
tree metrics, for minimizing the multiplicative distor-
tion. Specifically, if the input metric is an unweighted

1That is, with running time polynomial in n, where n is the
number of points of the metric space.



graph, we give a O(1)-approximation algorithm for
this problem. For general metrics, we give an algo-
rithm such that if the input metric is c-embeddable
into some tree metric, produces an embedding with
distortion α(c log n)O(logα ∆), for any α ≥ 1. In par-
ticular, by setting α = 2

√
log ∆, we obtain distortion

(c log n)O(
√

log ∆). Alternatively, when ∆ = nO(1), by
setting α = nε, we obtain distortion nε(c log n)O(1/ε).
This in turn yields an O(n1−β)-approximation for some
β > 0, since it is always possible to construct an embed-
ding with distortion O(n) in polynomial time [Mat90].

Further, we show that by composing our approx-
imation algorithm for embedding general metrics into
trees, with the approximation algorithm of [BCIS05] for
embedding trees into the line, we obtain an improved 2

approximation algorithm for embedding general metrics
into the line. The best known distortion guarantee for
this problem [BCIS05] was cO(1)∆3/4, while the com-
position results in distortion (c log n)O(

√
log ∆). In fact,

we provide a general framework for composing relative
embeddings which could be useful elsewhere.

For the special case where the input is an un-
weighted graph metric, we also study the relation be-
tween embedding into trees, and embedding into span-
ning subtrees. An O(log n)-approximation algorithm is
known [EP04] for this problem. We show that if an un-
weighted graph metric embeds into a tree with distor-
tion c, then it also embeds into a spanning subtree with
distortion O(c log n). We also exhibit an infinite family
of graphs that almost achieves this bound; each graph in
the family embeds into a tree with distortion O(log n),
while any embedding into a spanning subtree has dis-
tortion Ω(log2 n/ log log n). We remark that by com-
posing the upper bound with our O(1)-approximation
algorithm for unweighted graphs, we recover the result
of [EP04]. Due to lack of space, we defer the results on
the relation between embedding into trees, and embed-
ding into spanning subtrees, to the full version of this
paper.

1.2 Related Work The study of the problem of ap-
proximating metrics by tree metrics has been initiated
in [FCKW93, ABFC+96], where the authors give an
O(1)-approximation algorithm for embedding metrics
into tree metrics. They also provide exact algorithms
for embeddings into simpler metrics, called ultramet-
rics. However, instead of the multiplicative distortion
(defined as above), their algorithms optimize the addi-
tive distortion; that is, the quantity maxp,q |D(p, q) −

2Strictly speaking, the guarantees are incomparable, but the

dependence on ∆ in our algorithm is a great improvement over
the earlier bound.

D′(p, q)|. The same problem has recently been studied
also for the case of minimizing the Lp norm of the dif-
ferences [HKM05, AC05]. In a recent paper [AC05], a
(log n log log n)1/p-approximation has been obtained for
this problem.

Minimizing the multiplicative distortion seems to
be a harder problem in general. For example, embed-
ding into the line is hard to nΩ(1)-approximate for mul-
tiplicative distortion, and there is no known poly(c)-
approximation algorithm, while for additive distortion
there exists a simple 3-approximation.

The problem of embedding into a tree with min-
imum multiplicative distortion is closely related to
the problem of computing a minimum-stretch span-
ning tree. The two problems are identical for the
case of complete graphs. We mention the work of
[PU87, CC95, VRM+97, PR98, PT01, FK01, EP04].
For unweighted graphs, the best known approximation
is an O(log n)-approximation algorithm [EP04]. Our al-
gorithm for unweighted graphs can be combined with
our algorithm for converting an embedding into a tree
into an embedding into a spanning subtree, to give
the same approximation guarantee (within constant fac-
tors).

The problem of approximating the multiplicative
distortion of embeddings into ultrametrics has been
studied as well; there is a polynomial-time algorithm for
solving this problem exactly [ABD+05]. Ultrametrics
are useful for modeling evolutionary data, but they
are not as expressive as general tree metrics. In
particular, they form a proper subset of tree metrics.
See [DEKM98] for a more detailed discussion.

1.3 Notation and Definitions
Graphs For a graph G = (V,G), and U ⊆ V (G),

let G[U ] denote the subgraph of G induced by U .
For u, v ∈ V (G) let DG(u, v) denote the shortest-path
distance between u and v in G. We assume that all
the edges of G have weight at least 1. If G is weighted
let WG denote the maximum edge weight of G, and let
WG = 1 otherwise.

