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Doctor of Philosophy

Abstract

We study the problem of computing a low-distortion embedding between two metric
spaces. More precisely given an input metric space M we are interested in computing
in polynomial time an embedding into a host space M ′ with minimum multiplicative
distortion. This problem arises naturally in many applications, including geomet-
ric optimization, visualization, multi-dimensional scaling, network spanners, and the
computation of phylogenetic trees. We focus on the case where the host space is
either a euclidean space of constant dimension such as the line and the plane, or a
graph metric of simple topological structure such as a tree.

For Euclidean spaces, we present the following upper bounds. We give an approx-
imation algorithm that, given a metric space that embeds into R1 with distortion c,
computes an embedding with distortion cO(1)∆3/4 (∆ denotes the ratio of the max-
imum over the minimum distance). For higher-dimensional spaces, we obtain an
algorithm which, for any fixed d ≥ 2, given an ultrametric that embeds into Rd

with distortion c, computes an embedding with distortion cO(1). We also present an
algorithm achieving distortion c logO(1) ∆ for the same problem.

We complement the above upper bounds by proving hardness of computing opti-
mal, or near-optimal embeddings. When the input space is an ultrametric, we show
that it is NP-hard to compute an optimal embedding into R2 under the ℓ∞ norm.
Moreover, we prove that for any fixed d ≥ 2, it is NP-hard to approximate the min-
imum distortion embedding of an n-point metric space into Rd within a factor of
Ω(n1/(17d)).

Finally, we consider the problem of embedding into tree metrics. We give a O(1)-
approximation algorithm for the case where the input is the shortest-path metric of an
unweighted graph. For general metric spaces, we present an algorithm which, given
an n-point metic that embeds into a tree with distortion c, computes an embedding
with distortion (c logn)O(

√
log ∆). By composing this algorithm with an algorithm for

embedding trees into R1, we obtain an improved algorithm for embedding general
metric spaces into R1.

Thesis Supervisor: Piotr Indyk
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I want to thank Jǐŕı Matoušek for his hospitality while visiting Charles University,

and for the inspiring discussions I had with him.

I also wish to thank Roberto Tamassia for providing pointers to the applicability

in visualization of some of the results discussed in this thesis.

Finally, I want to thank my friends Nikos, Theofilos, Thodoris, Giannis, Periklis,

Dimitra, Giannis, Giannis, Jean, Manolis, Christos, Michelle, Joyce, and Dimitris,

and my mother Litsa, my grandmother Katerina, and my sister Maria, for all their

love. This thesis is dedicated to them.

Anastasios Sidiropoulos

Spring 2008

5



6



Contents

1 Introduction 15

1.1 Absolute and relative metric embeddings . . . . . . . . . . . . . . . . 16

1.2 Applications of relative embeddings . . . . . . . . . . . . . . . . . . . 16

1.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Near-optimality of random projection for embedding into Rd . 18

1.3.2 Beyond linear approximation . . . . . . . . . . . . . . . . . . . 19

1.3.3 Special classes of spaces . . . . . . . . . . . . . . . . . . . . . 20

1.3.4 Embedding into trees . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Further directions and open problems . . . . . . . . . . . . . . . . . . 23

1.5.1 cO(1)-embeddings into Rd . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Embedding into trees . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Embedding into R1 27

2.1 Overview of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Embedding the components . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The final embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Embedding into trees and improved embeddings into R1 37

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 A forbidden-structure characterization of tree-embeddability . . . . . 39

3.3 Tree-like decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 41

7



3.3.1 Properties of tree-like decompositions . . . . . . . . . . . . . . 42

3.4 Approximation algorithm for embedding unweighted graphs . . . . . 44

3.5 Well-separated tree-like decompositions . . . . . . . . . . . . . . . . . 45

3.5.1 Properties of well-separated tree-like decompositions . . . . . 47

3.6 Approximation algorithm for embedding general metrics . . . . . . . 50

3.6.1 The main inductive step . . . . . . . . . . . . . . . . . . . . . 51

3.6.2 Proof of lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Improved embeddings into R1 via composing relative embeddings . . 62

3.8 The relation between embedding into trees and embedding Into subtrees 63

3.8.1 The lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8.2 The upper bound . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Embedding ultrametrics into Rd 73

4.1 Overview of techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 A lower bound on the optimal distortion . . . . . . . . . . . . . . . . 77

4.4 Upper bound on the absolute distortion . . . . . . . . . . . . . . . . . 79

4.5 Approximation algorithm for embedding ultrametrics into R2 . . . . . 83

4.5.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . 86

4.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Approximation algorithm for embedding ultrametrics into higher di-

mensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Improved embeddings of ultrametrics into Rd 95

5.1 The Treemap algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Hierarchical circular partitions of R2 . . . . . . . . . . . . . . . . . . 99

5.2.1 Existence of a good cut . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Circular partitions . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Partitions with slack . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Improved embeddings of ultrametrics into Rd . . . . . . . . . . . . . . 111

8



6 NP-hardness of embedding ultrametrics into R2 115

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 The construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Satisfiable instances . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Unsatisfiable instances . . . . . . . . . . . . . . . . . . . . . . 118

7 Inapproximability of embedding into Rd 121

7.1 A topological prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 The reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 An informal description . . . . . . . . . . . . . . . . . . . . . 124

7.2.2 The gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Satisfiable instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 A structural property of embeddings of d-grids into Rd. . . . . . . . . 131

7.5 Unsatisfiable instances . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9



10



List of Figures

3-1 An example of a tree-like decomposition of a graph. . . . . . . . . . . 42

3-2 Case 2 of the proof of Lemma 10. . . . . . . . . . . . . . . . . . . . . 50

4-1 The packing computed in the proof of Lemma 22. . . . . . . . . . . . 82

5-1 Hierarchical partitions computed by the modified Treemap algorithm

on synthetic data. Thicker boundaries correspond to higher levels of

the partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-2 Partitioning P into P1, and P2, when α ≤ 1/k2. . . . . . . . . . . . . 101

5-3 Partitioning P into P1, and P2, when α > 1/k2: Case 2.2. . . . . . . . 106

6-1 The constructed tree T . The labels of the vertices are: l(r) = a(S)

and l(xi) = a(si) − a(S)/(k − 1). . . . . . . . . . . . . . . . . . . . . 116

6-2 The embedding constructed for the YES instance. . . . . . . . . . . . 117

7-1 The reduction for dimension d = 2. . . . . . . . . . . . . . . . . . . . 129

7-2 Example embedding for a satisfiable instance, for d = 2. In the sat-

isfying assignment the variable χi is set to true, and the clause Cj is

satisfied via the positive literal χi. . . . . . . . . . . . . . . . . . . . . 130

7-3 A tight example for lemma 39. . . . . . . . . . . . . . . . . . . . . . . 134

11



12



List of Tables

1.1 Results on relative embeddings. We use c to denote the optimal dis-

tortion, and n to denote the number of points in the input metric. The

results presented in this thesis are in boldface. . . . . . . . . . . . . . 21

13



14



Chapter 1

Introduction

Embedding distance matrices into geometric spaces is a fundamental problem oc-

curring in many applications. Intuitively, an embedding is a mapping between two

metric spaces that preserves the geometry. More precisely, a metric embedding of a

metric space M = (X,D) into a host space M ′ = (X ′, D′) is a mapping f : X → X ′.

The distortion of such an embedding f is defined as the minimum c, such that there

exists r > 0, with

D(x, y) ≤ r ·D′(f(x), f(y)) ≤ c ·D(x, y)

The distortion is a parameter that quantifies the extend to which an embedding

preserves the geometry of the original space. Note that for example, distortion c =

1 implies that the mapping is an isometry. Another useful property of the above

definition is that the the distortion is an invariant under scaling of the distances.

Moreover, the distortion of the concatenation of two embeddings is equal to the

product of their respective distortions. As we shall see later in this chapter, this

definition turns out to be particularly important in algorithmic applications.

The main focus of this thesis is computing low-distortion metric embeddings be-

tween interesting spaces.
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1.1 Absolute and relative metric embeddings

Given a family A of metric spaces, and a host space M ′, a natural question to ask

is what is the minimum c, such that each metric M ∈ A can be embedded into M ′

with distortion at most c. We call an embedding with such a distortion guarantee an

absolute embedding.

Typical examples of absolute embeddings include embedding all n-point metric

spaces into a euclidean space, and embedding n-point subsets of a euclidean space

into a space of smaller dimension (the so-called dimensionality reduction). Note that

we are usually interested in embeddings that can be efficiently computed, although

the above definition does not directly impose such a requirement.

Another natural problem concerning A and M ′ is given a space M ∈ A, find an

embedding f of M into M ′ with the smallest possible distortion. Note that typically

one can find an optimal, or near-optimal f just by a careful exhaustive enumeration, so

the problem becomes interesting when we want an embedding that can be computed

efficiently, and in particular in polynomial time. We call such an embedding a relative

embedding.

Relative embeddings are important in the case where the worst-case distortion for

embedding a metric M ∈ A into M ′ is very high, yet some interesting metrics in M

can be embedded with small distortion. For example, when the host space M ′ is a

euclidean space of constant dimension such as the plane, the worst-case distortion

for embedding all n-point metric spaces into M ′ is polynomial. However, in some

applications, the interesting spaces are precisely those that can be embedded with

small distortion.

1.2 Applications of relative embeddings

Is this section we discuss some of the most important applications of relative embed-

dings.
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Geometric optimization Assume that there exists a α-approximation algorithm

for a metric optimization problem restricted on a simple space, say TSP on the plane

(there are numerous other such examples, e.g. k-Server on the line, Geometric MST,

etc). A natural question to ask is the following:

What happens if the input space is “almost” a plane metric?

It is not immediate whether the problem now becomes intractable. The answer

of course depends on the definition of closeness to a metric space. In some cases the

input data might be distorted simply by adding some Gaussian noise on the numerical

values. In certain geometric cases however, the distortion has a more global structure.

Examples include an image that passes through a wide-angle lens, the surface of an

elastic body under pressure, or a 3-dimensional terrain projected into a 2-dimensional

map.

The answer to the above question turns out to be related to the approximability

of relative embeddings. More precisely, assume that you have a β-approximation

algorithm for the problem of relative embedding into the plane. Combined with a

α-approximation for TSP on the plane, this implies a α ·β · γ-approximation for TSP

on metrics that are γ-embeddable into the plane.

Visualization Visualizing a distance matrix typically involves mapping a set of

points into a space of dimension at most 3, with small distortion. It is easy to show

that there are n-point metric spaces, e.g. the uniform n-point metric, that require

distortion Ω(n1/3) to be embedded into R3 (a better bound of Ω(n1/2) can be obtained

for a more carefully constructed space [43]).

This polynomial distortion is considered to be prohibitively large for most visual-

ization scenarios. Thus, one can ask for efficient algorithms that output an embedding

with small distortion, when such an embedding exists.

Multi-dimensional scaling The main goal of the area of Multi-Dimensional Scal-

ing is computing geometric structures that capture some given distance information.

These geometric structures usually have to be simple enough, to provide the user

17



with a meaningful interpretation. As in the case of visualization, the worst-case dis-

tortion for embedding into such spaces is very high, so one wants to obtain relative

embeddings.

Evolutionary biology Phylogenetic trees are used in evolutionary biology to rep-

resent genetic distances between various species. Constructing such a tree is precisely

a problem of computing a relative embedding of a given metric space into a tree

metric (i.e. the shortest-path distance of a tree).

Graph spanners Given a graphG = (V,E), an α-spanner ofG is an edge-subgraph

H = (V,E ′) of G such that for any pair of vertices u, v ∈ V (G), the shortest-path

distance between u and v in H is at most α times the distance in G. The parameter

α is called the dilation of H . In applications such as network routing the most

interesting spanners are those with simple topology, e.g. trees. The problem of

computing a tree spanner of minimum dilation for a weighted complete graph is

equivalent to the problem of the problem of relative embedding into tree metrics.

Specifically, Eppstein ([26], Open Problem 4) posed a question about algorithmic

complexity of finding the minimum-dilation spanning tree of a given set of points in

the plane. This problem is equivalent (up to a constant factor in the approximation

factor) to a special case of our problem, where the input metric is induced by points

in the plane.

1.3 Our contribution

1.3.1 Near-optimality of random projection for embedding

into Rd

Bourgain [15] has shown that any n-point metric space can be embedded into Eu-

clidean space with distortion O(logn). Moreover, Johnson and Lindenstrauss [35]

have shown that any Euclidean metric can be embedded into aO(ε−2 log n)-dimensional

space with distortion 1+ε. The later result is obtained via a so-called random projec-

18



tion. That is, by projecting the given space into a randomly chosen, low-dimensional

subspace.

The above strikingly simple procedure is arguably one of the most important

algorithms for embeddings, and dimensionality-reduction in general. Matoušek [43]

has shown that for the case of embedding into d-dimensional Euclidean space, random

projection results in distortion Õ(n2/d), for any fixed d ≥ 1. He also showed that

there exist metrics that require distortion Ω(n1/⌊(d+1)/2⌋), establishing that random

projection is almost optimal in the worst case.

Despite this worst-case optimality, it is easy to construct metric spaces that embed

with very small distortion into Rd, and at the same time any projection (in fact, any

linear mapping) into Rd incurs high distortion. In other words, random projection is

a Θ̃(n2/d)-approximation algorithm for the problem of embedding an n-point metric

into Rd, with minimum distortion. This observation naturally leads to the following

question.

Is there a polynomial-time algorithm for embedding into d-dimensional

space, with minimum distortion, that has approximation ratio better than

Ω(n2/d)?

We address this question by showing that unless P = NP, for any d ≥ 2, there

is no polynomial-time algorithm for this problem, with approximation ratio better

than Ω(n1/(17d)). Our result implies that random projection is a near-optimal approx-

imation algorithm for this problem. Note that since for fixed d all norms on Rd are

equivalent up to a constant factor, the same result holds for all norms.

1.3.2 Beyond linear approximation

In light of the above Ω(n1/(17d))-hardness result for embedding into Rd, it is clear

that one cannot hope for approximation algorithms for embedding into constant-

dimensional spaces, with poly-logarithmic approximation factors. On the other hand,

it is still interesting to obtain algorithms that compute embeddings with distortion

polynomially related to the optimal. A result of this type has been obtained in
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[20] where it is shown that there exists a polynomial-time algorithm that given the

shortest-path metric of an unweighted graph that c-embeds into R1, computes an

embedding with distortion O(c2).

We obtain an approximation algorithm that given a metric space that c-embeds

into R1, computes an embedding with distortion cO(1)∆3/4, where ∆ denotes the ratio

of the maximum over the minimum distance. We also present an algorithm for em-

bedding general metrics into R1 with improved distortion guarantee in an interesting

range of the parameters. More specifically, we compose a (c logn)O(
√

log ∆)-distortion

algorithm for embedding general metrics into trees, a cO(1)-distortion algorithm for

embedding trees into R1, to obtain a (c logn)O(
√

log ∆)-distortion algorithm for embed-

ding general metrics into R1.

For higher-dimensional spaces, we present an algorithm which for any fixed d ≥ 2,

given an ultrametric that embeds into Rd with distortion c, computes an embedding

with distortion cO(1).

1.3.3 Special classes of spaces

Our hardness result for embedding into Rd leaves open the existence of improved

approximation guarantees for embedding special classes of metrics. For the case

where the input space is an ultrametric that c-embeds into Rd, we give an algorithm

that computes an embedding with distortion c logO(1) ∆. This is the first algorithm for

embedding such a class of graph-theoretic spaces into a space of constant dimension,

with poly-logarithmic approximation ratio. We complement this bound by showing

that it is NP-hard to compute an optimal embedding of an ultrametric into R2, under

the ℓ∞ norm.

1.3.4 Embedding into trees

Apart from the case of embedding into Euclidean spaces, we also consider the case

where the host space is a tree metric. We give a O(1)-approximation algorithm

for computing the minimum distortion embedding of the shortest-path metric of an

20



Paper From Into Distortion Comments
[41] general metrics L2 c uses SDP
[39] weighted trees Lp O(c)
[17] unweighted graphs trees O(c)

general metrics trees (c log n)O(
√

log ∆)

[25] unweighted graphs sub-trees O(c log n)
[51] outerplanar graphs sub-trees c

[21] unweighted graphs sub-trees NP-complete
[28] planar graphs sub-trees NP-complete
[4] general metrics ultrametrics c

[20] unweighted graphs R1 O(c2) implies
√

n-approx.
c c is constant

> ac a-hard for some a > 1
unweighted trees R1 O(c3/2

√
log c)

[18] general metrics R1 O(∆3/4c11/4)

weighted trees R1 cO(1)

weighted trees R1 Ω(n1/12c) unless P = NP

[17] general metrics R1 (c log n)O(
√

log ∆)

[20] subsets of a sphere R2 3c

[19] ultrametrics Rd cO(d)

[48] ultrametrics Rd c logO(d) ∆
[46] general metrics Rd Ω(n1/(17d)c) unless P = NP, d ≥ 2

Table 1.1: Results on relative embeddings. We use c to denote the optimal distortion,
and n to denote the number of points in the input metric. The results presented in
this thesis are in boldface.

unweighted graph into a tree. For general metric spaces, we present an algorithm

which given an n-point metric that embeds into a tree with distortion c, computes

an embedding with distortion (c logn)O(
√

log ∆).

1.4 Related work

Absolute embeddings It has been shown by Alon [3] that the (1 + ε)-embedding

due to Johnson and Lindenstrauss of subset of Euclidean space into ℓ
O(ε−2 log n)
2 , is

essentially optimal.

For the case of embedding ultrametrics into low-dimensional spaces, it has been

shown by Bartal and Mendel ([10]) that for any ε > 0, any ultrametric can be

embedded into ℓ
O(ε−2 log n)
p , with distortion 1 + ε.

Matoušek [43] has shown that for any d ≥ 1, any n-point metric can be embedded

into Rd with distortion Õ(n2/d). He also showed that there exist metric spaces for

21



which any embedding has distortion at least Ω(n1/⌊(d+1)/2⌋), which implies that the

upper bound is almost tight. Gupta [29] has shown that the above upper bound can

be improved to O(n1/(d−1)) for the case of embedding trees into Rd. Babilon et al. [6]

showed that unweighted trees embed into R2 with distortion O(n1/2). This result

has been extended to unweighted outerplanar graphs by Bateni et al. [11], who also

showed that there exist unweighted planar graphs that require distortion Ω(n2/3) for

any embedding into R2.

Relative embeddings Badoiu et al. [20] have given a O(n1/2)-approximation al-

gorithm for embedding unweighted graphs into R1. They also gave an improved

O(n1/3)-approximation algorithm for the case where the input graph is an unweighted

tree. unweighted trees and an O(n1/2) approximation In the same paper, they also

present a O(1)-approximation algorithm for embedding subsets of the 2-dimensional

sphere into R2.

For the case of embedding into ℓ1, Avis and Deza [5] have shown that it is NP-hard

to decide whether a given metric space embeds isometrically (i.e. with distortion 1).

Interestingly, it has been shown by Malitz and Malitz [42] (see also Edmonds [24])

that deciding isometric embedding into 2-dimensional ℓ1 can be done in polynomial

time, while Edmonds [24] has shown that it is NP-hard for 3-dimensional ℓ1.

Linial et al. [41] observed that an embedding with the smallest possible distortion

into ℓ2 (or equivalently, into a Euclidean space of arbitrary dimension) can be com-

puted in polynomial time via semidefinite programming. In contrast, it is well known

that deciding isometric embeddability in ℓ1 is NP-hard (see [23]). Lee et al. [39]

obtained an O(1)-approximation algorithm for embedding weighted trees into ℓp.

In the context of Multi-Dimensional Scaling, the problem has been a subject of

extensive applied research during the last few decades (e.g., see [47] web page, or [37]).

However, almost all known algorithms are heuristic. As such, they can get stuck in

local minima, and do not provide any global guarantees on solution quality ([37],

section 2).

The study of the problem of approximating metrics by tree metrics has been
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initiated in [27, 1], where the authors give an O(1)-approximation algorithm for em-

bedding metrics into tree metrics. They also provide exact algorithms for embeddings

into simpler metrics, called ultrametrics. However, instead of the multiplicative dis-

tortion (defined as above), their algorithms optimize the additive distortion; that is,

the quantity maxp,q |D(p, q)−D′(p, q)|. The same problem has recently been studied

also for the case of minimizing the Lp norm of the differences [32, 2]. In a recent

paper [2], a (logn log logn)1/p-approximation has been obtained for this problem.

In general, minimizing an additive measure suffers from the “scale insensitivity”

problem: local structures can be distorted in arbitrary way, while the global structure

is highly over-constrained. Although the result of [2] holds even for a weighted version

of the Lp norm, it does not imply an approximation for minimizing the multiplicative

distortion. The multiplicative distortion, which we employ in this paper, does not

suffer from the scale insensitivity problem.

The problem of embedding into a tree with minimum multiplicative distortion is

closely related to the problem of computing a minimum-stretch spanning tree. We

mention the work of [52, 21, 62, 50, 51, 28, 25]. For unweighted graphs, the best

known approximation is an O(logn)-approximation algorithm [25].

The problem of approximating the minimum distortion embedding has also been

studied for the case where we are given two metric spaces M , M ′ of the same cardi-

nality and we want to compute the minimum distortion bijection between them; we

refer to [38, 49, 31, 22].

1.5 Further directions and open problems

1.5.1 cO(1)-embeddings into Rd

Our main hardness result for embedding into Rd shows that it is NP-hard to approxi-

mate the minimum-distortion embedding of an n-point metric space into Rd within a

factor of Ω(n1/(17d)). Since by a result of Matoušek [43] any n-point metric space em-

beds into Rd with distortion Õ(n2/d), it follows that our hardness result is essentially
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optimal, up to a constant factor in the exponent. However, this result leaves open

the possibility that for any fixed d ≥ 1, there exists an algorithm that given a metric

space that c-embeds into Rd, computes an embedding with distortion cO(1). Such a

result would have been very interesting since when the input space embeds with small

distortion (which is perhaps the most interesting case), the algorithm would compute

an embedding with distortion which is also relatively small. We also remark that

such a result has been obtained for the case of embedding unweighted graphs into R1,

weighted trees into R1, and ultrametrics into Rd.

A recent result by Matoušek and Sidiropoulos [45] shows that such an algorithm

does not exist for d ≥ 3. More specifically, they showed that there exist constants

α, β > 0, such that for any fixed d ≥ 3 it is NP-hard to distinguish between n-points

metric spaces that embed into Rd with distortion at most α, or at least Ω(nβ/d). The

case of embedding into R1 and R2 remains an intriguing open problem.