Metrics For any finite metric space M = (X, D),
we assume that the minimum distance in M is at least
1. M is called a tree metric iff it is the shortest-
path metric of a subset of the vertices of a weighted
tree. For a graph G = (V,E), and γ ≥ 1 we say
that G γ-approximates M if V (G) ⊆ X, and for each
u, v ∈ V (G), D(u, v) ≤ DG(u, v) ≤ γD(u, v). We say
that M c-embeds into a tree if there exists an embedding
of M into a tree with distortion at most c. When
considering an embedding into a tree, we assume unless
stateted otherwise that the tree might contain steiner
nodes. By a result of Gupta [Gup01], after computing



Paper From Into Distortion Comments

[LLR94] general metrics L2 c uses SDP
[KRS04] line line c c is constant, embedding is a bijection

unweighted graphs bounded degree trees c c is constant, embedding is a bijection

[PS05] <3 <3 > (3− ε)c hard to 3-approximate, embedding is a bijection

[HP05] line line > nΩ(1) c = nΩ(1), embedding is a bijection
[EP04] unweighted graphs sub-trees O(c log n)

[PT01] outerplanar graphs sub-trees c
[CC95] unweighted graphs sub-trees NP-complete
[FK01] planar graphs sub-trees NP-complete

[BDG+05] unweighted graphs line O(c2) implies
√

n-approximation
> ac hard to a-approximate for some a > 1

c c is constant

unweighted trees line O(c3/2
√

log c)

subsets of a sphere plane 3c

[BCIS06] ultrametrics <d cO(d)

[ABD+05] general metrics ultrametrics c

[BCIS05] general metrics line O(∆3/4c11/4)

weighted trees line cO(1)

weighted trees line Ω(n1/12c) hard to O(n1/12)-approximate even for ∆ = nO(1)

[LNP06] weighted trees Lp O(c)

Figure 1: Previous work on relative embedding problems for multiplicative distortion. We use c to denote the optimal distortion, and

n to denote the number of points in in the input metric. Note that the table contains only the results that hold for the multiplicative

definition of the distortion; there is a rich body of work that applies to other definitions of distortion, notably the additive or average

distortion, see [BCIS05] for an overview.

the embedding we can remove the steiner nodes losing
at most a O(1) factor in the distortion (and thus also
in the approximation factor).

α-Restricted Subgraphs For a weighted graph
G = (V,E), and for α > 0, the α-restricted subgraph of
G is defined as the graph obtained from G after remov-
ing all the edges of weight greater than α. Similarly, for
a metric M = (X, D), the α-restricted subgraph of M
is defined as the weighted graph on vertex set X, where
an edge {u, v} appears in G iff D(u, v) ≤ α, and the
weight of every edge {u, v} is equal to D(u, v).

2 A Forbidden-Structure Characterization of
Tree-Embeddability

Before we describe our algorithms, we give a combina-
torial characterization of graphs that embed into trees
with small distortion. For any c > 1, the characteri-
zation defines a forbidden structure that cannot appear
in a graph that embeds into a tree with distortion at
most c. This structure will be later used when analyzing
our algorithms to show that the computed embedding
is close to optimal.

Lemma 2.1. Let G = (V,E) be a (possibly weighted)
graph. If there exist nodes v0, v1, v2, v3 ∈ V (G), and
λ > 0, such that

• for each i : 0 ≤ i < 4, there exists a path pi, with
endpoints vi, and vi+1mod4, and

• for each i : 0 ≤ i < 4, DG(pi, pi+2mod4) > λWG,

then, any embedding of G into a tree has distortion
greater than λ.

Proof. Let W = WG. Consider an optimal non-
contracting embedding f of G, into a tree T . For any
u, v ∈ V (G), let Pu,v denote the path from f(u) to f(v),
in T . For each i, with 0 ≤ i < 4, define Ti as the
minimum subtree of T , which contains all the images of
the nodes of pi. Since each Ti is minimum, it follows
that all the leaves of Ti are nodes of f(pi).

Claim 1. For each i, with 0 ≤ i < 4, we have Ti =⋃
{u,v}∈E(pi)

Pu,v.

Proof. Assume that the assertion is not true. That is,
there exists x ∈ V (Ti), such that for any {u, v} ∈ E(pi),
the path Pu,v does not visit x. Clearly, x /∈ V (pi), and
thus x is not a leaf. Let T 1

i , T 2
i , . . . , T j

i , be the connected
components obtained by removing x from Ti. Since for
every {u, v} ∈ E(pi), Pu,v does not visit x, it follows
that there is no edge {u, v} ∈ E(pi), with u ∈ T a

i ,
v ∈ T b

i , and a 6= b. This however, implies that pi is
not connected, a contradiction. 2

Claim 2. For each i, with 0 ≤ i < 4, we have
Ti ∩ Ti+2mod4 = ∅.



Proof. Assume that the assertion does not hold. That
is, there exists i, with 0 ≤ i < 4, such that Ti ∩
Ti+2mod4 6= ∅. We have to consider the following two
cases:

Case 1: Ti∩Ti+2mod4 contains a node from V (pi)∪
V (pi+2mod4). W.l.o.g., we assume that there exists
w ∈ V (pi+2mod4), such that w ∈ Ti ∩ Ti+2mod4. By
Claim 1, it follows that there exists {u, v} ∈ E(pi), such
that f(w) lies on Pu,v. This implies DT (f(u), f(v)) =
DT (f(u), f(w)) + DT (f(w), f(v)). On the other hand,
we have DG(pi, pi+2mod4) > λW , and since f is non-
contracting, we obtain DT (f(u), f(v)) > 2λW . Thus,
c ≥ DT (f(u), f(v))/DG(u, v). Since {u, v} ∈ E(G), and
the maximum edge weight in G is at most W , we have
DG(u, v) ≤ W , and thus c > 2λ.

Case 2: Ti ∩ Ti+2mod4 does not con-
tain nodes from V (pi) ∪ V (pi+2mod4). Let
w ∈ Ti ∩ Ti+2mod4. By Claim 1, there exist
{u1, v1} ∈ E(pi), and {u2, v2} ∈ E(pi+2mod4),
such that w lies in both Pu1,v1 , and Pu2,v2 .
We have DT (f(u1), f(v1)) + DT (f(u2), f(v2)) =
DT (f(u1), f(w))+DT (f(w), f(v1))+DT (f(u2), f(w))+
DT (f(w), f(v2)) ≥ DT (f(u1), f(u2)) +
DT (f(v1), f(v2)) ≥ DG(u1, u2) + DG(v1, v2) ≥
2DG(pi, pi+2mod4) > 2λW . Thus, we can as-
sume that DT (f(u1), f(v1)) > λW . It follows that
c ≥ DT (f(u1),f(v1))

DG(u1,v1)
> λ. 2

Moreover, since pi, and pi+1mod4, share an end-
point, we have Ti ∩ Ti+1mod4 6= ∅. By Claim 2,
it follows, that

⋃3
i=0 Ti ⊆ T , contains a cycle, a

contradiction. 2

3 Tree-Like Decompositions

In this section we describe a graph partitioning proce-
dure which is a basic step in our algorithms. Intuitively,
the procedure partitions a graph into a set of clusters,
and arranges the clusters in a tree, so that the struc-
ture of the tree of clusters resembles the structure of
the original graph.

Formally, the procedure takes as input a (possibly
weighted) graph G = (V,E), a vertex r ∈ V (G), and a
parameter λ ≥ 1. The output of the procedure is a pair
(TG

K ,KG), where KG is a partition of V (G), and TG
K is

a rooted tree with vertex set KG.
The partition KG of V (G) is defined as follows. For

integer i, let

Vi = {v ∈ V (G)|WG(i− 1)λ ≤ DG(r, v) < WGiλ}.

Initially, KG is empty. Let t be the maximum index
such that Vt is non-empty. Let Yi =

⋃t
j=i Vj . For

each i ∈ [t], and for each connected component Z of

Figure 2: An example of a tree-like decomposition of a
graph.

G[Yi] that intersects Vi, we add the set Z ∩ Vi, to the
partition KG. Observe that some clusters in KG might
induce disconnected subgraphs in G.

TG
K can now be defined as follows. For each K, K ′ ∈

KG, we add the edge {K, K ′} in TG
K iff there is an edge

in G between a vertex in K and a vertex in K ′. The
root of TG

K is the cluster containing r. The resulting
pair (TG

K ,KG) is called a (r, λ)-tree-like decomposition
of G.

Figure 2 depicts the described decomposition.

Proposition 3.1. TG
K is a tree.

Proof. Let u, v ∈ V (G). Since G is connected, there is
a path p from u to v in G. Let p = x1, . . . , x|p|. For
each i ∈ {1, . . . , |p|}, let Ki ∈ KG be such that xi ∈ Ki.
It is easy to verify that the sequence {Ki}|p|i=1 contains a
sub-sequence that corresponds to a path in TG

K . Thus,
TG
K is connected.

It is easy to show by induction on i that for
i = t, . . . , 1, the subset Li ⊆ KG that is obtained
by partitioning

⋃t
j=i Vj , induce a forest in TG

K . Since
L1 = KG, and TG

K is connected, it follows that TG
K is a

tree. 2

3.1 Properties of Tree-Like Decompositions
Before using the tree-like decompositions in our algo-
rithms, we will show that for a certain range of the de-
composition parameters, they exhibit some usefull prop-
erties.

We will first bound the diameter of the clusters in
KG. The intuition behind the proof is as follows. If
a cluster K is long enough, then starting from a pair
of vertices in x, y ∈ K that are far from each other,
and tracing the shortest paths from x and y to r, we
can discover the forbidden structure of lemma 2.1 in
G. Applying lemma 2.1 we obtain a lower bound on the
optimal distortion, contradicting the fact that G embeds
into a tree with small distortion.

Lemma 3.1. Let G = (V,E) be a graph that γ-embeds
into a tree, let r ∈ V (G), and let (TG

K ,KG) be a (r, γ)-
tree-like decomposition of G. Then, for any K ∈ KG,
and for any u, v ∈ K, DG(u, v) ≤ 20γWG.



Proof. Assume that the assertion is not true, and pick
K ∈ KG, and vertices x, y ∈ K, such that DG(x, y) >
20γWG. Recall that KG was obtained by partitioning
the vertices of G according to their distance from r.
Let qx, and qy be the shortest paths from x to r, and
from y to r respectively. Let K1, . . . ,Kτ be the branch
in TG

K , such that r ∈ K1, and Kτ = K. By the
construction of KG, we have that for any i ∈ [τ ], for any
z ∈ Ki, DG(r, z) ≤ iWGγ. Thus, DG(x, y) ≤ DG(x, r)+
DG(r, y) ≤ 2τWGc. Since DG(x, y) > 20γWG, it follows
that τ > 10.