1.5.2 Embedding into trees

A strengthening of the above cO(1)-embedding question of general metrics into R1

can be obtained by considering the problem of embedding into trees. In particular,

one can show using Lemma 15 for composing relative embeddings, that if there is a

polynomial-time cO(1)-distortion algorithm for embedding general metrics into trees,

then there is also such an algorithm for embedding general metrics into R1. In fact, it

is not even known whether there exists aO(1)-approximation algorithm for embedding

into trees. Resolving these questions is an interesting open problem.

1.6 Notation and definitions

A metric space is a pair M = (X,D), where X is a finite set, and D : X ×X → R≥0.

We will typically refer to the elements of X as points. For each pair x, y ∈ X, we

say that D(x, y) is the distance between x and y in M . The function D satisfies the

following properties:
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Positive definiteness: For each x, y ∈ X, D(x, y) = 0 iff x = y.

Symmetry: For each x, y ∈ X, D(x, y) = D(y, x).

Triangle Inequality: For each x, y, z ∈ X, D(x, y) ≤ D(x, z) +D(z, y).

A metric space M = (X,D) is called an ultrametric if for any x, y, z ∈ X,

D(x, y) ≤ max{D(x, z), D(z, y)}. Other classes of metric spaces that we are in-

terested in throughout this thesis are the tree metrics and the unweighted graph

metrics, which are the shortest-path metrics of (weighted) graph-theoretic trees and

unweighted graphs respectively.
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Chapter 2

Embedding into R1

In this chapter, we consider the problem of embedding into R1. The algorithms of

[20] were designed for unweighted graphs and thus provide only very weak guarantees

for the problem. Specifically, assume that the minimum interpoint distance between

the points is 1 and the maximum distance is ∆. Then, by scaling, one can obtain

algorithms for weighted graphs, with approximation factor multiplied by ∆.

Our main result is an algorithm that, given a general metric c-embeddable into

the line, constructs an embedding with distortion O(∆4/5c13/5). The algorithm uses

a novel method for traversing a weighted graph. It also uses a modification of the

unweighted-graph algorithm from [20] as a subroutine, with a more general analysis.

The results presented in this chapter are from [18].

2.1 Overview of the algorithm

In this section we will present a polynomial-time algorithm that given a metric M =

(X,D) of spread ∆ that c-embeds into the line, computes an embedding of M into

the line, with distortion O(c11/4∆3/4). Since it is known [43] that any n-point metric

embeds into the line with distortion O(n), we can assume that ∆ = O(n4/3).

We view the metric M = (X,D) as a complete graph G defined on vertex set X,

where the weight of each edge e = {u, v} is D(u, v). As a first step, our algorithm

partitions the point set X into sub-sets X1, . . . , Xℓ, as follows. Let W be a large
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integer to be specified later. Remove all the edges of weight greater than W from

G, and denote the resulting connected components by C1, . . . , Cℓ. Then for each

i : 1 ≤ i ≤ ℓ, Xi is the set of vertices of Ci. Let Gi be the subgraph of G induced

by Xi. Our algorithm computes a low-distortion embedding for each Gi separately,

and then concatenates the embeddings to obtain the final embedding of M . In order

for the concatenation to have small distortion, we need the length of the embedding

of each component to be sufficiently small (relatively to W ). The following simple

lemma, essentially shown in [43], gives an embedding that will be used as a subroutine.

Lemma 1. Let M = (X,D) be a metric with minimum distance 1, and let T be a

spanning tree of M . Then we can compute in polynomial time an embedding of M

into the line, with distortion O(cost(T )), and length O(cost(T )).

Proof. Embed M according to the order of appearance of the points of M in a DFS

traversal of T . Since each edge is traversed only a constant number of times, the total

length and distortion of the embedding follows.

Our algorithm proceeds as follows. For each i : 1 ≤ i ≤ ℓ, we compute a spanning

tree Ti of Gi, that has the following properties: the cost of Ti is low, and there exists

a walk on Ti that gives a small distortion embedding of Gi. We can then view the

concatenation of the embeddings of the components as if it is obtained by a walk

on a spanning tree T of G. We show that the cost of T is small, and thus the total

length of the embedding of G is also small. Since the minimum distance between

components is large, the inter-component distortion is small.

2.2 Embedding the components

In this section we concentrate on some component Gi, and we show how to embed it

into a line.

Let H be the graph on vertex set Xi, obtained by removing all the edges of length

at least W from Gi, and let H ′ be the graph obtained by removing all the edges

of length at least cW from Gi. For any pair of vertices x, y ∈ Xi, let DH(x, y)
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and DH′(x, y) be the shortest-path distances between x and y in H and H ′, respec-

tively. Recall that by the definition of Xi, H is a connected graph, and observe that

DH(x, y) ≥ DH′(x, y) ≥ D(x, y).

Lemma 2. For any x, y ∈ Xi, DH′(x, y) ≤ cD(x, y).

Proof. Let f be an optimal non-contracting embedding of Gi, with distortion at most

c. Consider any pair u, v of vertices that are embedded consecutively in f . We start

by showing that D(u, v) ≤ cW . Let T be the minimum spanning tree of H . If edge

{u, v} belongs to T , then D(u, v) ≤ W . Otherwise, since T is connected, there is

an edge e = {u′, v′} in tree T , such that both u and v are embedded inside e. But

then D(u′, v′) ≤W , and since the embedding distortion is at most c, |f(u)− f(v)| ≤
|f(u′)−f(v′)| ≤ cW . As the embedding is non-contracting, D(u, v) ≤ cW must hold.

Consider now some pair x, y ∈ Xi of vertices. If no vertex is embedded be-

tween x and y, then by the above argument, D(x, y) ≤ cW , and thus the edge

{x, y} is in H ′ and DH′(x, y) = D(x, y). Otherwise, let z1, . . . , zk be the vertices

appearing in the embedding f between x and y (in this order). Then the edges

{x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all belong to H ′, and therefore

DH′(x, y) ≤ DH′(x, z1) +DH′(z1, z2) + . . .DH′(zk−1, zk) +DH′(zk, y)

= D(x, z1) +D(z1, z2) + . . .D(zk−1, zk) +D(zk, y)

≤ |f(x) − f(z1)| + |f(z1) − f(z2)| + . . .

+|f(zk−1) − f(zk)| + |f(zk) − f(y)|

= |f(x) − f(y)| ≤ cD(x, y)

We can now concentrate on embedding graph H ′. Since the weight of each edge

in graph H ′ is bounded by O(cW ), we can use a modified version of the algorithm

of [20] to embed each Gi. First, we need the following technical Claim.

Claim 1. There exists a shortest path p = v1, . . . , vk, from u to u′ in H ′, such that

for any i, j, with |i− j| > 1, D(vi, vj) = Ω(W |i− j|).
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Proof. Pick an arbitrary shortest path, and repeat the following: while there exist

consecutive vertices x1, x2, x3 in p, with DH′(x1, x3) < cW , remove x2 from p, and

add the edge {x1, x3} in p.

The algorithm works as follows. We start with the graph H ′, and we guess points

u, u′, such that there exists an optimal embedding of Gi having u and u′ as the left-

most and right-most point respectively. Let p = (v1, . . . , vk) be the shortest path

from u to u′ on H ′ (here v1 = u and vk = u′), that is given by Claim 1. We partition

Xi into clusters V1, . . . , Vk, as follows. Each vertex x ∈ Xi belongs to cluster Vj , that

minimizes D(x, vj).

Our next step is constructing super-clusters U1, . . . , Us, where the partition in-

duced by {Vj}k
j=1 is a refinement of the partition induced by {Uj}s

j=1, such that there

is a small-cost spanning tree T ′ of Gi that “respects” the partition induced by {Uj}s
j=1.

More precisely, each edge of T ′ is either contained in a super-cluster Ui, or it is an

edge of the path p. The final embedding of Gi is obtained by a walk on T ′, that

traverses the super-clusters U1, . . . , Us in this order.

Note that there exist metrics over Gi for which any spanning tree that “respects”

the partition induced by Vj’s is much more expensive that the minimum spanning

tree. Thus, we cannot simply use Uj = Vj .

We now show how to construct the super-clusters U1, . . . , Us. We first need the fol-

lowing three technical claims, which constitute a natural extensions of similar claims

from [20] to the weighted case.

Claim 2. For each i : 1 ≤ i ≤ k, maxu∈Vi
{D(u, vi)} ≤ c2W/2.

Proof. Let u ∈ Vi. Consider the optimal embedding f . Since f(v1) = minw∈X f(w),

and f(vk) = maxw∈X f(w), it follows that there exists j, with 1 ≤ j < k, such that

min{f(vj), f(vj+1)} < f(u) < max{f(vj), f(vj+1)}.

Assume w.l.o.g., that f(vj) < f(u) < f(vj+1). We have D(u, vj) ≥ D(u, vi), since

u ∈ Vi. Since f is non-contracting, we obtain f(u) − f(vj) ≥ D(u, vj) ≥ D(u, vi).
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Similarly, we have f(vj+1)−f(u) ≥ D(u, vi). Thus, f(vj+1)−f(vj) ≥ 2D(u, vi). Since

{vj, vj+1} ∈ E(G′), we have D(vj, vj+1) ≤ cW . Thus, c ≥ f(vj+1)−f(vj )

D(vj+1,vj)
≥ 2D(u,vi)

cW
.

Claim 3. For each r ≥ 1, and for each i : 1 ≤ i ≤ k − r + 1,
∑i+r−1

j=i |Vi| ≤
c2W (c+ r − 1) + 1.

Proof. Let A =
⋃i+r−1

j=1 Vi. Let x = argminu∈Af(u), and y = argmaxu∈Af(u). Let also

x ∈ Vi, and y ∈ Vj. Clearly, |f(vi)−f(vj)| ≤ cD(vi, vj) ≤ cDG′(vi, vj) ≤ c2W |i− j| ≤
c2W (r − 1). By Claim 2, we have D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2. Thus,

|f(x) − f(vi)| ≤ cD(x, vi) ≤ c3W/2, and similarly |f(y) − f(vj)| ≤ c3W/2. It follows

that |f(x)−f(y)| ≤ |f(x)−f(vi)|+|f(vi)−f(vj)|+|f(vj)−f(y)| ≤ c3W+c2W (r−1).

Note that by the choice of x, y, and since the minimum distance in M is 1, and f is

non-contracting, we have
∑i+r−1

j=i |Vi| ≤ |f(x)−f(y)|+1, and the assertion follows.

Claim 4. If {x, y} ∈ E(H ′), where x ∈ Vi, and y ∈ Vj, then D(vi, vj) ≤ cW + c2W ,

and |i− j| = O(c2).

Proof. Since {x, y} ∈ E(G′), we have D(x, y) ≤ cW . By Claim 2, we have D(x, vi) ≤
c2W/2, and D(y, vj) ≤ c2W/2. Thus, D(vi, vj) ≤ D(vi, x) + D(x, y) + D(y, vj) ≤
cW + c2W .

By Lemma 2, we have that DG′(vi, vj) ≤ cD(vi, vj) ≤ c2W + c3W . Since every

edge of G′ has length at least 1, we have |i− j| ≤ DG′(vi, vj) ≤ c2W + c3W .

Let α be an integer with 0 ≤ α < c4W . We partition the set Xi into super-clusters

U1, . . . , Us, such that for each l : 1 ≤ l ≤ s, Ul is the union of c4W consecutive clusters

Vj, where the indexes j are shifted by α. We refer to the above partition as α-shifted.

Claim 5. Let T be an MST of Gi. We can compute in polynomial time a spanning

tree T ′ of Gi, with cost(T ′) = O(cost(T )), and an α-shifted partition of Xi, such that

for any edge {x, y} of T ′, either both x, y ∈ Ul for some l : 1 ≤ l ≤ s, or x = vj and

y = vj+1 for some j : 1 ≤ j < k.

Proof. Observe that since H is connected, all the edges of T can have length at most

W , and thus T is a subgraph of both H and H ′. Consider the α-shifted partition
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obtained by picking α ∈ {0, . . . , c4W − 1}, uniformly at random. Let T ′ be the

spanning tree obtained from T as follows: For all edges {x, y} of T , such that x ∈
Vi ⊆ Ui′, and y ∈ Vj ⊆ Uj′, where i′ 6= j′, we remove {x, y} from T , and we add the

edges {x, vi}, {y, vj}, and the edges on the subpath of p from vi to vj . Finally, if the

resulting graph T ′ contains cycles, we remove edges in an arbitrary order, until T ′

becomes a tree. Note that although T ′ is a spanning tree of Gi, it is not necessarily

a subtree of H ′.

Clearly, since the edges {x, vi}, and {y, vj} that we add at each iteration of the

above procedure are contained in the sets Ui′ , and Uj′ respectively, it follows that T ′

satisfies the condition of the Claim.

We will next show that the expectation of cost(T ′), taken over the random choice

of α, is O(cost(T )). For any edge {x, y} that we remove from T , the cost of T ′ is

increased by the sum of D(x, vi) and D(y, vj), plus the length of the shortest path

from vi to vj in H ′. Observe that the total increase of cost(T ′) due to the subpaths of

p that we add, is at most cost(T ). Thus, it suffices to bound the increase of cost(T ′)

due to the edges {x, vi}, and {y, vj}.
By Claim 2, D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2. Thus, for each edge {x, y}

that we remove from T , the cost of the resulting T ′ is increased by at most O(c2W ).

For each i, the set Ui ∪ Ui+1 contains Ω(c4W ) consecutive clusters Vj . Also, by

Claim 4 the difference between the indexes of the clusters Vt1 , Vt2 containing the

endpoints of an edge, is at most |t1 − t2| = O(c2). Thus, the probability that an

edge of T is removed, is at most O( 1
c2W

), and the expected total cost of the edges in

E(T ′) \ E(T ) is O(|Xi|) = O(cost(T )). Therefore, the expectation of cost(T ′), is at

most O(cost(T )). The Claim follows by the linearity of expectation, and by the fact

that there are only few choices for α.

Let U1, . . . , Us be an α-shifted partition, satisfying the conditions of Claim 5, and

let T ′ be the corresponding tree. Clearly, the subgraph T ′[Ui] induced by each Ui is

a connected subtree of T ′. For each Ui, we construct an embedding into the line by

applying Lemma 1 on the spanning tree T ′[Ui]. By Claim 3, |Ui| = O(c6W 2), and by

Claim 2, the cost of the spanning tree T ′[Ui] of Ui is at most O(|Ui|c2W ) = O(c8W 3).
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Therefore, the embedding of each Ui, given by Lemma 1 has distortion O(c8W 3), and

length O(c8W 3).

Finally, we construct an embedding for Gi by concatenating the embeddings com-

puted for the sets U1, U2, . . . , Us, while leaving sufficient space between each consec-

utive pair of super-clusters, so that we satisfy non-contraction.

Lemma 3. The above algorithm produces a non-contracting embedding of Gi with

distortion O(c8W 3) and length O(cost(MST(Gi))).

Proof. Let g be the embedding produced by the algorithm. Clearly, g is non-contracting.

Consider now a a pair of points x, y ∈ X, such that x ∈ Ui, and y ∈ Uj . If |i− j| ≤ 1,

then |g(x)−g(y)| = O(c8W 3), and thus the distortion of D(x, y) is at most O(c8W 3).

Assume now that |i − j| ≥ 2, and x ∈ Vi′, y ∈ Vj′. Then |g(x) − g(y)| =

O(|i− j| · c8W 3). On the other hand, D(x, y) ≥ D(vi′, vj′) − D(vi′, x) − D(vj′, y) ≥
D(vi′, vj′) − c2W ≥ DH′(vi′ , vj′)/c − c2W ≥ |i′ − j′|/c − c2W = Ω(|i − j|c4W 2).

Thus, the distortion on {x, y} is O(c7W 2). In total, the maximum distortion of the

embedding g is O(c8W 3).

In order to bound the length of the constructed embedding, consider a walk on

T ′ that visits the vertices of T according to their appearance in the line, from left to

right. It is easy to see that this walk traverses each edge at most 4 times. Thus, the

length of the embedding, which is equal to the total length of the walk is at most

4cost(T ′) = O(cost(T )).

2.3 The final embedding

We are now ready to give a detailed description of the final algorithm. Assume that

the minimum distance in M is 1, and the diameter is ∆. Let H = (X,E) be a graph,

such that an edge (u, v) ∈ E iff D(u, v) ≤ W , for a threshold W , to be determined

later. We use the algorithm presented above to embed every connected component

G1, . . . , Gk of H . Let f1, f2, . . . , fk be the embeddings that we get for the components

G1, G2, . . . Gk using the above algorithm, and let T be a minimum spanning tree of G.
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It is easy to see that T connects the components Gi using exactly k − 1 edges.1 We

compute our final embedding f as follows. Fix an arbitrary Eulerian walk of T . Let

P be the permutation of (G1, G2, . . . , Gk) that corresponds to the order of the first

occurrence of any node ofGi in our traversal. Compute embedding f by concatenating

the embeddings fi of components Gi in the order of this permutation. Let Ti be

the minimum spanning tree of Gi. Between every 2 consecutive embeddings in the

permutation fi and fj , leave space maxu∈Gi,v∈Gj
{D(u, v)} = D(a, b) +O(cost(Ti)) +

O(cost(Tj)), where D(a, b) is the smallest distance between components Gi and Gj .

This implies the next two Lemmas

Lemma 4. The length of f is at most O(c∆).

Proof. The length of f is the sum of the lengths of all fi and the space that we leave be-

tween every 2 consecutive fi, fj’s. Then, by Lemma 3, the length of fi is O(c·cost(Ti)).

Thus, the sum of the lengths of all fi’s is O(c · cost(T )). The total space that we

leave between all pairs of consecutive embeddings fi is cost(T )+2
∑k

i=1O(cost(Ti)) =

O(cost(T )). Therefore the total length of the embedding f is O(cost(T )). At the same

time, the cost of T is at most the length of the optimal embedding f , which is O(c∆).

The statement follows.

Lemma 5. Let a ∈ Gi, b ∈ Gj for i 6= j. Then W ≤ D(a, b) ≤ |f(a) − f(b)| ≤
O(c∆) ≤ O(cD(a, b) ∆

W
)

Proof. The first part D(a, b) ≤ |f(a) − f(b)| is trivial by construction, since we

left enough space between components Gi and Gj . Since a and b are in difference

connected components, we have D(a, b) > W . Using Lemma 4 we have that |f(a) −
f(b)| = O(c∆) = O(c∆D(a,b)

W
) = O(cD(a, b) ∆

W
).

Theorem 1. Let M = (X,D) be a metric with spread ∆, that embeds into the line

with distortion c. Then, we can compute in polynomial time an embedding of M into

the line, of distortion O(c11/4∆3/4).

1Follows from correctness of Kruskal’s algorithm. These k − 1 edges are exactly the last edges to
be added because they are bigger than W and within components we have edges smaller than W
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Proof. Consider any pair of points. If they belong to different components, their

distance distortion is O(c∆/W ) (Lemma 5). If they belong to the same component,

their distance distortion is O(c8W 3) (Lemma 3). Setting W = ∆1/4c−7/4 gives the

claimed distortion bound.
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Chapter 3

Embedding into trees and

improved embeddings into R1

In this chapter we consider the problem of approximating minimum distortion for em-

bedding general metrics into tree metrics, i.e., shortest path metric over (weighted)

trees. Specifically, if the input metric is an unweighted graph, we give a O(1)-

approximation algorithm for this problem. For general metrics, we give an algorithm

such that if the input metric is c-embeddable into some tree metric, produces an

embedding with distortion α(c logn)O(logα ∆), for any α ≥ 1. In particular, by setting

α = 2
√

log ∆, we obtain distortion (c logn)O(
√

log ∆). Alternatively, when ∆ = nO(1), by

setting α = nε, we obtain distortion nε(c logn)O(1/ε). This in turn yields an O(n1−β)-

approximation for some β > 0, since it is always possible to construct an embedding

with distortion O(n) in polynomial time [43].

Further, we show that by composing our approximation algorithm for embedding

general metrics into trees, with the approximation algorithm from [18] for embedding

trees into the line, we obtain an improved 1 approximation algorithm for embedding

general metrics into the line. The distortion guarantee from Theorem 1 is cO(1)∆3/4,

while the composition results in distortion (c logn)O(
√

log ∆). In fact, we provide a

general framework for composing relative embeddings which could be useful elsewhere.

1Strictly speaking, the guarantees are incomparable, but the dependence on ∆ in our algorithm
is a great improvement over the earlier bound.
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For the special case where the input is an unweighted graph metric, we also study

the relation between embedding into trees, and embedding into spanning subtrees.

An O(logn)-approximation algorithm is known [25] for this problem. We show that if

an unweighted graph metric embeds into a tree with distortion c, then it also embeds

into a spanning subtree with distortion O(c logn). We also exhibit an infinite family

of graphs that almost achieves this bound; each graph in the family embeds into

a tree with distortion O(logn), while any embedding into a spanning subtree has

distortion Ω(log2 n/ log logn). We remark that by composing the upper bound with

our O(1)-approximation algorithm for unweighted graphs, we recover the result of

[25].

The results presented in this chapter are from [17].

3.1 Preliminaries

The input to our problem is a graph G = (V,E). For u, v ∈ V (G) let DG(u, v) denote

the shortest-path distance between u and v in G. We assume that all the edges of G

have weight at least 1. If G is weighted let WG denote the maximum edge weight of

G, and let WG = 1 otherwise.

For any finite metric space M = (X,D), we assume that the minimum distance in

M is at least 1. M is called a tree metric iff it is the shortest-path metric of a subset

of the vertices of a weighted tree. For a graph G = (V,E), and γ ≥ 1 we say that

G γ-approximates M if V (G) ⊆ X, and for each u, v ∈ V (G), D(u, v) ≤ DG(u, v) ≤
γD(u, v). We say that M c-embeds into a tree if there exists an embedding of M

into a tree with distortion at most c. When considering an embedding into a tree,

we assume unless stateted otherwise that the tree might contain steiner nodes. By a

result of Gupta [30], after computing the embedding we can remove the steiner nodes

losing at most a O(1) factor in the distortion (and thus also in the approximation

factor).

Definition 1 (α-restricted subgraphs). For a weighted graph G = (V,E), and for

α > 0, the α-restricted subgraph of G is defined as the graph obtained from G after
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removing all the edges of weight greater than α. Similarly, for a metric M = (X,D),

the α-restricted subgraph of M is defined as the weighted graph on vertex set X, where

an edge {u, v} appears in G iff D(u, v) ≤ α, and the weight of every edge {u, v} is

equal to D(u, v).