Consider now the sub-path px of qx that starts
from x, and terminates to the first vertex x′ of Kτ−2

visited by qx. Define similarly py as the sub-path of qy

that starts from y, and terminates to the first vertex
y′ of Kτ−2 visited by qy. We will first show that
DG(px, py) > γWG. Observe that by the construction
of KG, we have that DG(x, x′) ≤ 2γWG, and also
DG(y, y′) ≤ 2γWG. Since px, and py are shortest paths,
we have that for any z ∈ px, DG(x, z) ≤ 2γWG, and
similarly for any z ∈ py, DG(y, z) ≤ 2γWG. Pick z ∈ px,
and z′ ∈ py, such that DG(z, z′) is minimized. We
have DG(x, y) ≤ DG(x, z) + DG(z, z′) + DG(z′, y) ≤
DG(z, z′) + 4γWG. Thus, DG(px, py) = DG(z, z′) ≥
DG(x, y)− 4γWG > 20γWG − 4γWG = 16γWG.

Let now px′ be the remaining sub-path of qx,
starting from x′, and terminating to r, and define py ′

similarly. Let pxy be the path from x′ to y′, obtained
by concatenating px′, and py ′.

By the construction of KG it follows that if
we remove from G all the vertices in the sets
K1,K3, . . . ,Kτ−1, then x and y remain in the same con-
nected component. In other words, we can pick a path
pyx from x to y, that does not visit any of the vertices in⋃τ−1

j=1 Kj . It follows that the distance between any ver-
tex of pyx, and any vertex in

⋃τ−2
j=1 Kj , is greater than

γWG. Thus, DG(pxy, pyx) > γWG.
We have thus shown that there are vertices

x, y, y′, x′ ∈ V (G), and paths px, py, pxy, pyx, satisfy-
ing the conditions of Lemma 2.1. It follows that the
optimal distortion required to embed G into a tree is
greater than γ, a contradiction. 2

Using the bound on the diameter of the clusters in
KG, we can show that for certain values of the param-
eters, the distances in the tree of clusters approximate
the distances in the original graph.

Lemma 3.2. Let G = (V,E) be a graph that γ-embeds
into a tree, let r ∈ V (G), and let (TG

K ,KG) be a (r, γ)-
tree-like decomposition of G. Then, for any K1,K2 ∈
KG, and for any x1 ∈ K1, x2 ∈ K2, (DT G

K
(K1,K2) −

2)WGγ ≤ DG(x1, x2) ≤ (DT G
K

(K1,K2) + 2)20WGγ.

Proof. Let δ = DT G
K

(K1,K2). We begin by showing the
first inequality. We have to consider the following cases:

Case 1: K1 and K2 are on the same path from
the root to a leaf of TG

K . Let the path between K1 and
K2 in TG

K be K1,H1,H2, . . . ,Hδ−1,K2. Assume that
the assertion is not true. That is, DG(x1, x2) < (δ −
2)WGγ. Thus, DG(r, x2) ≤ DG(r, x1) + DG(x1, x2) <
DG(r, x1)+ (δ− 1)WGγ. Assume that r ∈ Kr, for some
Kr ∈ KG, and w.l.o.g. that K1 is an ancestor of K2

in TG
K . Let the distance between Kr and K1 in TG

K
be k. Then, the distance between Kr and K2 is at
most k′ = k + DG(x1, x2)/(WGγ). This implies that
δ = k′ − k < δ − 1, a contradiction.

Case 2: K1 and K2 are not on the same path from
the root to a leaf of TG

K . Let Ka be the nearest common
ancestor of K1 and K2 in TG

K . Observe that any path
from x to y in G passes through Ka. Thus, we have
DG(x, y) ≥ DG(Kx,Ka) + DG(Ka,Ky). Let δi, for i ∈
{1, 2} be the distance between Ka and Ki in TG

K . Then,
by an argument similar to the above, we obtain that
DG(Kx,Ka) ≥ (δ1 − 1)WGγ, and also DG(Ky,Ka) ≥
(δ2 − 1)WGγ. Since Ka is the nearest common ansestor
of K1 and K2, it follows that Ka reparates K1 from K2

in G. Thus, DG(x, y) ≥ DG(Kx,Ky) ≥ DG(Kx,Ka) +
DG(Ky,Ka) ≥ (δ − 2)WGc.

We now show the second inequality. Consider an
edge {K, K ′} of TG

K . Since K and K ′ are connected in
TG
K it follows that there exists an edge in G between a

vertex in K and a vertex in K ′. Since the maximum
edge weight of G is WG, we obtain DG(K, K ′) ≤ WG.

Since by Lemma 3.1, the diameter of each K ∈ KG

is at most 20WGγ, it follows that DG(x1, x2) ≤ δWG +
(δ + 1)20WGγ < (δ + 2)20WGγ. 2

4 Approximation Algorithm for Embedding
Unweighted Graphs

In this section we give a O(1)-approximation algorithm
for the problem of embedding the shortest path metric
of an unweighted graph into a tree. Informally, the
algorithm works as follows. Let G = (V,E) be an
unweighted graph, such that G can be embedded into
an unweighted tree with distortion c. At a first step, we
compute a tree-like decomposition (TG

K ,KG) of G. For
each cluster in KG we embed the vertices of the cluster
in a star. We then connect the starts to form a tree
embedding of G by connecting stars that correspond to
clusters that are adjancent in TG

K .
Formally, the algorithm can be described with the

following steps.

Step 1. We pick r ∈ V (G), and we compute a (r, c)-
tree-like decomposition (TG

K ,KG) of G.