3.2 A forbidden-structure characterization of tree-

embeddability

Before we describe our algorithms, we give a combinatorial characterization of graphs

that embed into trees with small distortion. For any c > 1, the characterization

defines a forbidden structure that cannot appear in a graph that embeds into a tree

with distortion at most c. This structure will be later used when analyzing our

algorithms to show that the computed embedding is close to optimal.

Lemma 6. Let G = (V,E) be a (possibly weighted) graph. If there exist nodes

v0, v1, v2, v3 ∈ V (G), and λ > 0, such that

• for each i : 0 ≤ i < 4, there exists a path pi, with endpoints vi, and vi+1 mod 4,

and

• for each i : 0 ≤ i < 4, DG(pi, pi+2 mod 4) > λWG,

then, any embedding of G into a tree has distortion greater than λ.

Proof. Let W = WG. Consider an optimal non-contracting embedding f of G, into

a tree T . For any u, v ∈ V (G), let Pu,v denote the path from f(u) to f(v), in T . For

each i, with 0 ≤ i < 4, define Ti as the minimum subtree of T , which contains all the

images of the nodes of pi. Since each Ti is minimum, it follows that all the leaves of

Ti are nodes of f(pi).

Claim 6. For each i, with 0 ≤ i < 4, we have Ti =
⋃

{u,v}∈E(pi)
Pu,v.

Proof. Assume that the assertion is not true. That is, there exists x ∈ V (Ti), such

that for any {u, v} ∈ E(pi), the path Pu,v does not visit x. Clearly, x /∈ V (pi), and
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thus x is not a leaf. Let T 1
i , T

2
i , . . . , T

j
i , be the connected components obtained by

removing x from Ti. Since for every {u, v} ∈ E(pi), Pu,v does not visit x, it follows

that there is no edge {u, v} ∈ E(pi), with u ∈ T a
i , v ∈ T b

i , and a 6= b. This however,

implies that pi is not connected, a contradiction.

Claim 7. For each i, with 0 ≤ i < 4, we have Ti ∩ Ti+2 mod 4 = ∅.

Proof. Assume that the assertion does not hold. That is, there exists i, with 0 ≤ i < 4,

such that Ti ∩ Ti+2 mod 4 6= ∅. We have to consider the following two cases:

Case 1: Ti ∩ Ti+2 mod 4 contains a node from V (pi) ∪ V (pi+2 mod 4). W.l.o.g., we

assume that there exists w ∈ V (pi+2 mod 4), such that w ∈ Ti ∩ Ti+2 mod 4. By Claim

6, it follows that there exists {u, v} ∈ E(pi), such that f(w) lies on Pu,v. This implies

DT (f(u), f(v)) = DT (f(u), f(w)) + DT (f(w), f(v)). On the other hand, we have

DG(pi, pi+2 mod 4) > λW , and since f is non-contracting, we obtain DT (f(u), f(v)) >

2λW . Thus, c ≥ DT (f(u), f(v))/DG(u, v). Since {u, v} ∈ E(G), and the maximum

edge weight in G is at most W , we have DG(u, v) ≤W , and thus c > 2λ.

Case 2: Ti∩Ti+2 mod 4 does not contain nodes from V (pi)∪V (pi+2 mod 4). Let w ∈
Ti∩Ti+2 mod 4. By Claim 6, there exist {u1, v1} ∈ E(pi), and {u2, v2} ∈ E(pi+2 mod 4),

such that w lies in both Pu1,v1 , and Pu2,v2. We have

DT (f(u1), f(v1)) +DT (f(u2), f(v2)) = DT (f(u1), f(w)) +DT (f(w), f(v1))

+DT (f(u2), f(w)) +DT (f(w), f(v2))

≥ DT (f(u1), f(u2)) +DT (f(v1), f(v2))

≥ DG(u1, u2) +DG(v1, v2)

≥ 2DG(pi, pi+2 mod 4)

> 2λW

Thus, we can assume thatDT (f(u1), f(v1)) > λW . It follows that c ≥ DT (f(u1),f(v1))
DG(u1,v1)

>

λ.

Moreover, since pi, and pi+1 mod 4, share an end-point, we have Ti∩Ti+1 mod 4 6= ∅.
By Claim 7, it follows, that

⋃3
i=0 Ti ⊆ T , contains a cycle, a contradiction.
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3.3 Tree-like decompositions

In this section we describe a graph partitioning procedure which is a basic step in our

algorithms. Intuitively, the procedure partitions a graph into a set of clusters, and

arranges the clusters in a tree, so that the structure of the tree of clusters resembles

the structure of the original graph.

Formally, the procedure takes as input a (possibly weighted) graph G = (V,E),

a vertex r ∈ V (G), and a parameter λ ≥ 1. The output of the procedure is a pair

(TG
K ,KG), where KG is a partition of V (G), and TG

K is a rooted tree with vertex set

KG.

The partition KG of V (G) is defined as follows. For integer i, let

Vi = {v ∈ V (G)|WG(i− 1)λ ≤ DG(r, v) < WGiλ}.

Initially, KG is empty. Let t be the maximum index such that Vt is non-empty. Let

Yi =
⋃t

j=i Vj . For each i ∈ [t], and for each connected component Z of G[Yi] that

intersects Vi, we add the set Z ∩ Vi, to the partition KG. Observe that some clusters

in KG might induce disconnected subgraphs in G.

TG
K can now be defined as follows. For each K,K ′ ∈ KG, we add the edge {K,K ′}

in TG
K iff there is an edge in G between a vertex in K and a vertex in K ′. The root of

TG
K is the cluster containing r. The resulting pair (TG

K ,KG) is called a (r, λ)-tree-like

decomposition of G.

Figure 3-1 depicts the described decomposition.

Proposition 1. TG
K is a tree.

Proof. Let u, v ∈ V (G). Since G is connected, there is a path p from u to v in G.

Let p = x1, . . . , x|p|. For each i ∈ {1, . . . , |p|}, let Ki ∈ KG be such that xi ∈ Ki. It is

easy to verify that the sequence {Ki}|p|i=1 contains a sub-sequence that corresponds to

a path in TG
K . Thus, TG

K is connected.

It is easy to show by induction on i that for i = t, . . . , 1, the subset Li ⊆ KG that

is obtained by partitioning
⋃t

j=i Vj , induce a forest in TG
K . Since L1 = KG, and TG

K is
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Figure 3-1: An example of a tree-like decomposition of a graph.

connected, it follows that TG
K is a tree.

3.3.1 Properties of tree-like decompositions

Before using the tree-like decompositions in our algorithms, we will show that for a

certain range of the decomposition parameters, they exhibit some usefull properties.

We will first bound the diameter of the clusters in KG. The intuition behind the

proof is as follows. If a cluster K is long enough, then starting from a pair of vertices

in x, y ∈ K that are far from each other, and tracing the shortest paths from x and

y to r, we can discover the forbidden structure of lemma 6 in G. Applying lemma

6 we obtain a lower bound on the optimal distortion, contradicting the fact that G

embeds into a tree with small distortion.

Lemma 7. Let G = (V,E) be a graph that γ-embeds into a tree, let r ∈ V (G), and

let (TG
K ,KG) be a (r, γ)-tree-like decomposition of G. Then, for any K ∈ KG, and for

any u, v ∈ K, DG(u, v) ≤ 20γWG.

Proof. Assume that the assertion is not true, and pick K ∈ KG, and vertices x, y ∈ K,

such that DG(x, y) > 20γWG. Recall that KG was obtained by partitioning the

vertices of G according to their distance from r. Let qx, and qy be the shortest paths

from x to r, and from y to r respectively. Let K1, . . . , Kτ be the branch in TG
K , such

that r ∈ K1, and Kτ = K. By the construction of KG, we have that for any i ∈ [τ ],

for any z ∈ Ki, DG(r, z) ≤ iWGγ. Thus, DG(x, y) ≤ DG(x, r) + DG(r, y) ≤ 2τWGc.

Since DG(x, y) > 20γWG, it follows that τ > 10.
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Consider now the sub-path px of qx that starts from x, and terminates to the

first vertex x′ of Kτ−2 visited by qx. Define similarly py as the sub-path of qy that

starts from y, and terminates to the first vertex y′ of Kτ−2 visited by qy. We will

first show that DG(px, py) > γWG. Observe that by the construction of KG, we have

that DG(x, x′) ≤ 2γWG, and also DG(y, y′) ≤ 2γWG. Since px, and py are shortest

paths, we have that for any z ∈ px, DG(x, z) ≤ 2γWG, and similarly for any z ∈ py,

DG(y, z) ≤ 2γWG. Pick z ∈ px, and z′ ∈ py, such that DG(z, z′) is minimized.

We have DG(x, y) ≤ DG(x, z) + DG(z, z′) + DG(z′, y) ≤ DG(z, z′) + 4γWG. Thus,

DG(px, py) = DG(z, z′) ≥ DG(x, y) − 4γWG > 20γWG − 4γWG = 16γWG.

Let now px′ be the remaining sub-path of qx, starting from x′, and terminating to

r, and define py ′ similarly. Let pxy be the path from x′ to y′, obtained by concatenating

px′, and py ′.

By the construction of KG it follows that if we remove from G all the vertices in

the sets K1, K3, . . . , Kτ−1, then x and y remain in the same connected component.

In other words, we can pick a path pyx from x to y, that does not visit any of the

vertices in
⋃τ−1

j=1 Kj. It follows that the distance between any vertex of pyx, and any

vertex in
⋃τ−2

j=1 Kj , is greater than γWG. Thus, DG(pxy, pyx) > γWG.

We have thus shown that there are vertices x, y, y′, x′ ∈ V (G), and paths px, py,

pxy, pyx, satisfying the conditions of Lemma 6. It follows that the optimal distortion

required to embed G into a tree is greater than γ, a contradiction.

Using the bound on the diameter of the clusters in KG, we can show that for

certain values of the parameters, the distances in the tree of clusters approximate the

distances in the original graph.

Lemma 8. Let G = (V,E) be a graph that γ-embeds into a tree, let r ∈ V (G), and

let (TG
K ,KG) be a (r, γ)-tree-like decomposition of G. Then, for any K1, K2 ∈ KG, and

for any x1 ∈ K1, x2 ∈ K2, (DT G
K

(K1, K2) − 2)WGγ ≤ DG(x1, x2) ≤ (DT G
K

(K1, K2) +

2)20WGγ.

Proof. Let δ = DT G
K

(K1, K2). We begin by showing the first inequality. We have to

consider the following cases:
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Case 1: K1 and K2 are on the same path from the root to a leaf of TG
K . Let

the path between K1 and K2 in TG
K be K1, H1, H2, . . . , Hδ−1, K2. Assume that

the assertion is not true. That is, DG(x1, x2) < (δ − 2)WGγ. Thus, DG(r, x2) ≤
DG(r, x1) + DG(x1, x2) < DG(r, x1) + (δ − 1)WGγ. Assume that r ∈ Kr, for some

Kr ∈ KG, and w.l.o.g. that K1 is an ancestor of K2 in TG
K . Let the distance be-

tween Kr and K1 in TG
K be k. Then, the distance between Kr and K2 is at most

k′ = k +DG(x1, x2)/(WGγ). This implies that δ = k′ − k < δ − 1, a contradiction.

Case 2: K1 and K2 are not on the same path from the root to a leaf of TG
K . Let Ka

be the nearest common ancestor of K1 and K2 in TG
K . Observe that any path from x

to y in G passes through Ka. Thus, we have DG(x, y) ≥ DG(Kx, Ka) +DG(Ka, Ky).

Let δi, for i ∈ {1, 2} be the distance between Ka and Ki in TG
K . Then, by an

argument similar to the above, we obtain that DG(Kx, Ka) ≥ (δ1 − 1)WGγ, and also

DG(Ky, Ka) ≥ (δ2 − 1)WGγ. Since Ka is the nearest common ancestor of K1 and

K2, it follows that Ka separates K1 from K2 in G. Thus, DG(x, y) ≥ DG(Kx, Ky) ≥
DG(Kx, Ka) +DG(Ky, Ka) ≥ (δ − 2)WGc.

We now show the second inequality. Consider an edge {K,K ′} of TG
K . Since K

and K ′ are connected in TG
K it follows that there exists an edge in G between a vertex

in K and a vertex in K ′. Since the maximum edge weight of G is WG, we obtain

DG(K,K ′) ≤WG.

Since by Lemma 7, the diameter of each K ∈ KG is at most 20WGγ, it follows

that DG(x1, x2) ≤ δWG + (δ + 1)20WGγ < (δ + 2)20WGγ.

3.4 Approximation algorithm for embedding un-

weighted graphs

In this section we give a O(1)-approximation algorithm for the problem of embedding

the shortest path metric of an unweighted graph into a tree. Informally, the algorithm

works as follows. Let G = (V,E) be an unweighted graph, such that G can be

embedded into an unweighted tree with distortion c. At a first step, we compute a
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tree-like decomposition (TG
K ,KG) of G. For each cluster in KG we embed the vertices

of the cluster in a star. We then connect the starts to form a tree embedding of G by

connecting stars that correspond to clusters that are adjacent in TG
K .

Formally, the algorithm can be described with the following steps.

Step 1. We pick r ∈ V (G), and we compute a (r, c)-tree-like decomposition (TG
K ,KG)

of G.

Step 2. We construct a tree T as follows. Let KG = {K1, . . . , Kt}. For each i ∈ [t],

we construct a star with center a new vertex ρi, and leaves the vertices in Ki.

Next, for each edge {Ki, Kj} in TG
K , we add an edge {ρi, ρj} in T .

By proposition 1, we know that the resulting graph T is indeed a tree, so we can

focus of bounding the distortion of T . By lemma 7, the diameter of each cluster in

KG is at most 20cWG = 20c. Let x1, x2 ∈ V (G), with x1 ∈ K1, and x2 ∈ K2, for

some K1, K2 ∈ KG. We have DT (x1, x2) = 2 + DT (ρ1, ρ2) = 2 + DT G
K

(K1, K2). By

lemma 8 we obtain that DT (x1, x2) ≤ 4 + DG(x1, x2)/c ≤ 5DG(x1, x2). Also by the

same lemma, DT (x1, x2) ≥ DG(x1, x2)/(20c). By combining the above it follows that

the distortion is at most 100c.

Theorem 2. There exists a polynomial time, constant-factor approximation algo-

rithm, for the problem of embedding an unweighted graph into a tree, with minimum

multiplicative distortion.

3.5 Well-separated tree-like decompositions

Before we describe our algorithm for embeddings general metrics, we need to introduce

a refined decomposition procedure. As in the unweighted case, we want to obtain a

partition of the input metric space in a set of clusters, solve the problem independently

for each cluster, and join the solutions to obtain a solution for the input metric.

The key properties of the tree-like decomposition used in the case of unweighted

graphs are the following: (1) the distances in the tree of clusters approximate the

distances in the original graph, and (2) the diameter of each cluster is small.
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Observe that if the graph is weighted with maximum edge weight WG, and the

clusters have small diameter, then the distance between two adjacent clusters of a

tree-like decomposition can be any value between 1 and WG. Thus, the tree of clusters

cannot approximate the original distances by a factor better than WG.

We address this problem by introducing a new decomposition that allows the

diameter of each cluster to be arbitrary large, while guaranteeing that (1) the distance

between clusters is sufficiently large, and (2) after solving the problem independently

for each cluster, the solutions can be merged together to obtain a solution for the

input metric.

Formally, let G = (V,E) be a graph that γ-embeds into a tree. Let also r ∈ V (G),

and α ≥ 1 be a parameter. Intuitively, the parameter α controls the distance between

clusters in the resulting partition.

A (r, γ, α)-well-separated tree-like decomposition is a triple (TG
K ,KG,AG), were

(TG
K ,KG) is a (r, γ)-tree-like decomposition of G, and AG is defined as follows.

For a set A ⊆ V (G), let ZA = {K ∈ KG|K ∩ A 6= ∅}. Define TG,A
K to be the

vertex-induced subgraph TG
K [ZA].

Proposition 2. Let A ⊆ V (G), such that G[A] is connected. Then, TG,A
K is a subtree

of TG
K

Proof. Since G[A] is connected, it suffices to show that any edge e of G is either

contained in some K ∈ KG, or the end-points of e are contained in sets K,K ′ ∈ KG,

such that there is an edge between K and K ′ in TG
K . Assume that this is not true,

and pick an edge {v1, v2} ∈ E(G), with v1 ∈ K1, and v2 ∈ K2, for some K1, K2 ∈ KG,

such that there is no edge between K1 and K2 in TG
K .

Let Kr ∈ KG be such that r ∈ Kr. Assume first that K1 is on the path from K2

to Kr ∈ KG in TG
K . This implies however that D(v1, v2) > WG, contradicting the fact

that {v1, v2} ∈ E(G).

It remains to consider the case where K1 is not in the path from K2 to Kr, and K2

is not in the path from K1 to Kr in TG
K . Then by the construction of KG we know that

any path from a vertex in K1 to a vertex in K2 in G has to pass through an ancestor
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of K1, and K2. Thus, there is not edge between K1 and K2 in G, a contradiction.

AG is computed in two steps:

Step 1. We define a partition ĀG. ĀG contains all the connected components of G

obtained after removing all the edges of weight greater than WG/(γ
3/2α).

Step 2. We set AG := ĀG. While there exist A1, A2 ∈ AG such that the diameter of

TG,A1

K ∩ TG,A2

K is greater than 50γ, we remove A1, and A2 from AG, and we add

A1 ∪A2 in AG. We repeat until there are no more such pairs A1, A2.

3.5.1 Properties of well-separated tree-like decompositions

We now show the main properties of a well-separated tree-like decomposition that

will be used by our algorithm for embedding general metrics. They are summarized

in the following two lemmas.

Intuitively, the first lemma shows that the distance between different clusters is

sufficiently large, and at the same time they don’t share long parts of the tree TG
K .

The technical importance of the later property will be justified in the next section. It

is worth mentioning however that intuitively, the fact that the intersections are short

will allow us to arrange the clusters of AG in a tree, without intersections, incurring

only a small distortion.

Lemma 9. For any A1, A2 ∈ AG, DG(A1, A2) ≥ WG/(γ
3/2α), and TG,A1

K ∩ TG,A2

K is

a subtree of TG
K with diameter at most 50γ.

Proof. For any A1, A2 ∈ ĀG, we have that D(A1, A2) ≥ WG/(γ
3/2α). Since AG is

obtained by only merging sets, the first property holds. Moreover, the construction of

AG clearly terminates, and the second property follows by the termination condition

of the construction procedure.

The next lemma will be used to argue that when recursing in a cluster, the cor-

responding induced metric can be sufficiently approximated by a graph with small

maximum edge weight.
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Lemma 10. For any A ∈ AG, the WG/(γ
1/2α)-restricted subgraph of G[A], is con-

nected.

Proof. For an embedding of G into a tree T , and for disjoint A1, A2 ⊂ V (G), we say

that A1 splits A2 in T , if A2 intersects at least 2 connected components of T [V (G)\A1].

Claim 8. Let A1, A2 ⊂ V (G), with A1 ∩A2 = ∅, such that G[A1], and G[A2] are both

connected. Assume that the diameter of TG,A1

K ∩ TG,A2

K is greater than 50γ. Consider

an optimal non-contracting embedding of G into a tree T , with distortion γ. Then,

either A1 splits A2 in T , or A2 splits A1 in T .

Proof. Since G[A1], and G[A2] are both connected, it follows by Proposition 2 that

TG,A1

K , and TG,A2

K are both connected subtrees of TG
K . Pick a path p = K1, K2, . . . , Kl

in TG
K , with l > 50γ, that is contained in TG,A1

K ∩ TG,A2

K .

Assume that the assertion is not true. Let A′
1 = A1 ∩ (

⋃l
i=1Ki), and let A′

2 =

A2∩ (
⋃l

i=1Ki). Let T1 be the minimum connected subtree of T that contains A′
1, and

similarly let T2 be the minimum connected subtree of T that contains A′
2. It follows

that T1 ∩ T2 = ∅.
Let x1 be the unique vertex of T1 which is closest to T2. Since T1 is minimal,

x1 disconnects T1. Moreover, since G[A1] is connected, it follows that there exists

{w,w′} ∈ E(G), such that the path from w to w′ in T passes through x1. Since

DG(w,w′) ≤ WG, we obtain that there exists x∗1 ∈ {w,w′}, with DT (x∗1, x1) ≤
DT (w,w′)/2 ≤ γDG(w,w′)/2 ≤ γWG/2.

By Lemma 7, it follows that for any x ∈ A′
1, there exists x′ ∈ A′

2, such that

DG(x, x′) ≤ 20WGγ. Moreover, for any x ∈ A′
1, DT (x, T2) = DT (x, x1) +DT (x1, T2).

Thus, for any x ∈ A′
1, DT (x, x∗1) ≤ DT (x1, x

∗
1) + DT (x, x1) ≤ γWG/2 + DT (x, T2) ≤

γWG/2 + γDG(x,A′
2) ≤ 21WGγ

2.

Pick z ∈ A′
1 ∩ K1, and z′ ∈ A′

1 ∩ Kl. By the triangle inequality, DT (z, z′) ≤
DT (z, x∗1) +DT (x∗1, z

′) ≤ 42WGγ
2. On the other hand, the distance between K1, and

Kl in TG
K is l−1. Thus, by Lemma 8 we obtain thatDG(z, z′) ≥ (l−3)WGγ > 45WGγ

2,

which contradicts that fact that the embedding of M into T is non-contracting.

Fix an optimal non-contracting embedding of G into a tree T , with distortion γ.
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For k ≥ 0, let Ak
G be the partition AG after k iterations of Step 2 have been

performed, with A0
G = ĀG.

Assume that the assertion is not true, and pick the smallest k, such that there

exists A ∈ Ak
G, such that the WG/(γ

1/2α)-restricted subgraph of G[A] is not con-

nected. Assume that A is obtained by joining A1, A2 ∈ Ak−1
G . By the minimality of k,

it follows that the WG/(γ
1/2α)-restricted subgraphs of G[A1], and G[A2] respectively

are connected. Thus, DG(A1, A2) > WG/(γ
1/2α).

By claim 8, we can assume w.l.o.g. that A2 splits A1. Thus, by removing A2 from

T , we obtain a collection of connected components F1. Consider the partition F ′
1 of

A1 defined by restricting F1 on A1. Formally, F ′
1 = {f ∩A1|f ∈ F1, f ∩A1 6= ∅}. We

have to consider the following cases:

Case 1: There exists Z ∈ ĀG, with Z ⊆ A1, such that Z intersects at least

two sets in F ′
1. By considering only edges of weight at most WG/(γ

3/2α), the in-

duced subgraph G[Z] is connected. It follows that there exist z1, z2 ∈ Z, with

DG(z1, z2) ≤ WG/(γ
3/2α), such that the path from z1 to z2 in T passes through

A2. Thus, DT (z1, z2) ≥ 2DG(A1, A2) > 2WG/(γ
1/2α) ≥ 2γD(z1, z2), contradicting

the fact that the expansion of T is at most γ.

Case 2: For any Z ∈ ĀG, with Z ⊆ A1, we have Z ⊆ Z ′, for some Z ′ ∈ F ′
1.

Observe that for ant t ≥ 0, any element in At
G is obtained as the union of elements

of ĀG. Thus, we can pick the minimum j ≥ 1, such that there exist B1, B2 ∈ Aj−1
G ,

such that during iteration j of Step 2, the set B = B1 ∪B2 is obtained, with B ⊆ A1,

and such that B1 ⊆ Z ′
1, and B2 ⊆ Z ′

2, for some Z ′
1, Z

′
2 ∈ F ′

1, In other words, we pick

the minimum j such that we can find sets B1, B2 ∈ Aj−1
G , that are contained in A2,

and neither of them is split by A2 in T . W.l.o.g., we can assume that B2 splits B1 in

T . Thus, there exist C1, C2 ⊆ B1, such that any path between C1 and C2 in T passes

through B2. Moreover, any path from B1 to B2 in T passes through A2. Thus, any

path from C1 to C2 in T passes through A2. This however contradicts the minimality

of j. The scenario is depicted in Fig 3-2.
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Figure 3-2: Case 2 of the proof of Lemma 10.

3.6 Approximation algorithm for embedding gen-

eral metrics

In this section we present an approximation algorithm for embedding general metrics

into trees. Before we get into the technical details of the algorithm, we give an informal

description. The main idea is to partition the input metric M using a well-separated

tree-like decomposition, and then solve the problem independently for each cluster of

the partition by recursion. After solving all the sub-problems, we can combine the

partial solutions to obtain a solution for M . There are a few points that need to be

highlighted:

Termination of the recursion. As pointed out in the description of the well-

separated tree-like decompositions, the clusters of the resulting partition might have

arbitrarily long diameter. In particular, we cannot guarantee that by recursively de-

composing each cluster we obtain sub-clusters of smaller diameter. To that extend,

our recursion deviates from standard techniques since the sub-problems are not nec-

essarily smaller in a usual sense. Instead, our decomposition procedure guarantees

that at each recursive step, the metric of each cluster can be approximated by a graph

with smaller maximum edge length. This can be thought as restricting the problem

to a smaller metric scale.

Merging the partial solutions. The partial solution for each cluster in the
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recursion is an embedding of the cluster into a tree. As in the algorithm for unweighted

graphs, we merge the partial solutions using the tree TG
K of the well-separated tree-like

decomposition as a rough approximation of the resulting tree. However, in the case of

a well-separated decomposition, the parts of TG
K that correspond to different clusters

of the partition AG might overlap. Moreover, since some of the clusters might be

long, we need to develop an elaborate procedure for merging the different trees into

a tree for M , without incurring large distortion.

3.6.1 The main inductive step

We will now describe the main inductive step of the algorithm. Let M = (X,D) be a

finite metric that c-embeds into a tree. At each recursive step performed on a cluster

A∗ of M , the algorithm is given a graph G with vertex set A, that c-approximates

M . In order to recurse in sub-problems, we compute a well-separated tree-like de-

composition of G. We chose the parameters of the well-separated decomposition so

that each sub-cluster A, can be c-approximated by a graph that has maximum edge

weight significantly smaller than the maximum edge weight of G. Formally, the main

recursive step is as follows.

Procedure RecursiveTree

Input: A graph G with maximum edge weight WG, that c-approximates M .

Output: An embedding of G into a tree S.

Step 1: Partitioning. If G contains only one vertex, then we output a triv-

ial tree containing only this vertex. Otherwise, we proceed as follows. We

pick r ∈ V (G), and compute a (r, c2, α)-well-separated tree-like decomposition

(TG
K ,KG,AG) of G, where α > 0 will be determined later.

Step 2: Recursion. For any A ∈ AG, let GA be the WG/α-restricted subgraph,

with V (GA) = A. We recursively execute the procedure RecursiveTree on

GA, and we obtain a tree SA.
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Step 3: Merging the solutions. In this final step we merge the trees SA to obtain

S.

We define a tree T as follows. We first remove from TG
K all the edges between

vertices at level i50c2, and i50c2 + 1, for any integer i : 1 ≤ i ≤ n/(50c2). For

any connected component C of the resulting forest, T contains a vertex C. Two

vertices C,C ′ ∈ V (T ) are connected, iff there is an edge between C, and C ′ in

TG
K . We consider T to be rooted at the vertex which corresponds to the subtree

of TG
K that contains r. Furthermore, for each Ai ∈ AG, we define a subtree Ti

of T as follows: Ti contains all the vertices C of T , such that TG,Ai

K visits C.

We will use the following Lemma to connect all the Tis in a larger tree:

Lemma 11. There exists a polynomial-time algorithm that computes an un-

weighted tree T ′, and for any i ∈ [k] a mapping φi : V (Ti) → V (T ′), such

that

• for any i, j ∈ [k], φi(Ti) ∩ φj(Tj) = ∅,

• for any i, j ∈ [k], for any vi ∈ V (Ti), and vj ∈ V (Tj), DT (vi, vj) ≤
DT ′(φi(vi), φj(vj)) ≤ 20(DT (vi, vj) + 1) logn.

The proof of the above Lemma is given in the following Section. Note that the

tree T ′ might contain vertices C ∈ V (T ), such that for any K ∈ KG, K /∈ C.

We call such a vertex steiner. First, for each steiner vertex C ∈ V (T ′) we add

a vertex vC ∈ V (S). We have to add the following types of edges:

• For any C1, C2 ∈ V (T ′), such that both C1, and C2 are steiner vertices, we

add the edge {vC1 , vC2} in S, with weight WG/(c
3α).

• For any C1, C2 ∈ V (T ′), such that C2, is a steiner vertex, and there exists

A1 ∈ AG, such that C1 ∈ φ1(T1), we pick K1 ∈ TG,A1

K , with K1 ∈ C1, and

an arbitrary x1 ∈ K1, and we add the edge {x1, vC1} in S. The weight of

this new edge is WG/(c
3α).

• For any pair A1, A2 ∈ AG, with A1 6= A2, such that there exists an edge in

T ′ connecting φ1(T1) with φ2(T2), we add an edge between SA1 , and SA2.
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We pick the edge that connects SA1 with SA2 as follows. Pick C1, C2 ∈
V (T ), with C1 ∈ T1, and C2 ∈ T2, such that there is an edge between

φ1(C1), and φ2(C2) in T ′. We pick an arbitrary pair of points x1, x2, with

x1 ∈ K1 ∈ C1, and x2 ∈ K2 ∈ C2, for some K1, K2 ∈ KG, and we connect

SA1 with SA2 by adding the edge {x1, x2} of length D(x1, x2).

Given the metric M = (X,D), the algorithm first computes a weighted complete

graph G0 = (V,E), with V (G0) = X, such that the weight of each edge {u, v} ∈ E(G)

is equal to D(u, v). Let ∆ be the diameter of M . Clearly, G0 is a ∆-restricted

subgraph. The algorithm then executes the procedure RecursiveTree on G0, and

outputs the resulting tree S.

Before we bound the distortion of the resulting embedding, we first need to show

that at each recursive call of the procedure RecursiveTree, the graph G satisfies

the input requirements. Namely, we have to show that G c-approximates M . Clearly,

this holds for G0. Thus, it suffices to show that the property is maintained for each

graph GA, were A ∈ AG. Observe that since G c-approximates M , and M c-embeds

into a tree, it follows that G c2-embeds into a tree. Since (TG
K ,KG,AG) is a (r, c2)-

well-separated decomposition, we can assume the properties of lemmas 9, and 10, for

γ = c2.

Lemma 12. For any A ∈ AG, GA c-approximates M .

Proof. The next claim is similar to a lemma given in [18], modified for the case of

embedding into trees.

Claim 9. Let α > 0. Let G be an α-restricted subgraph of M , and let G′ be an

αc-restricted subgraph of M , with V (G) = V (G′). If G is connected, then for any

u, v ∈ V (G), D(u, v) ≤ DG′(u, v) ≤ cD(u, v).

Proof. Let M ′ be the restriction of M on V (G). Consider a non-contracting embed-

ding of M ′ into a tree T ′ with distortion at most c. Consider an edge {u, v} ∈ E(T ′).

We will first show that D(u, v) ≤ αc. Let S be a minimum spanning tree of G. If

{u, v} ∈ E(S), then since G is connected, it follows that D(u, v) ≤ α. Assume now
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that {u, v} /∈ E(S). Let Tu and Tv be the two subtrees of T ′, obtained after removing

the edge {u, v}, and assume that Tu contains u, and Tv contains v. Let p = x1, . . . , x|p|

be the unique path in S with u = x1, and v = x|p|. Observe that the sequence of

vertices visited by p start from a vertex in Tv, and terminate at a vertex in Tu. Thus,

there exists i ∈ [|p| − 1], such that vi ∈ Tv, while vi+1 ∈ Tu. It follows that the edge

{u, v} lies in the path from vi to vi+1 in T ′, and thus DT ′(u, v) ≤ DT ′(vi, vi+1). Since

{vi, vi+1} is an edge of S, we have by the above argument that D(vi, vi+1) ≤ α. Since

the embedding in T has expansion at most c, it follows that DT ′(vi, vi+1) ≤ αc. Thus,

DT ′(u, v) ≤ αc.

Consider now some pair x, y ∈ V (G). If no vertex is embedded between x and

y, then by the above argument, D(x, y) ≤ αc, and thus the edge {x, y} is in G′ and

DG′(x, y) = D(x, y). Otherwise, let z1, . . . , zk be the vertices appearing in T ′ between

x and y (in this order). Then the edges {x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all

belong to G′, and therefore

DG′(x, y) ≤ DG′(x, z1) +DG′(z1, z2) + . . .DG′(zk−1, zk) +DG′(zk, y)

= D(x, z1) +D(z1, z2) + . . .D(zk−1, zk) +D(zk, y)

≤ DT ′(x, z1) +DT ′(z1, z2) + . . .+DT ′(zk−1, zk) +DT ′(zk, y)

= DT ′(x, y) ≤ cD(x, y)

By the construction of the set AG, it follows that a WG/c
2-restricted subgraph

with vertex set A, is connected. Thus, by claim 9, DGA
c-approximates D.

The next two lemmas bound the distortion of the resulting embedding of G into

S. The fact that the contraction is small follows by the fact that the distance between

the clusters in AG is sufficiently large. The expansion on the other hand, depends on

the maximum depth of the recursion. This is because at each recursive call, when we

merge the trees SA to obtain S, we incur an extra cO(1) log n-factor in the distortion.

Since at every recursive call the maximum edge weight of the input graph decreases
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by a factor of α, the parameter α can be used to adjust the recursion depth in order

to optimize the final distortion.

Lemma 13. The contraction of S is O(c7α).

Proof. In order to bound the contraction of S, it is sufficient to bound the contraction

between pairs of vertices x1, x2 ∈ V (G), such that either {x1, x2} ∈ S, or between x1

and x2 there are only steiner nodes in S.

We will prove the assertion by induction on the recursive steps of the algorithm.

Consider an execution of the recursive procedure RecursiveTree, with input a

graphG with maximum edge weight WG. If G contains only one vertex, then assertion

is trivially true. Otherwise, assume that all the recursively computed trees SA satisfy

the assertion.

Consider such a pair x1, x2 ∈ V (G), and assume that in the path from x1 to x2 in

S, there are k ≥ 0 steiner nodes. If there exists A ∈ AG, such that x1, x2 ∈ A, then

the assertion follows by the inductive hypothesis.

Assume now that there exist A1, A2 ∈ AG, with A1 6= A2, such that x1 ∈ A1,

and x2 ∈ A2. It follows that DS(x1, x2) = (k + 1)WG/(c
3α). Pick C1, C2 ∈ V (T ),

and K1, K2 ∈ KG, such that x1 ∈ K1 ∈ C1, and x2 ∈ K2 ∈ C2. We have

DT ′(φ1(C1), φ2(C2)) = k + 1. By Lemma 11, we obtain DT (C1, C2) ≤ k + 1. Thus,

DT G
K

(K1, K2) ≤ (k+ 2)50c2. By Lemma 8, D(x1, x2) ≤ ((k+ 2)50c2 + 2)WGc
2. Thus,

the contraction on x1, x2 is DS(x1,x2)
D(x1,x2)

≤ ((k+2)50c2+2)WGc2

(k+1)WG/(c3α)
< 104c7α.

Lemma 14. The expansion of S is at most (cO(1) log n)logα ∆.

Proof. We will prove the assertion by induction on the recursive steps of the algorithm.

Consider an execution of the recursive procedure RecursiveTree, with input a

graph G with maximum edge weight WG. If G contains only one vertex, then the

expansion of the computed tree is at most 1. Otherwise, at Step 2 we partition V (G)

into AG, and at Step 3, for each A ∈ AG we define the graph GA, and recursively

execute RecursiveTree on GA, obtaining an embedding of GA into a tree SA.

Assume that for each A ∈ AG, the expansion on SA is at most ξ.
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Consider x, y ∈ V (G). Assume that x ∈ Aix , and y ∈ Aiy , for some Aix , Aiy ∈ AG.

If Aix = Aiy , then the expansion is at most ξ, be the inductive hypothesis. We can

thus assume that Aix 6= Aiy . Pick Kx, Ky ∈ KG, and Cx, Cy ∈ V (T ), such that

x ∈ Kx ∈ Cx, and y ∈ Ky ∈ Cy. Let p be the path between φix(Cx), and φiy(Cy) in

T ′.

Let also q be the path from x to y in S. Assume that q visits the sets in AG in the

order At1 , At2 , . . . , Atk . Let vi, and v′i be the first and the last respectively vertex of

Ati visited by q Similarly, let φji
(Ci), φji

(C ′
i) and be the first, and the last respectively

vertex of φji
(Tji

) visited by p. For each j ∈ [k], pick Ki, K
′
i ∈ KG, such that vi ∈ Ki,

and v′i ∈ K ′
i.

Let δ = WG/(c
3α). We have:

DS(x, y) =

k
∑

j=1

DS(vj, v
′
j) +

k−1
∑

j=1

DS(vj′, vj+1)

≤ ξ

k
∑

j=1

D(vj, v
′
j) + δ

k−1
∑

j=1

DT ′(φji
(C ′

i), φji+1
(Ci+1))

≤ ξWGc
2

k
∑

j=1

(2 +DT G
K

(Kj , K
′
j)) + 20δ log n

k−1
∑

j=1

(1 +DT (C ′
i, Ci+1))

≤ ξWGc
2

k
∑

j=1

(2 + 100c2DT (Cj, C
′
j)) + 20δ log n

k−1
∑

j=1

(1 +DT (C ′
i, Ci+1))

≤ (102ξWGc
4 + 40δ log n)DT (Cx, Cy)

≤ (102ξWGc
4 + 40δ log n)DT G

K
(Kx, Ky)

≤ (102ξWGc
4 +

40WG log n

c3α
)(
D(x, y)

WGc
+ 2)
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Since Aix 6= Aiy , it follows that D(x, y) ≥ δ = WG/(c
3α). Thus,

DS(x, y) ≤ (102ξWGc
4 +

40WG log n

c3α
)(
D(x, y)

WGc
+ 2c3α

D(x, y)

WG
)

≤ (102ξc4 +
40 logn

c3α
)3c3αD(x, y)

≤ (306ξc7α + 120 logn)D(x, y)

Given a graph of maximum edge weight WG, the procedure RecursiveTree

might perform recursive calls on graphs with maximum edge weight c3δ = WG/α.

Since the minimum distance in M is 1, and the spread of M is ∆, it follows that the

maximum number of recursive calls can be at most log ∆/ logα. Thus,

DS(x, y) ≤ (cO(1) log n)logα ∆D(x, y)

Theorem 3. There exists a polynomial-time algorithm which given a metric M =

(X,D) that c-embeds into a tree, computes an embedding of M into a tree, with

distortion (c logn)O(
√

log ∆).

Proof. By Lemmata 13, and 14, it follows that the distortion of S is cO(1)α(cO(1) log n)logα ∆.

By setting α = 2
√

log ∆, we obtain that the distortion is at most (c logn)O(
√

log ∆).

3.6.2 Proof of lemma 11

In this section we give the proof of Lemma 11.

Claim 10. For any Ai, Aj ∈ AG, with Ai 6= Aj, either Ti ∩ Tj = ∅, or there exists

v ∈ V (T ), and v1, . . . , vl, for some l ≥ 0, such that v1, . . . , vl are children of v, and

Ti ∩ Tj = {v, v1, . . . , vl}.

Proof. It follows immediately from the fact that for any Ai, Aj ∈ AG, the diameter

of TG,Ai

K ∩ TG,Aj

K is at most 50c2.
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Let r be the root of T . Initially, T ′ contains a single vertex r′. To simplify the

discussion, we assume w.l.o.g., that r is a leaf vertex of T . We also assume that for

every edge {u, v} ∈ E(T ), there is a tree Ti that contains {u, v}. This is because if

there is no such tree, then we can simply introduce a new subtree Ti, that contains

only the vertices u, and v.

For every Ti that visits r, we introduce in T ′ a copy φi(Ti) of Ti, and we connect

φi(r) to r′.

We proceed by visiting the vertices of T in a top-down fashion. Assume that we

are visiting a vertex v ∈ V (T ), with parent p(v), and children v1, . . . , vt. At this step,

we are going to introduce in T ′ a copy φi(Ti) of Ti, for every Ti that visits v, and we

have not considered yet. We consider the following cases:

Case 1: There is no Ti that visits v, and p(v).

Let Ta be a subtree that visits p(v). For every Tb that visits v, and we have not

considered yet, we introduce in T ′ a copy φb(Tb) of Tb, and we connect φb(v) to

φa(p(v)).

Case 2: There exists Ti that visits v, and p(p(v)), and there is no j 6= i, such that

Tj visits v, and p(v).

For every Tb that visits v, and we have not considered yet, we introduce in T ′

a copy φb(Tb) of Tb, and we connect φb(v) to φi(v).

Case 3: There is no Ti that visits v, and p(p(v)), and there exists Tj that visits v,

and p(v).

Let a ∈ [k] be the minimum integer such that Ta visits v, and p(v). For every Tb

that visits v, and we have not considered yet, we introduce in T ′ a copy φb(Tb)

of Tb, and we connect φb(v) to φa(v).

Case 4: There exists Ti that visits v, and p(p(v)), and there exists Tj, with i 6= j,

that visits v, and p(v).

Let a ∈ [k] be the minimum integer with a 6= i, such that Ta visits v, and p(v).

For every Tb that visits v, and we have not considered yet, we introduce in T ′
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a copy φb(Tb) of Tb. With probability 1/2, we connect φb(v) to φi(v), and with

probability 1/2, we connect φb(v) to φa(v).

Claim 11. T ′ is a tree.

Proof. T ′ is a forest since each φi(Ti) is a tree, and also each φi(Ti) is connected to

exactly one φj(Tj), such that Tj was considered before i. Also, T ′ is connected since

every vertex of T is contained in some subtree Tt.

Claim 12. For any v ∈ V (T ), there exists at most one i ∈ [k], such that Ti visits

both v, and p(p(v)).

Proof. Assume that the assertion is not true. Let Ti, Tj be subtrees that visit both v,

and p(p(v)). Then, Ti and Tj also visit p(v). This however contradicts the definition

of the subtrees T1, . . . , Tk.

Claim 13. Let i, j ∈ [k], with i 6= j, be such that Ti, and Tj both visit a vertex

v ∈ V (T ), but they do not visit p(v). Then, with probability at least 1/2, there exists

t ∈ [k], such that Tt visits v, and p(v), and both φi(v), and φj(v) are connected to

φt(v).

Proof. Recall the procedure for constructing T ′, described above. Consider the step

in which we add to T ′ the subtrees that visit the vertex v, and v is their highest vertex

in T . Clearly Ti, and Tj are both in this set of subtrees. Observe that in cases 1, 2,

and 3, the first event of the assertion happens with probability 1. This is because all

the trees that we consider are connected to the same subtree.

In the remaining case 4, there are subtrees Ti′ , Tj′ such that each subtree that

we consider is going to be connected to Ti′ with probability 1/2, and to Tj′ with

probability 1/2. Thus, with probability 1/2, Ti and Tj are going to be connected to

the same subtree.

Claim 14. Let i, j ∈ [k], with i 6= j, be such that Ti visits v, and does not visit p(v),

and Tj visits both v, and p(v), for some v ∈ V (T ). Then, with probability at least

1/4, there exists L ≤ 4, and t(1), . . . , t(L), such that
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• t(1) = i, and t(L) = j,

• for each l ∈ [L− 1], φt(l)(Tt(l)) is connected to φt(l+1)(Tt(l+1)).

Proof. We have to consider the following cases:

Case 1: Tj visits p(p(v)).

In this case, φi(v) is connected to φj(v) with probability at least 1/2.

Case 2: Tj does not visit p(p(v)).

Let w be the smallest integer, such that Tw visits v, and p(v), but does not visit

p(p(v)). If w = j, then φi(v) is connected to φj(v) with probability at least 1/2.

Otherwise, if w 6= j, then with probability at least 1/2, φi(v) is connected

to φw(v). Moreover, by Claim 13, with probability at least 1/2, there exists

w′ ∈ [k], such that both φw(p(v)), and φj(p(v)), are connected to φw′(p(v)).

Observe that the above two events are independent. Thus, with with probability

at least 1/4, the sequence of subtrees Ti, Tw, Tw′, Tj, satisfy the conditions of the

assertion.

Claim 15. Let Ti, Tj be two subtrees such that they both visit some vertex v ∈ V (T ).

Then, with probability at least 1 − n−4, there exists L = O(logn), such that for any

Ti, Tj, there exists a sequence of subtrees Tt(1), . . . , Tt(L), with

• t(1) = i, and t(L) = j, and

• for any l ∈ [L− 1], φt(l)(Tt(l)) is connected to φt(l+1)(Tt(l+1)).