Step 2. We construct a tree T as follows. Let KG =



{K1, . . . ,Kt}. For each i ∈ [t], we construct a star
with center a new vertex ρi, and leaves the vertices
in Ki. Next, for each edge {Ki,Kj} in TG

K , we add
an edge {ρi, ρj} in T .

By proposition 3.1, we know that the resulting
graph T is indeed a tree, so we can focus of bounding
the distortion of T . By lemma 3.1, the diameter of
each cluster in KG is at most 20cWG = 20c. Let
x1, x2 ∈ V (G), with x1 ∈ K1, and x2 ∈ K2, for some
K1,K2 ∈ KG. We have DT (x1, x2) = 2 + DT (ρ1, ρ2) =
2 + DT G

K
(K1,K2). By lemma 3.2 we obtain that

DT (x1, x2) ≤ 4 + DG(x1, x2)/c ≤ 5DG(x1, x2). Also by
the same lemma, DT (x1, x2) ≥ DG(x1, x2)/(20c). By
combining the above it follows that the distortion is at
most 100c.

Theorem 4.1. There exists a polynomial time,
constant-factor approximation algorithm, for the prob-
lem of embedding an unweighted graph into a tree, with
minimum multiplicative distortion.

5 Well-Separated Tree-Like Decompositions

Before we describe our algorithm for embeddings gen-
eral metrics, we need to introduce a refined decomposi-
tion procedure. As in the unweighted case, we want to
obtain a partition of the input metric space in a set of
clusters, solve the problem independetly for each clus-
ter, and join the solutions to obtain a solution for the
input metric.

The key properties of the tree-like decomposition
used in the case of unweighted graphs are the following:
(1) the distances in the tree of clusters approximate the
distances in the original graph, and (2) the diameter of
each cluster is small.

Observe that if the graph is weighted with maxi-
mum edge weight WG, and the clusters have small di-
ameter, then the distance between two adjacent clusters
of a tree-like decomposition can be any value between 1
and WG. Thus, the tree of clusters cannot approximate
the original distances by a factor better than WG.

We address this problem by introducing a new de-
composition that alows the diameter of each cluster to
be arbitrary large, while guaranteeing that (1) the dis-
tance between clusters is sufficiently large, and (2) after
solving the problem independently for each cluster, the
solutions can be merged together to obtain a solution
for the input metric.

Formally, let G = (V,E) be a graph that γ-embeds
into a tree. Let also r ∈ V (G), and α ≥ 1 be a
parameter. Intuitively, the parameter α controls the
distance between clusters in the resulting partition.

A (r, γ, α)-well-separated tree-like decomposition is
a triple (TG

K ,KG,AG), were (TG
K ,KG) is a (r, γ)-tree-like

decomposition of G, and AG is defined as follows.
For a set A ⊆ V (G), let ZA = {K ∈ KG|K∩A 6= ∅}.

Define TG,A
K to be the vertex-induced subgraph TG

K [ZA].

Proposition 5.1. Let A ⊆ V (G), such that G[A] is
connected. Then, TG,A

K is a subtree of TG
K

Proof. Deferred to the full version of this paper. 2

AG is computed in two steps:

Step 1. We define a partition ĀG. ĀG contains
all the connected components of G obtained after
removing all the edges of weight greater than
WG/(γ3/2α).

Step 2. We set AG := ĀG. While there exist A1, A2 ∈
AG such that the diameter of TG,A1

K ∩ TG,A2
K is

greater than 50γ, we remove A1, and A2 from AG,
and we add A1 ∪ A2 in AG. We repeat until there
are no more such pairs A1, A2.

5.1 Properties of Well-Separated Tree-Like De-
compositions We now show the main properties of a
well-separated tree-like decomposition that will be used
by our algorithm for embedding general metrics. They
are summarized in the following two lemmata.

Intuitively, the first lemma shows that the distance
between different clusters is sufficiently large, and at
the same time they don’t share long parts of the tree
TG
K . The technical importance of the later property will

be justified in the next section. It worths mentioning
however that intuitively, the fact that the intersections
are short will allow us to arrange the clusters of AG

in a tree, without intersections, incurring only a small
distortion.

Lemma 5.1. For any A1, A2 ∈ AG, DG(A1, A2) ≥
WG/(γ3/2α), and TG,A1

K ∩TG,A2
K is a subtree of TG

K with
diameter at most 50γ.

Proof. For any A1, A2 ∈ ĀG, we have that D(A1, A2) ≥
WG/(γ3/2α). Since AG is obtained by only merging
sets, the first property holds. Moreover, the construc-
tion of AG clearly terminates, and the second property
follows by the termination condition of the construction
procedure. 2

The next lemma will be used to argue that when
recursing in a cluster, the corresponding induced metric
can be sufficiently approximated by a graph with small
maximum edge weight.

Lemma 5.2. For any A ∈ AG, the WG/(γ1/2α)-
restricted subgraph of G[A], is connected.



Proof. For an embedding of G into a tree T , and for
disjoint A1, A2 ⊂ V (G), we say that A1 splits A2 in
T , if A2 intersects at least 2 connected components of
T [V (G) \A1].