Proof. By the previous claim, we know that with constant probability there exists a

path of length at most 3 between φi(Ti) and φj(Tj) in T ′. If this happens, then we

have a small path between φi(Ti) and φj(Tj). Otherwise, we look at the trees φi′(Ti′)

and φj′(Tj′) which are connected to φi(Ti) and φj(Tj) towards the root, and they visit

the vertex p(p(v)). Note that with constant probability (by the previous claim again)

there exists a path of length at most 4 between φi′(Ti′) and φj′(Tj′). By continuing
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this argument towards the root 6 logn times, it follows that with probability 1− n−6

there exists a path of length at most 20 logn. By an union bound argument it follows

that with probability 1−n−4 every φi(Ti) and φj(Tj) which have a vertex in common

are connected by a path of length at most 20 logn in T ′.

Claim 16. Let Ti, Tj be two subtrees such that they both visit some vertex v ∈ V (T ).

Then, with probability at least 1 − n−4, for any vi ∈ V (Ti), and for any vj ∈ V (Tj),

DT (vi, vj) ≤ DT ′(φi(vi), φj(vj)) ≤ (DT (vi, vj) + 1)O(logn).

Proof. Observe that since the diameter of the intersection of the two subtrees is at

most 2, in order to approximate the distance between φi(vi) and φj(vj) for all vi, vj , it

suffices to approximate the distance between φi(v) and φj(v). By the previous claim,

it easily follows that there a path of length 20 logn that connects φi(v) to φj(v).

In order to finish the proof, it suffices to consider pairs Ti, Tj that do not intersect.

Let Ti, Tj be such a pair of subtrees, and let xi, xj be the closest pair of vertices

between Ti, and Tj . Let p be the path between xi to xj in T . Assume that p visits

the subtrees Ti, Tt(1), . . . , Tt(l), Tj. We further assume w.l.o.g., that for each Tt(s), p

visits at least one edge from Tt(s), that does not belong to any other Tt(s′), with s 6= s′.

Assume that for each s ∈ [l], p enters Tt(s) in a vertex ys, and leaves Tt(s) at a vertex

zs. We have

DT ′(φi(xi), φj(xj)) = DT ′(φi(xi), φt(1)(y1)) +

l
∑

s=1

DT ′(φt(s)(ys), φt(s)(zs)) +

l−1
∑

s=1

DT ′(φt(s)(zs), φt(s+1)(ys+1)) +DT ′(φt(l)(zl), φj(xj))

≤ O(l · logn) +
l
∑

s=1

DT (ys, zs)

= O(DT (xi, yi) logn)

Similarly to the proof of the above claim, we observe that since the intersection of any

two trees is short, and we approximate the distance between the closest pair of Ti,

and Tj, it follows that we also approximate the distance between any pair of vertices
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of Ti, and Tj.

This concludes the proof of Lemma 11.

3.7 Improved embeddings into R1 via composing

relative embeddings

In this section we obtain a polynomial time algorithm for embedding a metric M into

the line. The idea of the algorithm is to embed the metric first into a tree metric

using the algorithm from Theorem 3 and then use a result from [18] to embed the

tree into the line. The resulting approximation factor is better than the one given by

Theorem 1, in a certain range of the parameters.

Let F, F ′ be families of n-point metric spaces. We say that an algorithm A is an

α(c)-distortion algorithm from F to F ′, if on input X ∈ F , it outputs X ′ ∈ F ′, and

an embedding f : X → X ′, with distortion α(c), where c is the optimal distortion for

embedding X into a metric in F ′. We also say that F β-embeds into F ′, if for any

X ∈ F , there exists X ′ ∈ F ′, such that X can be embedded into X ′, with distortion

at most β.

Lemma 15. Let F1, F2, F3 be families of n-point metric spaces, such that F3 β-embeds

into F2. Let A1 be an α1(c)-distortion algorithm from F1 to F2, and let A2 be an α2(c)-

distortion algorithm from F2 to F3. Then, there exists a β ·c ·α2(c ·α1(β ·c))-algorithm
from F1 to F3.

Proof. Assume that we are given X1 that c-embeds into F3. It follows that X1 embeds

into F2 with distortion β · c. We compute using A1 an embedding f1 of X1 into

X2 ∈ F2, with distortion α1(β · c). In other words, the distances in X2 α1(βc)-

approximate the distances in X1. Therefore, X2 embeds into F3 with distortion at

most d = c · α1(β · c). Using A2, we compute an embedding f2 of X2 into X3 ∈ F3,

with distortion α2(d) = α2(c ·α1(β · c)). Since X2 α1(βc)-approximates X1, it follows

that the composition f2 ◦ f1 is an embedding of X1 into F3, with distortion at most

β · c · α2(c · α1(β · c)).
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Corollary 1. There exists a polynomial-time algorithm that given a metric M of

spread ∆ that c-embeds into the line, computes an embedding of M into the line with

distortion (c logn)O(
√

log ∆).

Proof. We apply Lemma 15 with F1 the family of all n-point metrics of spread at

most ∆, F2 the family of all n-point trees, and F3 the family of all n-point line

metrics. A1 is the algorithm given in Theorem 3, A2 is the cO(1)-distortion algorithm

for embedding trees into the line from [18], and β = 1, since each line metric is also

a tree metric.

3.8 The relation between embedding into trees and

embedding Into subtrees

In this section we study the relation between embedding into trees, and embedding

into spanning subtrees. More specifically, let G = (V,E) be an unweighted graph.

Assume that G embeds into a tree with distortion c, and also that G embeds into a

spanning subtree with distortion c∗.

Clearly, since every spanning subtree is also a tree, we have c ≤ c∗. We are

interested in determining how large the ratio c∗/c can be. We show that for every

n0, there exists n ≥ n0, and an n-vertex unweighted subgraph G, for which the ratio

is Ω(log n/ log logn). We complement this lower bound by showing that for every

unweighted graph G, the ratio is at most O(logn).

3.8.1 The lower bound

In this section we prove a gap between the distortion of embedding graph metrics into

trees, and into spanning subtrees. We do this by giving an explicit infinite family of

graphs.

Let n > 0 be an integer. We define inductively an unweighted graph G = (V,E)

with Θ(n) vertices, and prove that G O(logn)-embeds into a tree, while any embed-

ding of G into a subtree has distortion Ω(log2 n/ log log n).
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Let G1 be a cycle on log n vertices. We say that the cycle of G1 is at level 1.

Given Gi, we obtain Gi+1 as follows. For any edge {u, v} that belongs to a cycle at

level i, but not to a cycle at level i−1, we add a path pu,v of length log n−1 between

u and v. We say that the resulting cycle induced by path pu,v and edge {u, v} is at

level i+ 1.

Let G = Glog n/ log log n. It is easy to see that |V (G)| = Θ(n). Moreover, every

edge of G belongs to either only one cycle of size log n at level logn/ log log n, or

exactly two cycles of size logn; one at level i, and one at level i+ 1, for some i, with

1 ≤ i < log n/ log log n.

We associate with G a tree TC = (V (TC), E(TC)), such that V (TC) is the set of

cycles of length log n of G, and {C,C ′} ∈ E(TC) iff C and C ′ share an edge. We

consider TC to be rooted at the unique cycle of G at level 1.

Lemma 16. Any embedding of G into a subtree has distortion Ω(log2 n/ log log n).

Proof. Let T be a spanning subtree of G. Let k = logn/ log logn. We will compute

inductively a set of cycles C, while maintaining a set of edges E ′ ⊆ E(G). Initially,

we set C = C1, where C1 is the cycle of G at level 1, and E ′ = ∅. At each iteration,

we consider the subgraph

G′ =

(

⋃

C∈C
C

)

\ E ′.

We pick a cycle C /∈ C, such that C shares an edge e with G′, and we add C in C,

and e in E ′. Observe that at every iteration G′ is a cycle. Thus, we can pick e and

C such that e /∈ T . The process ends when we cannot pick any more such e and C,

with e /∈ T .

Consider the resulting graph G′ =
(
⋃

C∈C C
)

\ E ′. Since G′ is a cycle, it follows

that there exists an edge e′ = {u, v} ∈ G′, such that e′ /∈ T . Since there is no cycle

C ′ /∈ C, with e′ ∈ C ′, it follows that e′ belongs to a cycle at level k. Thus, there exists

a sequence of length log n cycles, K1, . . . , Kk, with K1 = C1, and Kk = C ′, and such

that Ki ∈ C, for each i, with 1 ≤ i ≤ k, and the there exists a common edge ei ∈ E ′

in Ki and Ki+1, for each i, with 1 ≤ i < k.
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Consider the sequence of graphs obtained from G after removing the edges e′,

ek−1, ek, . . ., e1, in this order. It is easy to see that after removing each edge, the

distance between u and v in the resulting graph increases by at least Ω(log n). Since

none of there edges is in T , it follows that the distance between u and v in T is at

least k logn = log2 n/ log log n.

Lemma 17. There exists an embedding of G into a tree, with distortion O(logn).

Proof. We will construct a tree T = (V (T ), E(T )) as follows: Initially, we set V (T ) =

V (G), and E(T ) = ∅. For the cycle C1 at level 1, we pick an arbitrary vertex vC1 ∈ C1.

Next, for each u ∈ C1, with u 6= vC1 , we add an edge between u and vC1 in T of length

DG(u, vC1).

For every other cycle C ′ at some level i > 1, let e′ = {u′, v′} be the unique edge

that C ′ shares with a cycle C ′′ at level i−1. We pick a vertex vC′ arbitrarily between

one of the two endpoints of e′. For every vertex x ∈ C ′, with x 6= vC′ , we add an edge

between x and vC′ in T , of length DG(x, vC′).

Clearly, the resulting graph T is a tree. It is straightforward to verify that for

every {u, v} ∈ E(T ), DT (u, v) = DG(u, v), and thus the resulting embedding is non-

contracting. It remains to bound the expansion for any pair of vertices x, y ∈ V (G).

We will consider the following cases.

Case 1. There exists a cycle C ∈ V (TC), such that x, y ∈ C: We have

DT (x, y) = DT (x, vC) +DT (vC , y)

= DG(x, vC) +DG(vC , y)

< log n

≤ DG(x, y) logn

Case 2. There exist Cx, Cy ∈ V (TC), with x ∈ Cx, and y ∈ Cy, such that Cy lies

on the path in TC from Cx to the root of TC : Consider the path K1, . . . , Kl

in TC , with Cx = K1, and Cy = Kl. For each i, with 1 ≤ i < l, let ei =

{xi, yi} ∈ E(G) be the common edge of Ki and Ki+1. Note that the shortest
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path p from x to y in G visits at least one of the endpoints of each edge ei.

Assume w.l.o.g. that p visits x1, x2, . . . , xl−1 (in this order). Observe that each

i, with 1 ≤ i < l, for each v ∈ Ki we have either DT (xi, v) = DG(xi, v), or

DT (xi, v) = DG(xi, yi) +DG(yi, v) ≤ DG(xi, v) + 2. Thus, we obtain

DT (x, y) ≤ DT (x, x1) +DT (x1, x2) + . . .+DT (xl−2, xl−1) +DT (xl−1, y)

< DG(x, x1) +DG(x1, x2) + . . .+DG(xl−2, xl−1) + 2(l − 2)

+DG(xl−1, y) + logn/2

< DG(x, y) + 2 logn/ log logn + (logn)/2

< DG(x, y)3 logn

Case 3. There exist Cx, Cy, Cz ∈ V (TC), with x ∈ Cx, and y ∈ Cy, such that Cz is

the nca of Cx and Cy in TC : This Case is similar to Case 2.

Theorem 4. For every n0 > 0, there exists n ≥ n0, and an n-vertex unweighted graph

G, such that the minimum distortion for embedding G into a tree is O(logn), while the

minimum distortion for embedding G into any of its subtrees is Ω(log2 n/ log log n).

Proof. It follows by Lemmata 16 and 17.

3.8.2 The upper bound

We now complement the lower bound given above with an almost matching upper

bound for unweighted graphs. The idea is to first use the O(1)-approximation al-

gorithm from Section 3.4 for embedding unweighted graphs into trees to obtain the

clustering KG. Then, by slightly modifying this clustering, we can guarantee that

each cluster induces a connected subgraph of the original graph, and thus it can be

easily embedded into a spanning subtree. Next, for each cluster we define a new ran-

domly chosen clustering. This new clustering will be used in the final step to merge

the computed subtrees of the clusters, into a spanning subtree of the graph, while

losing only a O(logn) factor in the distortion.
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Let G = (V,E) be an unweighted graph, that embeds into an unweighted tree with

distortion c. For a subset V ′ ⊆ V (G), and for every u, v ∈ V ′, we denote by DV ′(u, v)

the shortest path distance between u and v in G[V ′]. If G[V ′] is disconnected, we can

assume that DV ′(u, v) = ∞.

Consider the set tree-like partition (TG
K ,KG) constructed by the algorithm of Sec-

tion 3.4. Let KG = {Kr1, Kr2, . . .}, and assume that TG
K is rooted at Kr.

Let FK be the forest obtained by removing from TG
K all the edges between vertices

at levels 21j and 21j + 1, for all j, with 1 ≤ j < ⌊depth(TG
K )/21⌋ − 1. Let C(FK) be

the set of connected components of FK. Let

J =
⋃

A∈C(FK)

{

⋃

Ki∈A

Ki

}

.

Clearly, J is a partition of V (G). Let TJ be the tree on vertex set J , where the edge

{Ji, Jj} is in TJ if there exist {Ki′, Kj′} ∈ E(TG
K ), such that Ki′ ∈ Ji, and Kj′ ∈ Jj .

We consider TJ as being rooted at a vertex Jr ∈ J , where Kr ∈ Jr.

Lemma 18. For each Ji ∈ J , G[Ji] is connected.

Proof. Assume w.l.o.g., that Ji is the union of sets of vertices Kj , for all Kj ∈ A,

where A ∈ C(FK) is a subtree of TJ . Assume that Kr′ is the vertex of A that is

closest to Kr in TG
K . Let pl be the unique path in A from Kr′ to a leaf Kl of A. Let

also J l
i =

⋃

Kk∈pl
Kk. It suffices to show that for each leaf l, the induced subgraph

G[J l
i ] is connected.

Let pl = K1, K2, . . .Kt, where Kr′ = K1, and Kl = Kt. Note that t ≥ 21. Assume

now that G[J l
i ] is disconnected, and let C(G[J l

i ]) be the set of connected components

of G[J l
i ].

Claim 17. There exists t′, with 1 ≤ t′ ≤ t, and C1 6= C2 ∈ C(G[J l
i ]), such that

Kt′ ∩ C1 6= ∅, and Kt′ ∩ C2 6= ∅.

Proof. Assume that the assertion in not true. That is, for each t′, with 1 ≤ t′ ≤ t, Kt′

is contained in a connected component C ′
t′ ∈ C(G[J l

i ]). Observe that for each t′′, with

1 ≤ t′′ < t, there exists at least one edge between Kt′′ and Kt′′+1. This means that

67



all the C ′
t′s are in fact the same connected component, and thus C(G[J l

i ]) contains a

single connected component. It follows that J l
i is connected, a contradiction.

Claim 18. There exist C1, C2 ∈ C(G[J l
i ]), such that K11∩C1 6= ∅, and K11∩C2 6= ∅.

Proof. Let t′, with 1 ≤ t′ ≤ t, and C1, C2 ∈ C(G[J l
i ]) be given by Claim 17. If t′ = 11,

then there is nothing to prove.

Otherwise, pick v1 ∈ Kt′ ∩ C1, and v2 ∈ Kt′ ∩ C2. By the construction of K, we

have that there exists a path p from v1 to v2, such that p is the concatenation of the

paths qt′ , . . . , q1, q, q
′
1, . . . , q

′
t′ , where for each i ∈ [1, t′], qi and q′i are paths of length

at most c in Ki. Moreover, there exists a path p̄ from v1 to v2, such that p̄ is the

concatenation of the paths wt′, . . . , wt, w, w
′
t, . . . , w

′
t′ , where for each i ∈ [t′, t], wi and

w′
i are paths of length at most c in Ki.

If t′ > 11, then pick v′1 ∈ q11, and v′2 ∈ q′11. Otherwise, if t′ < 11, pick w′
1 ∈ q11,

and v′2 ∈ w′
11. Clearly, in both cases we have v′1 ∈ C1, and v′2 ∈ C2.

Let now C1, C2 ∈ C(G[J l
i ]) be the connected components given by Claim 18. Pick

v1 ∈ Kt′ ∩C1, and v2 ∈ Kt′ ∩C2. Let p be the shortest path between v1 and v2 in G.

We observe that there are two possible cases for p:

Case 1: p is the concatenation of the paths q11, . . . , q1, q, q
′
1, . . . , q

′
11, where for each

i ∈ [1, 11], qi and q′i are contained in Ki.

Case 2: p is the concatenation of the paths q11, . . . , qt, q, q
′
t, . . . , q

′
11, where for each

i ∈ [11, t], qi and q′i are contained in Ki.

Since the above two Cases can be analyzed identically, we assume w.l.o.g. that p

satisfies Case 1. Observe that for each i ∈ [1, 11), each qi and each q′i visits c vertices

of Ki. It follows that the length of p is greater than 20c, contradicting Lemma 7.

For each Ji ∈ J , we define a set Ji of subsets of Ji as follows. First, we pick a

vertex ri ∈ Ji, and we construct a BFS tree TJi
of G[Ji], rooted at ri. Note that by

Lemma 18, G[Ji] is connected, and thus there exists such a BFS tree. We also pick

an integer αJi
∈ [0, 100c), uniformly at random. Let FJi

be the forest obtained from
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TJi
by removing the edges between vertices at levels 100cj+ αJi

and 100cj +αJi
+ 1,

for all j, with 1 ≤ j <

⌊

depth(TJi
)

100c

⌋

− 2. The set Ji can now be defined as the set of

sets of vertices of the connected components of FJi
. Clearly, Ji is a partition of Ji.

Lemma 19. For each Ji, Jj ∈ J , such that Ji is the parent of Jj in TJ , and for each

Jj,k ∈ Jj, there exist u ∈ Ji, and v ∈ Jj,k, such that {u, v} ∈ E(G).

Proof. It is easy to verify by the construction of KG that Jj is a subset of the vertices

of at least 21c, and at most 42c consecutive levels of a BFS tree of G. Let l1, . . . , lt be

these levels, where l1 is the level closest to the root of the BFS tree of G. For every

vertex x ∈ Jj, there exists a vertex y ∈ Ji, such that {x, y} ∈ E(G), iff x ∈ l1. Thus,

it suffices to show that for every Jj,k ∈ Jj, Jj,k ∩ l1 = ∅.
It is easy to verify that for every v ∈ Jj, there exists u ∈ l1, such that DJj

(v, u) <

42c. In the construction of Jj, we pick a vertex rj ∈ Jj, and we compute a BFS tree T ′

of GJj
. Every Jj,k ∈ Jj is a subtree Tj,k of T ′ rooted at a vertex rj,k. Tj,k contains all

the predecessors of rj,k that are at distance at most δj,k, for some 100c ≤ δj,k ≤ 200c.

Assume now that there is no vertex of l1 in the 42c first levels of Tj,k. Pick a vertex

of Tj,k at level 42c + 1. By the above argument, there exists a vertex u ∈ l1 that is

at distance at most 42c from v. This implies that u is contained within the 84c + 1

first levels of Tj,k. Thus, Tj,k ∩ l1 6= ∅, and Jj,k ∩ l1 6= ∅.

Lemma 20. For each Ji, Jj ∈ J , such that Ji is the parent of Jj in TJ , and for

each u, v ∈ Ji, and u′, v′ ∈ Jj, such that {u, u′} ∈ E(G), and {v, v′} ∈ E(G),

DJi
(u, v) ≤ 90c.

Proof. Note that the partition KG is obtained on a BFS tree of G with root some

r ∈ V (G). If r ∈ Ji, then DJi
(u, v) ≤ DJi

(u, r) +DJi
(r, v) ≤ 84c.

It remains to consider the case r /∈ V (G). This implies that there exists Jk ∈ J ,

such that Jk is the parent of Ji in TJ . Assume that the assertion is not true. That

is, there exist u, v ∈ Ji, and u′, v′ ∈ Jj , with {u, u′} ∈ E(G), {v, v′} ∈ E(G), and

DJi
(u, v) > 90c. By the construction of KG, and since r /∈ Ji it follows that there exist

w, z ∈ Ji, and w′, z′ ∈ Jk, with {w,w′} ∈ E(G), and {z, z′} ∈ E(G), and moreover

there exists a shortest path p1 in G from w to u, and a shortest path p2 from v to z

69



in G, such that p1 and p2 are contained in Ji. It is easy to verify that the length of

each of the paths p1 and p2 is at least 22c.

Furthermore, there exists a path p3 from w′ to z′, and a path p4 from u′ to v′,

such that both p3 and p4 do not visit Ji. Let p′3 be the path obtained from p3 by

adding the edges {w,w′}, and {z′, z}. Similarly, let p′4 be the path obtained from p4

by adding the edges {u, u′}, and {v′, v}.
Let x1 be a vertex of p1 such that DG(x1, u) > 5c, and DG(x1, w) > 5c. Similarly,

let x2 be a vertex of p2 such that DG(x2, v) > 5c, and DG(x2, z) > 5c. We need to

define the following set of paths:

• Let q1 be the subpath of p1 from u to x1.

• Let q2 be the path obtained by concatenating the subpath of p1 from x1 to w,

with p3.

• Let q3 be the subpath of p2 from z to x2.

• Let q4 be the path obtained by concatenating the subpath of p2 from x2 to v,

with p4.

It is straight-forward to verify that DG(q1, q3) > 5c, and D(q2, q4) > 5c. By applying

Lemma 6, we obtain that the optimal distortion for embedding G into an unweighted

tree is more than 5c, a contradiction.

Theorem 5. If an unweighted graph G can be embedded into a tree with distortion

c, then G can be embedded into a subtree with distortion O(c logn).

Proof. We can compute an embedding of G into a subtree T as follows. Initially, we

set T equal to the empty subgraph. We pick a vertex r ∈ V (G), and we compute a

(r, c)-partition of G. We compute the partition J , and for each Ji ∈ J , we compute

the partition Ji, as described above. For each Ji ∈ J , and for each Ji,j ∈ Ji, we add

to T a spanning tree of Ji,j of radius O(c).

It remains to connect the subtrees by adding edges between the sets Ji,j. Observe

that if r ∈ Ji, then Ji contains a single set Ji,j.
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Assume now that r /∈ Jj , and let Ji be the parent of Jj in TJ . By Lemma 19, for

each Jj,k ∈ Jj, there an edge between Jj,k and Ji in G. For each such Jj,k, we pick

one such edge, uniformly at random, and we add it to T .