Claim 3. Let A1, A2 ⊂ V (G), with A1 ∩ A2 = ∅, such
that G[A1], and G[A2] are both connected. Assume
that the diameter of TG,A1

K ∩ TG,A2
K is greater than 50γ.

Consider an optimal non-contracting embedding of G
into a tree T , with distortion γ. Then, either A1 splits
A2 in T , or A2 splits A1 in T .

Proof. Since G[A1], and G[A2] are both connected, it
follows by Proposition 5.1 that TG,A1

K , and TG,A2
K are

both connected subtrees of TG
K . Pick a path p =

K1,K2, . . . ,Kl in TG
K , with l > 50γ, that is contained

in TG,A1
K ∩ TG,A2

K .
Assume that the assertion is not true. Let A′

1 =
A1∩ (

⋃l
i=1 Ki), and let A′

2 = A2∩ (
⋃l

i=1 Ki). Let T1 be
the minimum connected subtree of T that contains A′

1,
and similarly let T2 be the minimum connected subtree
of T that contains A′

2. It follows that T1 ∩ T2 = ∅.
Let x1 be the unique vertex of T1 which is closest to

T2. Since T1 is minimal, x1 disconnects T1. Moreover,
since G[A1] is connected, it follows that there exists
{w,w′} ∈ E(G), such that the path from w to w′

in T passes through x1. Since DG(w,w′) ≤ WG, we
obtain that there exists x∗1 ∈ {w,w′}, with DT (x∗1, x1) ≤
DT (w,w′)/2 ≤ γDG(w,w′)/2 ≤ γWG/2.

By Lemma 3.1, it follows that for any x ∈ A′
1,

there exists x′ ∈ A′
2, such that DG(x, x′) ≤ 20WGγ.

Moreover, for any x ∈ A′
1, DT (x, T2) = DT (x, x1) +

DT (x1, T2). Thus, for any x ∈ A′
1, DT (x, x∗1) ≤

DT (x1, x
∗
1) + DT (x, x1) ≤ γWG/2 + DT (x, T2) ≤

γWG/2 + γDG(x, A′
2) ≤ 21WGγ2.

Pick z ∈ A′
1 ∩ K1, and z′ ∈ A′

1 ∩ Kl. By the tri-
angle inequality, DT (z, z′) ≤ DT (z, x∗1) + DT (x∗1, z

′) ≤
42WGγ2. On the other hand, the distance between K1,
and Kl in TG

K is l − 1. Thus, by Lemma 3.2 we obtain
that DG(z, z′) ≥ (l − 3)WGγ > 45WGγ2, which con-
tradicts that fact that the embedding of M into T is
non-contracting. 2

Fix an optimal non-contracting embedding of G into
a tree T , with distortion γ.

For k ≥ 0, let Ak
G be the partition AG after k

iterations of Step 2 have been performed, with A0
G =

ĀG.
Assume that the assertion is not true, and pick

the smallest k, such that there exists A ∈ Ak
G, such

that the WG/(γ1/2α)-restricted subgraph of G[A] is
not connected. Assume that A is obtained by joining
A1, A2 ∈ Ak−1

G . By the minimality of k, it follows
that the WG/(γ1/2α)-restricted subgraphs of G[A1], and

Figure 3: Case 2 of the proof of Lemma 5.2.

G[A2] respectively are connected. Thus, DG(A1, A2) >
WG/(γ1/2α).

By claim 3, we can assume w.l.o.g. that A2 splits
A1. Thus, by removing A2 from T , we obtain a
collection of connected components F1. Consider the
partition F ′

1 of A1 defined by restricting F1 on A1.
Formally, F ′

1 = {f ∩ A1|f ∈ F1, f ∩ A1 6= ∅}. We have
to consider the following cases:

Case 1: There exists Z ∈ ĀG, with Z ⊆ A1,
such that Z intersects at least two sets in F ′

1. By
considering only edges of weight at most WG/(γ3/2α),
the induced subgraph G[Z] is connected. It follows that
there exist z1, z2 ∈ Z, with DG(z1, z2) ≤ WG/(γ3/2α),
such that the path from z1 to z2 in T passes through A2.
Thus, DT (z1, z2) ≥ 2DG(A1, A2) > 2WG/(γ1/2α) ≥
2γD(z1, z2), contradicting the fact that the expansion
of T is at most γ.

Case 2: For any Z ∈ ĀG, with Z ⊆ A1, we have
Z ⊆ Z ′, for some Z ′ ∈ F ′

1. Observe that for ant t ≥ 0,
any element in At

G is obtained as the union of elements
of ĀG. Thus, we can pick the minimum j ≥ 1, such that
there exist B1, B2 ∈ Aj−1

G , such that during iteration
j of Step 2, the set B = B1 ∪ B2 is obtained, with
B ⊆ A1, and such that B1 ⊆ Z ′

1, and B2 ⊆ Z ′
2, for

some Z ′
1, Z

′
2 ∈ F ′

1, In other words, we pick the minimum
j such that we can find sets B1, B2 ∈ Aj−1

G , that are
contained in A2, and neither of them is split by A2 in T .
W.l.o.g., we can assume that B2 splits B1 in T . Thus,
there exist C1, C2 ⊆ B1, such that any path between
C1 and C2 in T passes through B2. Moreover, any path
from B1 to B2 in T passes through A2. Thus, any path
from C1 to C2 in T passes through A2. This however
contradicts the minimality of j. The scenario is depicted
in Fig 3. 2

6 Approximation Algorithm for Embedding
General Metrics

In this section we present an approximation algorithm
for embedding general metrics into trees. Before we get
into the technical details of the algorithm, we give an
informal description. The main idea is to partition the



input metric M using a well-separated tree-like decom-
position, and then solve the problem independently for
each cluster of the partition by recursion. After solving
all the sub-problems, we can combine the partial solu-
tions to obtain a solution for M . There are a few points
that need to be highlighted:

Termination of the recursion. As pointed
out in the description of the well-separated tree-like
decompositions, the clusters of the resulting partition
might have arbitrarily long diameter. In particular,
we cannot guarantee that by recursively decomposing
each cluster we obtain sub-clusters of smaller diameter.
To that extend, our recursion deviates from standard
techniques since the sub-problems are not necessarily
smaller in a usual sense. Instead, our decomposition
procedure guarantees that at each recursive step, the
metric of each cluster can be approximated by a graph
with smaller maximum edge length. This can be
thought as restricting the problem to a smaller metric
scale.

Merging the partial solutions. The partial so-
lution for each cluster in the recursion is an embedding
of the cluster into a tree. As in the algorithm for un-
weighted graphs, we merge the partial solutions using
the tree TG

K of the well-separated tree-like decompo-
sition as a rough approximation of the resulting tree.
However, in the case of a well-separated decomposition,
the parts of TG

K that correspond to different clusters of
the partition AG might overlap. Moreover, since some
of the clusters might be long, we need to develop an
elaborate procedure for merging the different trees into
a tree for M , without incurring large distortion.

6.1 The Main Inductive Step We will now de-
scribe the main inductive step of the algorithm. Let
M = (X, D) be a finite metric that c-embeds into a
tree. At each recursive step performed on a cluster
A∗ of M , the algorithm is given a graph G with ver-
tex set A, that c-approximates M . In order to recurse
in sub-problems, we compute a well-separated tree-like
decomposition of G. We chose the parameters of the
well-separated decomposition so that each sub-cluster
A, can be c-approximated by a graph that has maxi-
mum edge weight significantly smaller than the maxi-
mum edge weight of G. Formally, the main recursive
step is as follows.

Procedure RecursiveTree

Input: A graph G with maximum edge weight WG,
that c-approximates M .

Output: An embedding of G into a tree S.

Step 1: Partitioning. If G contains only one vertex,
then we output a trivial tree containing only this
vertex. Otherwise, we proceed as follows. We pick
r ∈ V (G), and compute a (r, c2, α)-well-separated
tree-like decomposition (TG

K ,KG,AG) of G, where
α > 0 will be determined later.

Step 2: Recursion. For any A ∈ AG, let GA be the
WG/α-restricted subgraph, with V (GA) = A. We
recursively execute the procedure RecursiveTree
on GA, and we obtain a tree SA.

Step 3: Merging the solutions. In this final step
we merge the trees SA to obtain S.

We define a tree T as follows. We first remove from
TG
K all the edges between vertices at level i50c2, and

i50c2 + 1, for any integer i : 1 ≤ i ≤ n/(50c2). For
any connected component C of the resulting forest,
T contains a vertex C. Two vertices C,C ′ ∈ V (T )
are connected, iff there is an edge between C, and
C ′ is TG

K . We consider T to be rooted at the
vertex which corresponds to the subtree of TG

K that
contains r. Furthermore, for each Ai ∈ AG, we
define a subtree Ti of T as follows: Ti contains all
the vertices C of T , such that TG,Ai

K visits C.

Lemma 6.1. There exists a polynomial-time algo-
rithm that computes an unweighted tree T ′, and for
any i ∈ [k] a mapping φi : V (Ti) → V (T ′), such
that

• for any i, j ∈ [k], φi(Ti) ∩ φj(Tj) = ∅,
• for any i, j ∈ [k], for any vi ∈ V (Ti), and vj ∈

V (Tj), DT (vi, vj) ≤ DT ′(φi(vi), φj(vj)) ≤
20(DT (vi, vj) + 1) log n.

Proof. Deferred to the full version of this paper. 2

Note that the tree T ′ might contain vertices C ∈
V (T ), such that for any K ∈ KG, K /∈ C. We call
such a vertex steiner. First, for each steiner vertex
C ∈ V (T ′) we add a vertex vC ∈ V (S). We have
to add the following types of edges:

• For any C1, C2 ∈ V (T ′), such that both C1,
and C2 are steiner vertices, we add the edge
{vC1 , vC2} in S, with weight WG/(c3α).

• For any C1, C2 ∈ V (T ′), such that C2, is a
steiner vertex, and there exists A1 ∈ AG, such
that C1 ∈ φ1(T1), we pick K1 ∈ TG,A1

K , with
K1 ∈ C1, and an arbitrary x1 ∈ K1, and we
add the edge {x1, vC1} in S. The weight of
this new edge is WG/(c3α).