Consider now two subsets Jj,k, Jj,l ∈ Jj. It is easy to see that Jj,k, and Jj,l get

connected to the same subset Ji,t ∈ Ji, with probability at least 1 − 90c
100c

= Ω(1).

Thus, the probability that two such subsets have not converged to the same subset

in an ancestor after O(logn) levels is at most 1/poly(n). Since there are at most n2

pairs of such subsets Ji,j, it follows that the above procedure results in a tree with

distortion O(c logn) with high probability.
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Chapter 4

Embedding ultrametrics into Rd

In this chapter we present an algorithm for embedding ultrametrics into Rd. More

specifically, if the input ultrametric embeds into the Euclidean plane with distortion

c, then the embedding produced by the algorithm has distortion O(c3). In particular,

for the case where the input ultrametric is embeddable into the plane with constant

distortion, the distortion of the embedding produced by the algorithm is also constant.

The running time of our algorithm is linear in the input size, assuming it is given the

value of the optimum distortion c (or its approximation). The algorithm generalizes to

embeddings into Rd, and the distortion becomes cO(d), where c is the distortion of the

optimal embedding of the ultrametric into Rd. We remark that for any fixed d > 0,

all norms of Rd are equivalent up to a constant factor in the distortion. Therefore

our bounds hold asymptotically for any norm.

We also prove that any ultrametric can be embedded into the plane with distortion

O(
√
n). More generally, for any d ≥ 2, we show how to embed any ultrametric into Rd

with distortion dO(1)n1/d. Notice that unlike the first result, this result relates to the

absolute version of the distortion minimization problem. The proof is algorithmic,

and the embedding can be found in polynomial time. Combining the two results

together, we obtain an O(n1/3)-approximation algorithm for embedding ultrametrics

into the plane.

The results presented in this chapter are from [19].
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4.1 Overview of techniques

We use the well-known fact that any ultrametric M = (X,D) can be well approxi-

mated by hierarchically well-separated trees (HSTs) (see the next Section for defini-

tions). The corresponding HST T has the points of X as its leaves, and each vertex

v of T has a label l(v) ∈ R+. The distance of any pair of points p, q ∈ X is exactly

the label of their nearest common ancestor.

The hierarchical structure of an HST naturally enables constructing the embed-

ding in a recursive manner. That is, the mapping is constructed by embedding (re-

cursively and independently) the children of the root node, and then combining the

embeddings. Implementing this idea, however, requires overcoming a few obstacles,

which we discuss now. For simplicity, we focus on embeddings into the plane.

Distortion lower bound. The first issue is how to obtain a good lower bound

for the distortion. It is not difficult to see that the distortion depends on both the

number of nodes, and the structure of the ultrametric. For example, the full 2-HST

of depth t, where all internal nodes have degree 4, requires Ω(t) distortion; at the

same time, the full 4-HST of depth t, where all internal nodes have degree 4, can be

embedded with constant distortion.

Our lower bound is obtained as follows. Consider any node v and its children

u1 . . . uk. Let Pi be the set of leaves in the subtree of the node ui, P = P1 ∪ . . .∪ Pk.

By the definition of ultrametrics, the distances between any pair of points p ∈ Pi

and q ∈ Pj for i 6= j, are equal to the same value, namely l(v). Consider any non-

contracting embedding f : P → R2. Construct a ball of radius l(v)/2 around each

point f(p), p ∈ P , and denote this ball by B(p, l(v)/2). It is easy to see that the

union of the interiors of the balls around points in Pi and the union of the interiors

of the balls around points in Pj must be disjoint if i 6= j.

Our lower bound on distortion proceeds by estimating the total volume C(v)

of ∪p∈PB(p, l(v)/2). Specifically, by packing argument, one can observe that the

distortion of the optimal embedding must be at least Ω(
√

C(v) − O(1)). Thus, it

suffices to have a good lower bound for the volume C(v). It would appear that
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such lower bounds could be obtained by summing C(ui)’s, since the balls around

different sets Pi are disjoint. Unfortunately, C(ui) is the volume of the union of

the balls of radius l(ui)/2, not l(v)/2, so the above is not strictly true. However,

∪p∈Pi
B(p, l(v)/2) can be expressed as a Minkowski sum of ∪p∈Pi

B(p, l(ui)/2) and a

ball of radius [l(v)− l(ui)]/2. Then the volume of that set can be bounded from below

by using Brunn-Minkowski inequality, by a function of C(ui) and l(v) − l(ui). This

enables us to obtain a recursive formula for C(v) as a function of C(ui)’s.

Distortion accumulation. The recursive formula for the lower bound suggests

a recursive algorithm. Consider some vertex v of the HST, and let u1, . . . , uk be its

children. For each ui, 1 ≤ i ≤ k, the leaves in the subtree of ui are mapped into

a square R(ui) whose volume is at most C(ui). Then the squares are re-arranged

to form a square R(v). The main difficulty with this approach is that the optimal

way to pack the squares is difficult to find. In fact, the optimal embedding could,

in principle, not pack the points into squares. To overcome this problem, we allow

some limited stretching of the squares, to fit them into R(v). However, stretching

causes distortion, and thus we need to make sure that stretching done over different

levels does not accumulate. In order to avoid such accumulation of distortion, we

alternate between the horizontal and vertical stretchings of the squares. Specifically,

we assign, for each vertex v of the HST, a bit g(v) that determines whether the squares

into which the sub-trees of the children of v are embedded will be stretched in the

horizontal or the vertical direction before they are packed into the square R(v). We

calculate the values of the bits g(v) in a top-down manner, starting with the leaves

of the HST, to ensure that the final stretchings are balanced.

It appears that the need to compute a proper choice of stretching directions (which

can also be viewed as rotations) at each level is not just an artifact of our algorithm,

but it might be necessary to achieve low distortion. In particular, the only con-

stant distortion embedding of a full 2-HST into the plane that we are aware of uses

alternating rotations.

Higher dimensions. We show how to generalize the algorithm for embedding

ultrametrics into the plane to higher dimensions. We show an algorithm that produces
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a cO(d)-distortion embedding of the input ultrametric into Rd under the l2 norm, where

c denotes the optimal distortion achievable when embedding the input ultrametric into

Rd.

4.2 Preliminaries

A metric M = (X,D) is an ultrametric, if it can be represented by a labeled tree T

whose set of leaves is X, in the following manner. Each non-leaf vertex v of T has a

label l(v) > 0. If u is a child of v in tree T , then l(u) ≤ l(v). For any x, y ∈ X, the

distance between x and y is defined to be the label of the nearest common ancestor

of x and y, and this distance should be equal to D(x, y).

We now proceed to define hierarchically well-separated trees (HSTs). For any

α ≥ 1, an α-HST is an ultrametric where for each parent-child pair of vertices (u, v),

l(u) = αl(v). It is easy to see that for any α ≥ 1, any ultrametric can be α-

approximated by an α-HST (cf. [9]). Moreover, such an HST can be found in time

linear in the input size. Therefore, if the input ultrametric M embeds into Rd with

distortion c, then the metric M ′ defined by the corresponding 2-HST embeds into Rd

with distortion c′ = 2c. Any non-contracting embedding of M ′ into Rd with distortion

c′′ represents a non-contracting embedding of M with distortion O(c′′). Therefore,

from now on we will concentrate on embeddings of HSTs into Rd.

Given a 2-HST T , we will use the following additional notation. Let r denote the

root of the tree, and let h denote the tree height. We assume that r belongs to the

first level of T , and all the leaves belong to level h. By scaling the underlying metric

M , we can assume w.l.o.g., that for each vertex v at level h − 1, l(v) = 2. For any

non-leaf vertex v, we denote by Xv the set of leaves of the subtree of T rooted at v,

and we denote the number of leaves in the subtree nv.

We will use the Brunn-Minkowski inequality, defined as follows. Given any two

sets A,B ⊆ Rd, let A ⊕ B denote the Minkowski sum of A and B, i.e., A ⊕ B =

{a+ b | a ∈ A, b ∈ B}.
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Theorem 6 (Brunn-Minkowski inequality). For any pair of sets A,B ⊆ Rd,

Vol(A⊕B)1/d ≥ Vol(A)1/d + Vol(B)1/d.

4.3 A lower bound on the optimal distortion

In this section we show a lower bound on the distortion of optimal embedding of a

metric M ′ which is defined by a 2-HST denoted by T .

For any r > 0, let B(r) denote the ball of radius r in ℓd2 centered at the origin.

Let Vd(r) denote the volume of a d-dimensional ball of radius r, Vd(r) = πd/2rd

Γ(1+d/2)
.

For each vertex v of T , we define a value C(v), which intuitively is a lower-bound on

the minimum volume embedding of Xv (the precise statement appears below). The

values C(v) are defined recursively, starting from the leaves. For each leaf v, we set

C(v) = Vd(1/2).

Consider now vertex v at level j ∈ [h− 1], and let u1, . . . , uk be the children of v

in T . We define:

C(v) =

k
∑

i=1

(

(C(ui))
1/d + (Vd(l(v)/4))1/d

)d

Given any embedding φ : X → ℓd2, for any subset X ′ ⊆ X, let φ(X ′) denote the image

of points in X ′ under φ.

Lemma 21. Let v be a non-leaf vertex of T , and let φ be any non-contracting em-

bedding of Xv into ℓd2. Then the volume of φ(Xv) ⊕ B
(

l(v)
2

)

is at least C(v).

Proof. Let u1, . . . , uk be the children of v. The proof is by induction. Assume first

that v belongs to level h− 1 of T , and consider S = φ(Xv) ⊕ B(l(v)/2). Recall that

l(v) = 2. Since the embedding is non-contracting, for any 1 ≤ i < j ≤ k, vertices

ui, uj are embedded at a distance at least 2 from each other. Therefore, set S consists

of k balls of disjoint interiors, of radius 1 each, and thus the volume of S is exactly

kVd(1) = C(v).
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Assume now that v belongs to some level j ∈ [h− 2]. Let S = φ(Xv)⊕B(l(v)/2).

Equivalently, S is the union of Si = φ(Xui
) ⊕ B(l(v)/2) for i ∈ [k]. Since the

embedding is non-contracting, all the sets Si have disjoint interiors. For each i ∈ [k],

let us denote S ′
i = φ(Xui

)⊕B(l(ui)/2). Recall that l(v) = 2l(ui). Therefore, for each

i ∈ [k], Si = S ′
i ⊕ B(l(v)/4). Using the induction hypothesis, the volume of S ′

i is at

least C(ui). From the Brunn-Minkowski inequality, it follows that:

(Vol(Si))
1/d ≥ (Vol(S ′

i))
1/d

+ (Vd(l(v)/4))1/d

≥ (C(ui))
1/d + (Vd(l(v)/4))1/d

Therefore, in total,

Vol(S) =

k
∑

i=1

Vol(Si) ≥
k
∑

i=1

(

(C(ui))
1/d + (Vd(l(v)/4))1/d

)d

= C(v).

Suppose we are given some set of points S ⊆ Rd, that has volume V . We define

ρd(V ) =
(

V ·Γ(1+d/2)

πd/2

)1/d

, i.e., ρd(V ) is the radius of the d-dimensional ball in Rd that

has volume V . Observe that S has two points at a distance at least ρd(V ) from

each other (otherwise, S is contained in a ball of radius smaller than ρd(V ), which is

impossible).

Corollary 2. Let v be some non-leaf vertex of T , and let φ be any non-contracting

embedding of M ′ into ℓd2, with distortion at most c′. Then c′ ≥ ρd(C(v))/l(v) − 1.

Proof. Consider S = φ(Xv) ⊕ B (l(v)/2). By Lemma 21, the volume of S is at least

C(v), and thus there are two points x, y ∈ S within a distance at least ρ = ρd(C(v))

from each other. By the definition of S, it follows that there are two points a, b ∈ Xv,

which are embedded at a distance of at least ρ− l(v) from each other. As the distance

between a, b in T is at most l(v), the bound on the distortion follows.
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4.4 Upper bound on the absolute distortion

In this section we show that for any d ≥ 2, any n-point ultrametric can be embedded

into ℓd2 with distortion O(d1/2n1/d).

Given an ultrametric M , we first compute an α-HST T that α-approximates M ,

for some constant α > 16. Let M ′ be the metric associated with T . Observe that

any embedding of M ′ into ℓd2 with distortion c, is also an embedding of M into ℓd2,

with distortion O(c). Thus, it suffices to show that M ′ can be embedded into ℓd2 with

distortion O(d1/2n1/d).

We will compute an embedding of M ′ into ℓd2 inductively, starting from the leaves

of T . For every subtree of T rooted at a vertex u, we compute an embedding fu of

the submetric of M ′ induced by Xu, into ℓd2. We maintain the following inductive

properties of fu:

• The contraction of fu is at most 16.

• f(Xu) is contained inside a hypercube of side length l(u)n
1/d
u .

We assume w.l.o.g. that for each leave v of T , l(v) = 1. Thus, we can embed

each leave in a center of a hypercube of side 1. The following lemma shows how to

compute the recursive embedding of inner vertices of T .

Lemma 22. Let v be an internal vertex of T , whose children are u1, . . . , uk. Assume

that for each i ∈ [k], we are given an embedding fui
: Xui

→ Rd, with contraction

at most 16, such that fui
(Xui

) is contained inside a d-dimensional hypercube Sui
,

with side length l(ui)n
1/d
ui . Then we can compute in polynomial time an embedding

fv : Xv → Rd, with contraction at most 16, such that fv(Xv) is contained inside a

d-dimensional hypercube Sv, with side length l(v)n
1/d
v .

Proof. For each i ∈ [k], let ri = l(ui)n
1/d
ui be the length of the side of the hypercube

Svi
. Let also S ′

ui
be a hypercube of side length r′i = ri + l(v)/16, having the same

center as Sui
. We assume w.l.o.g. that n1 ≥ n2 ≥ · · · ≥ nk and thus r′1 ≥ · · · ≥ r′k.

We note that for each i : 1 ≤ i ≤ k, r′i ≤ l(v)n
1/d
v /4, since r′i = ri + l(v)/16 =

l(ui)n
1/d
ui + l(v)/16 ≤ l(v)n

1/d
v /4.

79



We first define a partition R = {Rj}λ
j=1, of the set [k], which we will use to

partition the set of hypercubes {Sui
}k

i=1, as follows. We will define λ + 1 integers

t0, t1, . . . , tλ, where t0 = 0, tλ = k, and t0 < t1 < · · · < tλ, and then set Rj to

contain all the indices i : tj−1 +1 ≤ i ≤ tj . This defines a partition of the hypercubes

into λ sets S1, . . . ,Sλ, where Sj contains the hypercubes Sui
with i ∈ Rj . For each

j : 1 ≤ j ≤ λ, let ρj = r′tj−1+1 denote the side of the largest hypercube in Sj , and let

ρ′j = rtj denote the side of the smallest hypercube in Sj .

We now proceed to define the numbers tj , for j : 0 ≤ j ≤ λ. Set t0 = 0, and for

each j ≥ 1, if tj−1 < k, we inductively define tj as

tj = min{k, tj−1 + ⌊l(v)n1/d
v /r′tj−1+1⌋d−1}.

If tj = k then we set λ = j.

Note that for any j ∈ [λ− 1],

|Rj| =

⌊

l(v)n
1/d
v

ρj

⌋d−1

We now define the embedding fv by placing the hypercubes S ′
ui

inside a hypercube

of side length l(v)n
1/d
v , such that their interiors do not overlap, using the partition

R. For each j ∈ [λ], we place the hypercubes in Sj inside a parallelepiped Wj having

d − 1 sides of length l(v)n
1/d
v , and one side of length ρj , as follows. It is easy to

see that we can pack |Rj| d-dimensional hypercubes of side ρj inside Wj . Since each

hypercube in Sj has side at most ρj , we can replace each hypercube embedded into

Wj by a hypercube from Sj , such that the centers of both hypercubes coincide.

Finally, we place the parallelepipeds Wj inside a parallelepiped W having d − 1

sides of length l(v)n
1/d
v , and one side of length

∑λ
j=1 ρj. Figure 4-1 depicts such a

placement for the case d = 2. Observe first that the contraction of this embedding

is at most 16: for any pair of vertices x, y ∈ X(v), if x, y both belong to a subtree

of the same child ui of v, then by induction hypothesis the distance between them

is contracted by at most 16. If x ∈ X(ui), y ∈ X(ui′) and i 6= i′, then the original
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distance is D(x, y) = l(v). Since we add empty space of width l(v)/32 around the

hypercubes S(uq) when they are transformed into hypercubes S ′(uq), it is clear that

the distance between the embeddings of x and y is at least l(v)/16.

It now only remains to show that
∑λ

j=1 ρj ≤ l(v)n
1/d
v . We partition the par-

allelepipeds Wj into two types. The first type contains all the parallelepipeds Wj ,

where ρj/ρ
′
j ≥ 2. Additionally, the last parallelepiped Wk is also of the first type,

regardless of the ratio ρk/ρ
′
k. Let T1 ⊆ [k] contain all the indices j where Wj is

of the first type. All the other parallelepipeds belong to the second type, and let

T2 = [k]\T1 contain the indices of the parallelepipeds of the second type. Notice that

for j ∈ T1, the values ρj form a geometric series with ratio 1/2. Since the sides r′i of

the hypercubes Sui
are bounded by l(v)n

1/d
v /4, it is easy to see that:

∑

j∈T1

ρj ≤
l(v)n

1/d
v

4

(

1 +
1

2
+

1

4
+ · · ·

)

≤ l(v)n
1/d
v

2

It now remains to bound
∑

j∈T2
ρj. Fix some j ∈ T2, and consider some hypercube

S ′
ui

where i ∈ Rj . As Wj is of the second type, we know that r′i ≥ ρj/2. On the other

hand,

r′i = ri +
l(v)

16
= l(ui)n

1/d
ui

+
l(v)

16
≤ l(v)

16

(

1 + n1/d
ui

)

≤ l(v)

4
n1/d

ui

Therefore, nui
≥
(

2ρj

l(v)

)d

. Recall that for j : 1 ≤ j < λ, |Rj | =
⌊

l(v)n
1/d
v

ρj

⌋d−1

≥
(

l(v)n
1/d
v

2ρj

)d−1

. Therefore, we have that

∑

i∈Rj

nui
≥
(

l(v)n
1/d
v

2ρj

)d−1

·
(

2ρj

l(v)

)d

≥ 2ρj

l(v)
n1−1/d

v

Thus, ρj ≤
l(v)

P

i∈Rj
nui

2n
1−1/d
v

, and

∑

j∈T2

ρj ≤
l(v)nv

2n
1−1/d
v

≤ l(v)n
1/d
v

2

We have that in total,
∑

j ρj =
∑

j∈T1
ρj +

∑

j∈T2
ρj ≤ l(v)n

1/d
v .
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...

l(v)n
1/2
v

r′1S′
v1

S′
v2

S′
v3

r′4S′
v4

S′
v5

S′
v6

S′
v7

r′8S′
v8

S′
v9

S′
v10

S′
v11

S′
v12

S′
v13

r′14S′
v14

S′
v15

S′
v16

S′
v17

Figure 4-1: The packing computed in the proof of Lemma 22.

We are now ready to prove the main theorem of this section.

Theorem 7. For any d ≥ 2, any n-point ultrametric can be embedded into ℓd2 with

distortion O(d1/2n1/d). Moreover, the embedding can be computed in polynomial time.

Proof. Starting from the leaves of T , we inductively compute for each v ∈ V (T ) the

embedding fv as described above. By recursively applying Lemma 22 we can compute

in polynomial time the embedding fv, that also satisfies the inductive properties. Let

f be the resulting embedding fr.

Consider now two points x, y ∈ X, and let v be the nearest common ancestor of x

and y. Since fv(Xv) is contained inside a hypercube of side length l(v)n
1/d
v , it follows

that ‖f(x) − f(y)‖2 ≤
(

dn
2/d
v l2(v)

)1/2

= d1/2n1/dD(x, y). Since the contraction of fv

is at most 16, it follows that the distortion of f is O(d1/2n1/d).

We remark that Theorem 7 generalizes a result of Gupta [29], who shows that every

n-point weighted star metric can be embedded into Rd, with distortion O(n1/d). This
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is a corollary of the following simple observation.

Claim 19. Every n-point weighted star can be embedded into an ultrametric of size

O(n) with distortion at most 2.

Proof. Consider a star S with root r, and leaves x1, . . . , xn, where for each i ∈ [n],

DS(r, xi) = wi. Assume w.l.o.g. that w1 ≤ w2 ≤ . . . ≤ wn. We construct a tree

T with root r′ as follows. T contains a path zn, zn−1, . . . , z1, where zn = r′, and for

each i ∈ [n − 1], DT (r′, zi) = wn − wi. We now embed S into T as follows. For

each i ∈ [n], we add xi to T , and we connect xi to zi with an edge of length wi.

Observe that the shortest-path metric on the leaves of T is an ultrametric, since all

the leaves are on the same level. Moreover, for any i < j ∈ [n], DT (xi, xj) = 2wj,

while DS(xi, xj) = wi + wj, and so the resulting embedding is non-contracting, and

has expansion at most 2.

4.5 Approximation algorithm for embedding ul-

trametrics into R2

Let M = (X,D) be the input ultrametric that embeds into the plane with distortion

c. Let M ′ = (X,D′) be the metric defined by the 2-HST T which 2-approximates

M . Then M ′ embeds into the plane with distortion c′ ≤ 2c, and any non-contracting

embedding of M ′ into the plane with distortion O(c′3) is also a non-contracting em-

bedding of M with distortion at most O(c3). Therefore, from now on we concentrate

on embedding M ′ into the plane.

Consider some non-leaf vertex u. We define au =
√

C(u). If u 6= r, let v be its

father. We define bu = au +
√

πl(v)
4

.

Our algorithm works in bottom-up fashion. Let v be some vertex. The goal of

the algorithm is to embed all the vertices of Xv into a square Q of side av, incurring

only small distortion. Let u1, . . . , uk be the children of v, and assume that for all

j : 1 ≤ j ≤ k, we have already embedded X(uj) inside a square Qj of side auj
. Recall

that for any pair of vertices x ∈ Xuj
, y ∈ Xuj′

, where 1 ≤ j 6= j′ ≤ k, the distance
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between x and y in T is l(v). Our first step is to ensure non-contraction (or more

precisely small contraction), by adding empty strips of width
buj

−auj

2
=

√
πl(v)
8

around

the squares. Thus, we obtain a collection Q′
1, . . . , Q

′
k of squares, of sides bu1 , . . . , buk

,

respectively. Our goal now is to pack these squares into one large square Q of side

av. Observe that from volume view point, Vol(Q) = Vol(Q′
1) + . . . + Vol(Q′

k), since

a2
v =

∑k
j=1 b

2
uj

, by the definition of Cv. However, it is not always possible to obtain

such tight packing of squares. Instead, we convert each square Q′
j to rectangle Rj

whose sides are buj
suj

, buj
/suj

for some suj
= O(c′). Observe that the volume of Rj

is the same as that of Q′
j . This will enable us to pack all the rectangles R1, . . . , Rk

into Q. Recall that inside each square Q′
j , vertices of Xuj

are embedded. In order to

convert square Q′
j into rectangle Rj , we contract all the distances along one axis, and

expand all the distances along the other axis, by the same factor suj
.