• For any pair A1, A2 ∈ AG, with A1 6= A2,
such that there exists an edge in T ′ connecting
φ1(T1) with φ2(T2), we add an edge between
SA1 , and SA2 . We pick the edge that connects
SA1 with SA2 as follows. Pick C1, C2 ∈ V (T ),
with C1 ∈ T1, and C2 ∈ T2, such that there
is an edge between φ1(C1), and φ2(C2) in T ′.
We pick an arbitrary pair of points x1, x2,
with x1 ∈ K1 ∈ C1, and x2 ∈ K2 ∈ C2,
for some K1,K2 ∈ KG, and we connect SA1

with SA2 by adding the edge {x1, x2} of length
D(x1, x2).

Given the metric M = (X, D), the algorithm first
computes a weighted complete graph G0 = (V,E), with
V (G0) = X, such that the weight of each edge {u, v} ∈
E(G) is equal to D(u, v). Let ∆ be the diameter of M .
Clearly, G0 is a ∆-restricted subgraph. The algorithm
then executes the procedure RecursiveTree on G0,
and outputs the resulting tree S.

Before we bound the distortion of the resulting
embedding, we first need to show that at each recursive
call of the procedure RecursiveTree, the graph G
satisfies the input requirements. Namely, we have to
show that G c-approximates M . Clearly, this holds
for G0. Thus, it suffices to show that the property is
maintained for each graph GA, were A ∈ AG. Observe
that since G c-approximates M , and M c-embeds into
a tree, it follows that G c2-embeds into a tree. Since
(TG

K ,KG,AG) is a (r, c2)-well-separated decomposition,
we can assume the properties of lemmata 5.1, and 5.2,
for γ = c2.

Lemma 6.2. For any A ∈ AG, GA c-approximates M .

Proof. Deferred to the full version of this paper. 2

The next two lemmata bound the distortion of the
resulting embedding of G into S. The fact that the
contraction is small follows by the fact that the distance
between the clusters in AG is sufficiently large. The
expansion on the other hand, depends on the maximum
depth of the recursion. This is because at each recursive
call, when we merge the trees SA to obtain S, we incurr
an extra cO(1) log n-factor in the distortion. Since at
every recursive call the maximum edge weight of the
input graph decreases by a factor of α, the parameter
α can be used to adjust the recursion depth in order to
optimize the final distortion.

Lemma 6.3. The contraction of S is O(c7α).

Proof. Deferred to the full version of this paper. 2

Lemma 6.4. The expansion of S is at most
(cO(1) log n)logα ∆.

Proof. Deferred to the full version of this paper. 2

Theorem 6.1. There exists a polynomial-time algo-
rithm which given a metric M = (X, D) that c-embeds
into a tree, computes an embedding of M into a tree,
with distortion (c log n)O(

√
log ∆).

Proof. By Lemmata 6.3, and 6.4, it follows that the
distortion of S is cO(1)α(cO(1) log n)logα ∆. By setting
α = 2

√
log ∆, we obtain that the distortion is at most

(c log n)O(
√

log ∆). 2

7 Composing Relative Embeddings

In this section we are going to obtain a polynomial time
algorithm for embedding a metric M into the line. The
idea of the algorithm is to embed the metric first into
a tree metric using the previous algorithm and then
use [BCIS05] to embed the tree into the line. The
approximation factor that we get is going to be better
than the best known result [BCIS05].

Let F, F ′ be families of n-point metric spaces. We
say that an algorithm A is an α(c)-distortion algorithm
from F to F ′, if on input X ∈ F , it outputs X ′ ∈ F ′,
and an embedding f : X → X ′, with distortion α(c),
where c is the optimal distortion for embedding X into
a metric in F ′. We also say that F β-embeds into F ′, if
for any X ∈ F , there exists X ′ ∈ F ′, such that X can
be embedded into X ′, with distortion at most β.

Lemma 7.1. Let F1, F2, F3 be families of n-point metric
spaces, such that F3 β-embeds into F2. Let A1 be an
α1(c)-distortion algorithm from F1 to F2, and let A2

be an α2(c)-distortion algorithm from F2 to F3. Then,
there exists a β · c ·α2(c ·α1(β · c))-algorithm from F1 to
F3.

Proof. Assume that we are given X1 that c-embeds into
F3. It follows that X1 embeds into F2 with distortion
β · c. We compute using A1 an embedding f1 of X1

into X2 ∈ F2, with distortion α1(β · c). In other
words, the distances in X2 α1(βc)-approximate the
distances in X1. Therefore, X2 embeds into F3 with
distortion at most d = c · α1(β · c). Using A2, we
compute an embedding f2 of X2 into X3 ∈ F3, with
distortion α2(d) = α2(c · α1(β · c)). Since X2 α1(βc)-
approximates X1, it follows that the composition f2 ◦f1

is an embedding of X1 into F3, with distortion at most
β · c · α2(c · α1(β · c)). 2

Corollary 7.1. There exists a polynomial-time algo-
rithm that given a metric M of spread ∆ that c-embeds
into the line, computes an embedding of M into the line
with distortion (c log n)O(

√
log ∆).



Proof. We apply Lemma 7.1 with F1 the family of all
n-point metrics of spread at most ∆, F2 the family of
all n-point trees, and F3 the family of all n-point line
metrics. A1 is the algorithm given in Theorem 6.1, A2 is
the cO(1)-distortion algorithm for embedding trees into
the line given in [BCIS05], and β = 1, since each line
metric is also a tree metric. 2
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