Consider now two vertices u, v, and let z be their least common ancestor. The

distance between u and v might thus be contracted or expanded when we calculate

the embedding of Xz. However, for each vertex z′ on the path from z to r, the

distance between u and v might be contracted or expanded again, when calculating

the embedding of Xz′. In order to avoid accumulation of distortion, we would like

to alternate the contractions and expansions of this distance in an appropriate way.

To this end, we calculate, for each vertex v, a value g(v) ∈ {−1, 1}. Let u1, . . . , uk

be the children of v, and let Q′
1, . . . , Q

′
k be their corresponding squares. If g(v) = 1,

then when embedding squares Q′
1, . . . , Q

′
k into square Q of side av, we expand them

along axis x and contract along axis y. If g(v) = −1, we do the opposite. The values

of g(v) have to be computed in a top-bottom fashion. They are calculated in such a

way that the total distortion of distance between any pair of points in X stays below

poly(c′).

For any non-root vertex u in T , with parent a vertex v, we define su = av/bu.

Also, for the root r of T , let sr = 1.

Lemma 23. For each vertex u, 1 ≤ su ≤ 32c′.

Proof. If u is the root, then su = 1. Otherwise, let u, v ∈ T , such that v is the father
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of u. We have already observed that a2
v is the sum of b2uj

, for all children uj of v.

Thus, s(u) ≥ 1 holds.

Recall now that by the definition of bu, its value is at least l(v)
4

. On the other hand,

by Corollary 2, c′ ≥ av

l(v)
√

π
− 1, and thus av ≤ (c′ + 1)

√
πl(v) ≤ 8c′l(v). Therefore,

su = av

bu
≤ 32c′.

Let v be some non-leaf vertex, and let u1, . . . , uk be its children. Let Q′
1, . . . , Q

′
k be

the squares of side bu1 , . . . , buk
, respectively, corresponding to the children. In order

to pack these squares into a square of side av, we transform each square Q′
j into a

rectangle with sides buj
sj,

buj

sj
. The goal of the next lemma is to calculate the values

g(v) ∈ {−1, 1} for each v ∈ V , that will determine, along which axis we contract, and

along which expand when embedding the subtree of v.

Suppose we have a function g : V (T ) → {−1, 1}. Consider some vertex v ∈ V (T ),

and let v1, v2, . . . , vk be the vertices on the path from v to r, where v1 = r, vk = v.

We define h(v) =
∏k−1

j=1 s
g(vj )
vj+1 .

Lemma 24. We can calculate, in linear time, function g : V (T ) → {−1, 1}, such

that for each v ∈ V (T ), 1
32c′

≤ h(v) ≤ 32c′.

Proof. Observe first that in order to be able to calculate h(v) for any v ∈ V , it is

enough to know the values of g(v′) of all the vertices v′ on the path from r to v, not

including v.

We traverse the tree in the top-bottom fashion. For root r, we set g(r) = 1. Since

for all the values sv, 1 ≤ sv ≤ 32c′ holds, we have that for each level-2 vertex v,

1
32c′

≤ h(v) ≤ 32c′ holds, as required.

Consider now some vertex v ∈ V at level k, where k ≥ 2. Let v1, v2, . . . , vk be

the vertices on the path from r to v, where v1 = r, and vk = v, and assume we have

calculated g(v1), . . . , g(vk−1), such that for each j : 2 ≤ j ≤ k, 1
32c′

≤ h(vj) ≤ 32c′

holds. We set g(v) = 1 if h(vk) ≤ 1, and we set g(v) = −1 otherwise. Let u be a child

of v. Since h(u) = hv · sg(v)
u , and su ≤ 32c′, the inequality 1

32c′
≤ h(u) ≤ 32c′ holds.

It is easy to see that the running time of the above algorithm is linear, if the values

h(v) of the vertices calculated by the algorithm are stored in a table. The algorithm
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traverses each vertex only once, and for each vertex v the calculation of h(v) and g(v)

takes only constant time.

4.5.1 Algorithm description

The algorithm consists of two phases. The first phase is pre-processing, and the

second phase is computing the embedding itself.

Phase 1: Preprocessing In this phase we translate the input ultrametric M into

a 2-HST T , and calculate the values av, bv, sv, g(v) for each vertex v ∈ T . Each one

of these operations takes time linear in the input size.

Phase 2: Computing the embedding The algorithm works in a bottom-up

fashion. For any vertex v in tree T , we produce an embedding of vertices Xv inside

a square of side av. We start from level-h vertices (the leaves). Let v be such vertex.

Then av =
√

C(v) =
√

π/4. We embed this point in the center of a square with a

side of length
√

π/4.

Consider some level-i vertex v, for 1 ≤ i < h, and let u1, . . . , uk be its children.

We assume that for each j : 1 ≤ j ≤ k, we have calculated the embeddings of uj into

a square Qj of side auj
. We convert this square into a rectangle Rj , as follows. First,

we add an empty strip of width
√

πl(v)
8

along the border of Qj , so that now we have a

new square Q′
j of side buj

. If g(v) = 1, then we expand the square along axis x and

contract it along axis y by the factor of suj
. Otherwise, we expand square Q′

j along

axis y and contract it along axis x by the factor of suj
. Notice that by the definition

of suj
, the length of the longer side of Rj is precisely av. As the volume of Rj equals

to the volume of Q′
j, and since a2

v =
∑k

j=1 b
2
uj

, we can pack all the rectangles next to

each other inside a square Q of side av, with their longer side parallel to the x-axis if

g(v) = 1, and to y-axis otherwise.
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4.5.2 Analysis

The goal of this section is to bound the distortion produced by the algorithm. We

first bound the maximum contraction, and then the maximum expansion of distances.

Lemma 25. For any u, u′ ∈ X, the distance between the images of u and u′, is at

least Ω(1/c′)D(u, u′).

Proof. Let v be the least common ancestor of u, u′.

Let z, z′ be the children of v, to whose subtrees vertices u, u′ belong, respectively.

Let Q,Q′ be the squares into which Xz, and Xz′ are embedded, respectively, and let

R,R′ be the corresponding rectangles. Recall that we have added a strip of width

at least
√

πl(v)
4

to squares Q,Q′, and then stretched the new squares by a factors

of s(z), s(z′), respectively. Without loss of generality, we can assume s(z) ≥ s(z′).

Therefore, immediately after computing the embedding for Xv, there is a strip S

of width at least l(v)
4s(z)

between the rectangles R,R′. The width of strip S in the

final embedding is a lower bound on the distance between the images of u and u′.

Let v1, . . . , vk be the vertices on the path from r to v, where v1 = r, vk = v. Let

uk+1 = z. If g(v) = 1, then strip S is horizontal, and thus for each j : 1 ≤ j ≤ k − 1,

if g(vj) = 1 then its width decreases by the factor of s(vj+1), and if g(vj) = −1

then its width increases by the same factor. Thus, the final width of S is at least:

l(v)

4s(z)g(v)

∏k−1
j=1 s(vj+1)

−g(vj) = l(v)
4

∏k
j=1 s(vj+1)

−g(vj ) ≥ l(v)
4h(z)

≥ l(v)
128c′

.

If g(v) = −1, then strip S is vertical, and thus for each j : 1 ≤ j ≤ k − 1,

whenever g(vj) = 1, the width of the strip grows by the factor of s(vj+1), and whenever

g(vj) = −1, this width decreases by the same factor. Thus, in this case, the final

width of S is at least: l(v)
4
s(z)g(v)

∏k−1
j=1 s(vj+1)

g(vj) = l(v)
4

∏k
j=1 s(vj+1)

g(vj) ≥ l(v)
128c′

.

As D(u, u′) = l(v), this concludes the proof of the lemma.

Lemma 26. For any u, u′ ∈ X, the distance between the images of u and u′, is at

most O(c′2)D(u, u′).

Proof. Let v be the least common ancestor of u, u′. Then D(u, u′) = l(v). Following

Corollary 2, c′ ≥
√

C(v)
π
/l(v) − 1, and thus av ≤ (c′ + 1)

√
πl(v) ≤ 4c′l(v).
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When calculating the embedding of Xv, all the vertices in Xv were embedded

inside a square A whose side is av ≤ 4c′l(v) = O(c′D(u, u′)).

After computing the final embedding, A is mapped to a rectangle A′, which is

obtained from A by expanding by a factor of γ along one axis, and by expanding

by a factor of 1/γ along the other axis. If v1, . . . , vk are all the vertices along the

path from the root r = v1 to v = vk, then γ =
∏k−1

j=1 s(vj+1)
g(vj) = h(v). Thus, by

Lemma 24, γ is at least Ω(1/c′), and at most O(c′). It follows that the diameter of

A′ is at most O(c′2D(u, u′)). Since the images of u and u′ in the final embedding are

contained inside A′, the assertion follows.

The following result is now immediate:

Theorem 8. Given an ultrametric M that c-embeds into the Euclidean plane, we can

compute in linear time an embedding of M into the Euclidean plane with distortion

O(c3).

Observe that for d = 2, Theorem 7 provides an O(
√
n)-distortion embedding.

Combining this with our O(c3)-distortion algorithm we obtain the following result:

Theorem 9. There is an efficient O(n1/3)-approximation algorithm for minimum

distortion embedding of ultrametrics into the plane.

Proof. Let c be the optimal distortion achievable by any embedding of the input

ultrametric into the plane. If c > n1/6 then the above algorithm, which produces an

O(
√
n)-distortion embedding is an O(n1/3)-approximation. Otherwise, if c ≤ n1/6,

then the algorithm from Section 4.5 gives O(c2) = O(n1/3)-approximation.

4.6 Approximation algorithm for embedding ul-

trametrics into higher dimensions

In this section we extend the techniques used in Section 4.5, to obtain an approxima-

tion algorithm for embedding ultrametrics into ℓd2.
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Given an ultrametric M = (X,D) that embeds into ℓd2 with distortion c, we first

embed M into a 2-HST M ′ = (X,D′). Let T be the labeled tree associated with M ′,

as in Section 4.5. Then M ′ embeds into ℓd2 with distortion c′ = O(c). We now focus

on finding an embedding of M ′ into the ℓd2 with distortion at most c′O(d). The same

embedding is an cO(d)-distortion embedding of M into ℓd2. We compute an embedding

of M ′ into ℓd2 by recursively embedding the subtrees of vertices in a bottom-up fashion.

For any vertex u in the tree, let au = (C(u))1/d. If u is a non-root vertex, let v

be the father of u in T . We set bu = au + (Vd(l(v)/4))1/d, and su = av/bu. If u is the

root of the tree, we set su = 1.

Given a vertex v in the tree, we embed the vertices in Xv into a hypercube of side

av, recursively. Let u1, . . . , uk be the children of v, and assume that for each i ∈ [k],

we are given an embedding of Xui
into a d-dimensional hypercube Qui

of side length

aui
. We define an additional hypercube Q′

ui
of side length bui

that has the same center

as Qui
(i.e., Q′

ui
is obtained from Qui

by adding a “shell” of width (Vd(l(v)/4))1/d/2

around Qui
). Let Qv be a d-dimensional hypercube of side length av.

Note that the volume of Qv equals the sum of volumes of Q′
ui

, for 1 ≤ i ≤ k. This

is since the volume of Qv is ad
v = C(v), while the sum of volumes of Q′

ui
, 1 ≤ i ≤ k is

k
∑

i=1

bdui
=

k
∑

i=1

(

(C(ui))
1/d + (Vd(l(v)/4))1/d

)d

= C(v).

Fix one coordinate j ∈ [d]. We now show how to embed the hypercubes Q′
u1
, . . . , Q′

uk

into Qv. Consider some hypercube Q′
ui

: 1 ≤ i ≤ k. For each dimension j′ 6= j, we

increase the length of the corresponding side of Q′
ui

by the factor of sui
. Addition-

ally, we decrease the length of the side of Q′
ui

corresponding to the dimension j by

the factor of sd−1
ui

. Let Ri denote the resulting parallelepiped. Notice that for each

dimension j′ 6= j, the length of the corresponding side of parallelepiped Ri is exactly

av. Moreover, the volume of Ri equals the volume of Q′
ui

. Therefore, we can easily

pack the parallelepipeds Ri, 1 ≤ i ≤ k, inside the hypercube Qv, where the shortest

side of Ri is placed along dimension j.

As in the algorithm for embedding ultrametrics into the plane, we need to ensure
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that these stretchings do not accumulate as we go up the tree. To ensure this, we

calculate, for each vertex v a value g(v) ∈ [d]. When calculating the embedding

of the hypercubes Q′
u1
, . . . , Q′

uk
into the hypercube Qv, we contract the hypercubes

Q′
u1
, . . . , Q′

uk
along the dimension g(v) and expand them along all the other dimen-

sions.

Our next goal is to prove an analogue of Lemma 24, that shows how to calculate

the values g(v) so that the total distortion is not accumulated.

We start with the following claim:

Claim 20. For each vertex u of the tree, 1 ≤ su ≤ 8c′.

Proof. If u is the root of the tree, then su = 1 and the claim is trivially true. Assume

now that u is not the root, and let v be its father. We denote the children of v by

u1, . . . , uk, and we assume that u = ui for some i ∈ [k].

Recall that su = av/bu, and that we have already observed that ad
v =

∑k
j=1 b

d
uj

,

and thus su ≥ 1 clearly holds.

We now prove the second inequality. For the sake of convenience, we denote

V = (Vd(l(v)/4))1/d. Recall that bu = au + V ≥ V .

On the other hand, from Corollary 2,

c′ ≥ ρd(C(v))/l(v) − 1

Therefore, we have that

ρd(C(v)) =

(

C(v)Γ(1 + d/2)

πd/2

)1/d

≤ 2c′l(v)

and thus

av = C(v)1/d ≤ 2c′l(v)

(

πd/2

Γ(1 + d/2)

)1/d

= 8c′V

Therefore, su = av/bu ≤ 8c′V/V ≤ 8c′.

For each vertex u of the tree, for each dimension j ∈ [d], we recursively define

a value hj(u), as follows. If u is the root, then hj(u) = 1 for all j ∈ [d]. Consider
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now some vertex u which is not the root, and let v be its father. Then we define

hj(u) = hj(v) · sαj(v)
u , where αj(v) is defined to be 1 if j 6= g(v), and it is defined to

be −(d− 1) if i = g(v). Notice that
∏

j∈[d] hj(u) = 1.

Fix any vertex u ∈ V (T ) and any dimension j ∈ [d]. Let Qu be the hypercube

of side au into which the vertices of Xu have been embedded when u was processed

by the algorithm. Then the value hj(u) is precisely the stretch along the dimension

j of Qu in the final embedding. In other words, if we take a pair of points x, y ∈ Qu

such that xj = yj − 1, and for all the other coordinates j′, xj′ = yj′, then hj(u) is

precisely the distance between x and y in the final embedding. We next prove that

we can calculate the values g(v) in a way that ensures that that for each vertex u and

for each dimension j ∈ [d], hj(u) lies between (O(1/c′))d and (O(c′))d.

Lemma 27. We can compute in polynomial time values g(u) for all u ∈ V (T ), such

that for each u ∈ V (T ), for each dimension j ∈ [d], (O(1/c′))d ≤ hj(u) ≤ (O(c′))d.

Proof. If u is the root, then we arbitrarily set g(u) = 1.

Consider now some non-root vertex u, and let v be its parent. Let j ∈ [d] be the

dimension for which hj(v) is maximized. Then we set g(u) = j.

Claim 21. For every vertex u, maxi{hi(u)}
mini{hi(u)} ≤ (8c′)d.

Proof. The claim is trivially true for the root r since maxi{hi(r)}
mini{hi(r)} = 1. For any non-

root vertex u, assume that the claim is true for its parent v. Assume w.l.o.g. that

h1(v) ≥ h2(v) ≥ · · · ≥ hd(v), and g(u) = 1. Then h1(u) = h1(v)/s
d−1
u , and for each

i > 1, hi(u) = hi(v) · su. There are three cases to consider. If h1(u) equals the

maximum value among {hi(u)}d
i=1, then clearly maxi{hi(u)}

mini{hi(u)} ≤ maxi{hi(v)}
mini{hi(v)} ≤ (8c′)d by

the induction hypothesis. If h1(u) equals the minimum value among {hi(u)}d
i=1, then

maxi{hi(u)}
mini{hi(u)} = h2(u)

h1(u)
= sd

uh2(v)
h1(v)

≤ sd
u. Finally, if neither of the above two cases happens,

then maxi{hi(u)}
mini{hi(u)} = h2(u)

hd(u)
= h2(v)su

hd(v)su
≤ (8c′)d by the induction hypothesis.

Since
∏d

i=1 hi(u) = 1, we get that (O(c′))−d ≤ hi(u) ≤ (O(c′))d.

It is easy to see that the algorithm for computing the values g(u), runs in poly-

nomial time.
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Let f : X → Rd denote the resulting embedding produced by the algorithm. The

next two lemmas bound the maximum contraction and the maximum expansion of

the distances in this embedding.

Lemma 28. For any pair u, u′ ∈ X of points, ‖f(u)− f(u′)‖∞ ≥ (O(c′))−dD′(u, u′).

Proof. Fix any pair u, u′ ∈ X of vertices, and let v be their least common ancestor

in the tree T . Thus, D′(u, u′) = l(v). Let z, z′ be the children of v such that u ∈ Xz

and u′ ∈ Xz′. Assume w.l.o.g. that sz > sz′. Recall that Q′
z, Q

′
z′ contain empty

shell of width (Vd(l(v)/4))1/d/2 in which no vertices are embedded. When Q′
z, Q

′
z′ are

embedded inside Qv, they are contracted by the factors sz, sz′ respectively along the

ith dimension, where i = g(v). Thus, in the embedding of Xv inside Qv, the distance

between the images of u and u′ along the ith dimension is at least:

Vd(l(v)/4)

sd−1
u

=

√
πl(v)

4(Γ(1 + d/2))1/dsd−1
u

≥ l(v)

2O(log d)sd−1
u

In the final embedding this distance is multiplied by the factor hi(v). Thus, the final

distance is at least

l(v)

2O(log d)sd−1
u

hi(v) =
l(v)

2O(log d)
hi(u) ≥

l(v)

(O(c′))d

Lemma 29. For any pair u, u′ ∈ X of points, ‖f(u)−f(u′)‖∞ ≤ (O(c′))d+1D′(u, u′).

Proof. Fix any pair u, u′ ∈ X of vertices, and let v be their least common ancestor in

the tree T , so that D′(u, u′) = l(v).

Recall that Qv is a hypercube of side av, and thus when the embedding of Xv has

been computed, the distance between the images of u and u′ was at most av. In the

final embedding this distance increased by the factor of at most maxi∈[d]{hi(v)} ≤
(O(c′))d, and thus the final distance is at most av (O(c′))d. From Corollary 2, using

the same reasoning as in the proof of Claim 20, we have that

av ≤ 2c′l(v)

√
π

(Γ(1 + d/2))1/d
≤ O(c′)l(v)
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Thus, ‖f(u) − f(u′)‖∞ ≤ (O(c′))d+1 l(v).

Combining the results of Lemma 28 and Lemma 29, we obtain the following.

Theorem 10. For any d > 2, there is a polynomial time algorithm that embeds any

input ultrametric M into ℓd2 with distortion cO(d), where c is the optimal distortion of

embedding M into ℓd2.
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Chapter 5

Improved embeddings of

ultrametrics into Rd

In this chapter we give an improved approximation algorithm for embedding ultra-

metrics into Rd. More precisely, we present an algorithm which for any fixed d ≥ 2,

given an ultrametric M that c-embeds into Rd, computes an embedding of M into

Rd with distortion at most O(c · logO(1) ∆). The previous algorithm from Theorem 10

would yield distortion cO(1). Strictly speaking, the two algorithms are incomparable,

since the cO(1) bound is better when c is very small (e.g. c = O(1)). However, the

algorithm presented here is the first one achieving distortion with linear dependence

on the optimal.

This new guarantee is obtained using new hierarchical partitioning schemes of

the Euclidean space, called circular partitions, matching up to a poly-logarithmic

factor the lower bound given by Corollary 2. Such a partition consists of a hierarchy

of convex polygons, each having small aspect ratio, and satisfying specified volume

constraints.

We also apply these partitions to obtain a natural extension of the popular

Treemap visualization method. Our proposed algorithm is not constrained in us-

ing only rectangles, and can achieve provably better guarantees on the aspect ratio

of the constructed polygons.

The results presented in this chapter are from [48].
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5.1 The Treemap algorithm

The visualization of hierarchical structures is a fundamental problem in graph draw-

ing, and computer graphics in general. One of the most successful practical algorithms

for this problem, that has attracted a lot of attention over the past years, is Treemap

[57]. More precisely, one is given a hierarchy of elements represented as a rooted tree

with positive weights on its leaves. The weight of each internal vertex is the sum of

the weights of the leaves in its subtree. Treemap assigns a rectangle to each vertex

such that:

• the area of the rectangle is equal to the weight of the vertex;

• the rectangles of the children of each internal vertex v are disjoint, and are

contained inside the rectangle of v.

An extension of Treemap The most important goal of the plane partition com-

puted by Treemap is the minimization of the aspect ratio of each rectangle. However,

it is easy to construct instances where the aspect ratio of any such rectangular assign-

ment is unbounded. For example, consider a tree with a root and two leaves, where

the first leaf has weight 1, and the second has weight L. The optimal aspect ratio of

Treemap in this case is unbounded as L → ∞. This simple observation leads to the

following natural question:

Is there a hierarchical partitioning of the plane into convex polygons that

achieves aspect ratio independent of the weights?

We answer this question in the affirmative. More precisely, we present an algorithm

that given an n-vertex tree of depth d, outputs a partitioning into convex polygons,

each having aspect ratio O(poly(d, logn)).

We remark that the problem of modifying Treemap so that it uses only sets of

small aspect ratio has been considered in [16, 8, 7, 60]. However, our work provides

the first provable guarantees on the aspect ratio.
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Figure 5-1: Hierarchical partitions computed by the modified Treemap algorithm on
synthetic data. Thicker boundaries correspond to higher levels of the partition.

Figure 5-1 depicts partitions computed by our algorithm on synthetic hierarchical

data. It would be interesting to compare our algorithm with existing implementations

of Treemap, on real data.

Furthermore, if it is required that all polygons assigned to vertices of the tree be

rectangles, we show that it is possible to construct a relaxed partition with small

aspect ratio, that we call a rectangular partition with slack. The difference from the

standard partition is that the area of the rectangle assigned to an internal vertex can

exceed the sum of the areas of the rectangles assigned to its children by a factor of

at most 1 + ε.

Previous work on Treemap The Treemap algorithm was proposed by Shneider-

man [57], and its first efficient implementation was given by Johnson and Shneider-

man [34]. There have been several improvements of the original algorithm. Bruls et

al. [16] proposed a variant of Treemap that heuristically tries to minimize the aspect

ratio of the resulting rectangles. Shneiderman and Wattenberg [58] have proposed

a modified algorithm that minimizes the aspect ratio while preserving certain order-

ing constraints of the rectangles of the children of each vertex. The quality of the

representation of a partition has been further improved by van Wijk and van de We-

tering [61], who developed a method for displaying the rectangles using more intuitive

shading.

Voronoi treemaps [8, 7] are probably the most closely related to ours. The al-
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gorithm is not limited to output a partitioning of the plane into rectangles, but is

allowed to output arbitrary, even nonconvex objects. Partitioning of an area is done

as follows. First a set S of points that correspond to subtrees is placed within the

area. Then, each point of the area is assigned to the closest point in S, where the

distance function is modified for each point p in S according to the weight of the

subtree corresponding to p. An iterative process is used to optimize the placement

of points, and the size of an area assigned to a point may slightly differ from the

expected. A version of Voronoi treemaps provides a partitioning into polygons. As

opposed to the partitioning scheme discussed here, Voronoi treemaps are not known

to give any theoretical guarantees on aspect ratios of computed areas.

Another proposed extension of Treemap to non-rectangular objects are circular

treemaps [66], which use circles instead of rectangles. Circular treemaps are visually

appealing, and nicely display nesting, but a lot of space may be wasted in the process

of partitioning a circle into smaller circles.

Extensions of Treemap for visualization in 3-dimensional space have been consid-

ered by Rekimoto and Green [53], Bladh et al. [14], and Bladh et al. [13]. A variant

of Treemap that constructs radial partitions was proposed by Stasko et al. [59].

The Treemap algorithm has been used to visualize a wide range of hierarchical

data, including stock portfolios [36], news items [65], blogs [64], business data [63],

tennis matches [33], photo collections [12], and file-system usage [57, 66].

Shneiderman maintains a webpage [56] that describes the history of his invention.

It gives an overview of applications and proposed extensions to his original idea.

5.1.1 Preliminaries

For a set A ⊂ Rd, let Vol(A), and diam(A) denote the d-dimensional volume, and

the diameter of A, respectively. We define the aspect ratio of a polygon A to be

λ(A) = diam(A)2

Vol(A)
.

For a d-dimensional hyperrectangle R of sides s1, s2, . . . , sd ∈ R+, the rectangular

aspect ratio λrect(R) of R equals maxi si

mini si
. It can easily be shown that for 2-dimensional

rectangles, the aspect ratio and the rectangular aspect ratio are within a constant
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factor.

5.2 Hierarchical circular partitions of R2

We show an algorithm that constructs a partition of the plane that reflects properties

of a tree with weights w(·) assigned to its vertices. There is a 1-to-1 correspondence

between the polygons in the partition and the vertices of the tree, and each polygon

has volume equal to the weight of the corresponding vertex.

Throughout this chapter, we will refer to this partition as hierarchical circular par-

tition. We call it “hierarchical” because if a vertex v is a descendant of another vertex

u, then the polygon corresponding to v is contained inside the polygon corresponding

to u. Furthermore, if two vertices are not in the ancestor-descendant relation in the

tree, the interiors of the polygons corresponding to these two vertices are disjoint.

The term “circular” is used because we require all the polygons to have small aspect

ratio. Intuitively, if a polygon has small aspect ratio, it is close to a circle. The main

technical difficulty that we face is showing that the aspect ratios of all polygons in

our partition are small.

A formal specification of all the desired properties of such a partition follows. We

write P(S) to denote the power set of S, i.e., the set of all subsets of S.

Definition 2 (γ-Hierarchical Circular Partition). Let T = (V,E) be a rooted tree

with n leaves, and depth d. Let w : V → R≥0 be a function such that for any internal

vertex v ∈ V (T ), with children u1, . . . , uk, w(v) ≥∑k
i=1w(ui). Then, for some γ > 0,

a γ-hierarchical circular partition for (T, w) is a mapping f : V (T ) → P(R2), such

that:

• For each v ∈ V (T ), f(v) is a convex polygon in R2 with λ(f(v)) ≤ γ.

• For each v ∈ V (T ), Vol(f(v)) = w(v).

• For each u, v ∈ V (T ), such that u is the parent of v in T , f(v) ⊆ f(u).

• For each u, v ∈ V (T ), such that u is not an ancestor of v, and v is not an

ancestor of u, int(f(u)) ∩ int(f(v)) = ∅.
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5.2.1 Existence of a good cut

The main component of a proof that hierarchical circular partitions with good prop-

erties exist will be the following lemma. It shows that there is always a way to cut

a polygon into two smaller polygons of required volumes so that the aspect ratios of

the new polygons are bounded. The proof of the lemma is long and consists of a case

analysis.

Lemma 30 (Circular Cut). Let P ⊂ R2 be a convex polygon with k vertices, and

aspect ratio λ(P ), and let a ∈ (0, 1/2]. Then, P can be partitioned into two convex

polygons P1, and P2, such that

• Each of the P1, and P2 has at most k + 1 vertices.

• Vol(P1) = a · Vol(P ), and Vol(P2) = (1 − a) · Vol(P ).

• The aspect ratio of each of the P1, P2 is at most

max{λ(P1), λ(P2)} ≤ max

{

λ(P )

(

1 +
6

k

)

, k8

}

Proof. We distinguish between the following two cases.

Case 1: a ≤ 1/k2. Let φ be the smallest angle of P , and let v be a vertex of P ,

incident to an angle φ. Since P has k vertices, we have

φ ≤ π

(

1 − 2

k

)

Let l be the bisector of φ, and let q be the line normal to l. Let S be the

halfplane with boundary q, such that S ∩P = v. Consider the translation S ′ of

S, such that

Vol(S ′ ∩ P ) = a · Vol(P )

Let also q′ be the boundary of S ′. We define P1 = S ′ ∩ P , and P2 = cl(P \ S ′).

Clearly, P1, and P2 are convex polygons with at most k + 1 vertices each, such
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(a) Case 1. (b) Case 1.2.

Figure 5-2: Partitioning P into P1, and P2, when α ≤ 1/k2.

that Vol(P1) = a ·Vol(P ), and Vol(P2) = (1− a) ·Vol(P ). Therefore, it remains

to bound the aspect ratios of P1, and P2.

Since P2 ⊂ P , we have

λ(P2) =
diam(P2)

2

Vol(P2)
≤ diam(P )2

(1 − a) · Vol(P )
=
λ(P )

1 − a

< λ(P ) (1 + 2a) < λ(P )

(

1 +
2

k2

)

< λ(P )

(

1 +
1

k

)

.

We next bound λ(P1). Let x1, x2 be the two points where q′ intersects ∂P , and

let t be the distance between x1, and x2. Let h be the distance between the

lines q and q′. Figure 5-2(a) depicts the arrangement. We distinguish between

the following cases.

Case 1.1: t ≥ h/k2. Since P is convex, the triangle vx1x2 is contained in P1.

Therefore, Vol(P1) ≥ h · t/2 ≥ h2/(2k2). On the other hand, since S ′ is

normal to the bisector of the angle of v, it follows that P1 is contained
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inside a rectangle of width h, and height H , with

H ≤ 2 · h · tan(φ/2) ≤ 2 · h · tan

(

π(1 − 2/k)

2

)

≤ 2 · h/ tan(π/k) ≤ 2 · h · k/π

Thus, diam(P1) < h(1 + 2 · k/π). It follows that

λ(P1) =
diam(P1)

2

Vol(P1)
<

(h+ 2 · h · k/π)2

h2/(2k2)
< k5

Case 1.2: t < h/k2. Let p1 be the line passing through v, and x1, and let p2 be

the line passing through v, and x2. Let γ be the angle between p1, and p2.

Observe that P2 is contained between p1 and p2. Therefore, there exist a

point u ∈ P2, such that

γ

2π
π‖u− v‖2

2 ≥ Vol(P2)

It follows that diam(P )2 ≥ ‖u− v‖2
2 ≥ 2

γ
(1 − a) Vol(P ). Therefore,

λ(P ) =
diam(P )2

Vol(P )
≥ 2

γ
(1 − a) ≥ 2

γ

(

1 − 1

k2

)

We now give an upper bound on the diameter of P1. Assume w.l.o.g. that

‖v − x2‖2 ≥ ‖v − x1‖2, and let R = ‖v − x2‖2. Consider a line q′′, parallel

to q, that lies between q and q′. Let h′ be the distance between q and

q′′. The line q′′ intersects ∂P1 on two points y1, y2 (see Figure 5-2(b)).

We will show that ‖y1 − y2‖2 ≤ 2t. Assume for the sake of contradiction,

that ‖y1 − y2‖2 > 2t. Let g1 be the line passing through y1, and x1,

and let g2 be the line passing through y2, and x2. Observe that since

‖y1 − y2‖2 > ‖x1 − x2‖2, it follows that g1, and g2 intersect at a point w,

such that P2 is contained in the triangle x1x2w. Observe that the polygon

vy1x1x2y2 is contained in P1. If h′ ≥ h/2, then the volume of the triangle

vy1y2 is greater or equal to the volume of the triangle x1x2w. Therefore,
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Vol(P1) ≥ Vol(P2), contradicting the fact that a ≤ 1/k2. If on the other

hand h′ < h/2, then the volume of the quadrilateral y1x1x2y2, is greater

than the volume of the triangle x1x2w, implying that Vol(P1) ≥ Vol(P2),

a contradiction. Therefore, we obtain that ‖y1 − y2‖2 ≤ 2t.

It now follows that any point u ∈ P1 is at distance at most 2t from the

line segment vx2. Thus,

diam(P1) = max
u,u′∈P1

‖u− u′‖2

≤ max
u,u′∈P1

{2t+ ‖v − x2‖2 + 2t}

≤ R + 4t ≤ R

(

1 +
4

k2

)

.

Let x∗ be the point on the line segment x1x2, that is closest to v. Since

R ≥ h, we have

Vol(P1) ≥
γ

2π
π‖v − x∗‖2

2 ≥
γ

2
(R− t)2 ≥ γ

2
R2

(

1 − 1

k2

)

Therefore,

λ(P1) =
diam(P1)

2

Vol(P1)
≤ 2

γ
· (1 + 4/k2)2

1 − 1/k2

≤ λ(P )
(1 + 4/k2)2

(1 − 1/k2)2
≤ λ(P ) · (1 + 6/k2)2

≤ λ(P ) · (1 + 2/k)2 ≤ λ(P ) · (1 + 6/k)

Case 2: a > 1/k2.

Case 2.1: λ(P ) ≤ k6. We pick an arbitrary half-plane H , such that Vol(P ∩
H) = a ·Vol(P ). We set P1 = P ∩H , and P2 = cl(P \H). Clearly, we have

λ(P1) =
diam(P1)

2

Vol(P1)
≤ diam(P )2

a · Vol(P )
≤ k2 · λ(P ) ≤ k8
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and

λ(P2) =
diam(P2)

2

Vol(P2)
≤ diam(P )2

(1 − a) · Vol(P )
≤ 2 · λ(P ) ≤ 2 · k6 < k7

Case 2.2: λ(P ) > k6. Pick points v1, v2 ∈ P , such that ‖v1 − v2‖2 = diam(P ).

Let ρ be the line passing through v1, and v2. Let also ν1, and ν2, be the

lines normal to ρ, passing through v1, and v2 respectively. Note that P is

contained between ν1, and ν2.

For each z ∈ [0, diam(P )], let ν(z) be a line normal to ρ that is at distance

z from ν1, and at distance diam(P ) − z from ν2. Define f(z) to be the

length of the intersection of P with ν(z). Observe that

Vol(P ) =

∫ diam(P )

z=0

f(z)dz

Pick s1, s2 ∈ [0, diam(P )], so that

a · Vol(P ) =

∫ s1

z=0

f(z)dz =

∫ diam(P )

z=diam(P )−s2

f(z)dz

Let Q1 be the part of P that is contained between ν1, and ν(s1). Similarly,

let Q2 be the part of P that is contained between ν(diam(P )−s2), and ν2.

Clearly, both Q1, and Q2 are convex polygons with at most k+ 1 vertices.

First, we will show that

min

{

Vol(Q1)

s1

,
Vol(Q2)

s2

}

≤ Vol(P )

diam(P )

Assume for the sake of contradiction that Vol(Q1)
s1

> Vol(P )
diam(P )

, and Vol(Q2)
s2

>

Vol(P )
diam(P )

. It follows that there exist z1 ∈ [0, s1], and z2 ∈ [diam(P ) − s2],

such that f(z1) >
Vol(P )

diam(P )
, and f(z2) >

Vol(P )
diam(P )

. Since P is convex, f is a

bitonic function. Therefore, for each z ∈ [z1, z2], f(z) > Vol(P )
diam(P )

. It follows
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that

Vol(P ) = Vol(Q1) + Vol(Q2) + Vol(P \ (Q1 ∪Q2)) >
Vol(P )

diam(P )
· diam(P ),

a contradiction.

We can therefore assume w.l.o.g. that

Vol(Q1)

s1
≤ Vol(P )

diam(P )

Note that this implies

s1 ≥ a · diam(P )

We set P1 = Q1, and P2 = P \Q1. It remains to bound λ(P1), and λ(P2).

By the convexity of P , Vol(P ) ≥ maxz∈[0,diam(P )] f(z) · diam(P )/2. Since

λ(P ) > k6, it follows that

max
z∈[0,diam(P )]

f(z) <
2

k6
· diam(P ).

This implies that P is contained inside a rectangle with one edge of length

diam(P ) parallel to ρ, and one edge of length 4
k6 · diam(P ) normal to ρ.

Thus,

diam(P1) ≤ s1 +
4

k6
· diam(P ).

Let σ1, σ2 be the two points where ν(s1) intersects ∂P . Let ζ1, ζ2, be the

lines passing through v1, and σ1, σ2 respectively. Let also σ′
1, and σ′

2, be

the points where ζ1, and ζ2 respectively intersect ν2 (see Figure 5-3). By

the convexity of P and P1, we have

Vol(P1) ≥ Vol(v1σ1σ2) =

(

s1

diam(P )

)2

·Vol(v1σ
′
1σ

′
2) ≥

(

s1

diam(P )

)2

·Vol(P ).
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Figure 5-3: Partitioning P into P1, and P2, when α > 1/k2: Case 2.2.

Since Vol(P1) = α · Vol(P ), it follows that s1 ≤
√
α · diam(P ). Therefore,

λ(P1) =
diam(P1)

2

Vol(P1)

≤ (s1 + 4 · diam(P )/k6)2

Vol(P1)

≤ (
√
α · diam(P ) + 4 · diam(P )/k6)2

α · Vol(P )

<
diam(P )
√

Vol(P )
· (1 + 4/k4)2

≤ λ(P ) · (1 + 8/k4 + 16/k16)

≤ λ(P ) · (1 + 1/k)

Since f is bitonic, it follows that

min
z∈[s1,diam(P )−s2]

f(z) ≥ min{ max
z∈[0,s1]

f(z), max
z∈[diam(P )−s2,diam(P )]

f(z)}
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Therefore, Vol(P2)
diam(P )−s1

≥ Vol(P1)
s1

. We have

diam(P2) ≤ diam(P ) − s1 +
4

k6
· diam(P )

Thus,

λ(P2) =
diam(P2)

2

Vol(P2)

≤ (diam(P )(1 + 4/k6) − s1)
2

(1 − a) · Vol(P )

≤ λ(P ) ·
(

1 + 4/k6 − a√
1 − a

)2

≤ λ(P ) · (1 + 4 ·
√

2/k6)2

≤ λ(P ) · (1 + 1/k2)2

≤ λ(P ) · (1 + 3/k2)

≤ λ(P ) · (1 + 1/k)

This concludes the proof.

5.2.2 Circular partitions

Now we have all the necessary tools to prove that for any tree T , there exists a γ-

hierarchical circular partition with γ polynomial in the depth of T and the logarithm

of the number of leaves in T . Initially, we transform T into an equivalent balanced

binary tree. For a binary tree, at each internal vertex we can split the polygon

corresponding to it into two polygons corresponding to its children with a single cut.

To determine the cut, we use Lemma 30, which yields that the aspect ratios of all the

polygons will be bounded.

Lemma 31 (Existence of Hierarchical Circular Partitions). Let T = (V,E) be a

rooted tree with n leaves, and depth d. Let w : V → R≥0 be a function such that for

any interval vertex v ∈ V (T ), with children u1, . . . , uk, w(v) ≥ ∑k
i=1w(ui). Then,

there exists an O ((d · lg n)17)-hierarchical circular partition for (T, w).
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Proof. Let r be the root of T . We first construct a binary tree T ′ = (V,E), such that

V (T ) ⊆ V (T ′), and for each u, v ∈ V (T ), if u is an ancestor of v in T , then u is also

an ancestor of v in T ′. Clearly, this can be done as follows: For each non-leaf vertex

v ∈ V (T ), we replace the set of edges connecting u with its children by a balanced

binary tree of depth at most ⌈lg n⌉. The resulting tree has depth d′ ≤ d · ⌈lg n⌉.
We define weights w′ of nodes in T ′ as follows. For each node v ∈ V (T ), we set

w′(v) = w(v). For each other node v ∈ V (T ′)\V (T ), that was added to T ′ as a result

of replacing the edges adjacent to a vertex u by a balanced binary tree, we set the

value w′(v) to be the sum of the weights of the children of u that are below v in T ′.

Note that for any node v ∈ V (T ′), the sum of the weights of its children in T ′ is at

most w′(v).

We will define inductively a hierarchical circular partition f , starting from r.

We set f(r) to be a square in R2 of volume w(r). Consider now a non-leaf vertex

v ∈ V (T ′) such that f(v) has already been defined. The volume of the polygon f(v)

is w′(v). Let t be the sum of the weights of the children of v in T ′. Let P be the

polygon obtained by uniform shrinking of f(v) by a factor of
√

t/w′(v) with any point

inside f(v) being a fixed point of the transformation. The volume of P equals t. If

v has exactly one child u in T ′, then we simply set f(u) = P . Otherwise, let u1, u2

be the children of v in T ′. Let a = w′(u1)
w′(u1)+w′(u2)

. Applying Lemma 30, we partition

f(v) into two convex polygons P1, and P2, such that Vol(P1) = a ·Vol(f(v)) = w′(u1),

and Vol(P2) = (1 − a) · Vol(f(v)) = w′(u2). Moreover, we have max{λ(P1), λ(P2)} ≤
max

{

λ(f(v))
(

1 + 6
k

)

, k8
}

. We set f(u1) = P1, and f(u2) = P2.

We would like to bound λ(f(v)), for each v ∈ V (T ). Since f(r) is a square, we

have that λ(f(r)) = 2. Consider now v ∈ V (T ′). Let t be the distance between r and

v in T ′. Let p be the path from r to v in T ′, with p = v0, v2, . . . , vt, where v0 = r, and

vt = v. Observe that for each i ∈ {0, . . . , t}, f(vi) is a convex polygon with at most

i+ 4 vertices. It follows by Lemma 30, that for each i ∈ {1, . . . , t},

λ(f(vi)) ≤ max

{

(i+ 3)8, λ(f(vi−1)) ·
(

1 +
6

i+ 3

)}

.
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Hence, we have

λ(f(vi)) ≤ (t+ 3)8 ·
t+3
∏

j=3

(

1 +
6

j

)

= (t+ 3)8 ·
∏t+3

j=3 (j + 6)
∏t+3

j=3 j

≤ (t+ 3)8 · (t+ 9)6 ≤ (t+ 9)14.

Remark 1 (Implementation remark). The proof of Lemma 30 is constructive and

shows how to efficiently compute a good cut. Nevertheless, from the practical perspec-

tive, a natural heuristic to consider is to always compute the best cut. This is how

the circular partitions in Picture 5-1 were computed.

5.3 Partitions with slack

In this section, we show that if we allow small distortion of the volumes at each

level of the tree, then there exists a partition of a hypercube into hyperrectangles

(d-dimensional rectangles) of small aspect ratio. For each internal node, the hyper-

rectangles assigned to its children, may have volumes shrunken by a factor in the

range [1 − ε, 1] with respect to the volume assigned to their parent.

In the algorithm, we always use cuts perpendicular to the longest side of a hyper-

rectangle. We try to balance the weights of the children assigned to each resulting

hyperrectangle. If this is possible, the two resulting hyperrectangles also have small

aspect ratios. Otherwise, one child must have large weight. Therefore, we can main-

tain small aspect ratios by slightly shrinking the volume of its hyperrectangle, and

using the resulting empty space to improve the aspect ratio of the other, small hy-

perrectangle.

Definition 3 (Hierarchical Hyperrectangular Partition with Slack). Let T = (V,E)

be a rooted tree with n leaves, and depth d. Let w : V → R≥0 be a function such
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that for any internal vertex v ∈ V (T ), with children u1, . . . , uk, w(v) ≥ ∑k
i=1w(ui).

Then a γ-hierarchical hyperrectangular partition with ε-slack for (T, w) is a mapping

f : V (T ) → P(Rd), for some d ≥ 2, such that:

• For each v ∈ V (T ), f(v) is a d-dimensional hyperrectangle with λrect(f(v)) ≤ γ.

• For the root r of T , Vol(f(r)) = w(r).

• For each u, v ∈ V (T ), such that u is the parent of v in T , f(v) ⊆ f(u), and

(1 − ε)
Vol(f(u))

w(u)
≤ Vol(f(v))

w(v)
≤ Vol(f(u))

w(u)
.

• For each u, v ∈ V (T ), such that u is not an ancestor of v, and v is not an

ancestor of u, int(f(u)) ∩ int(f(v)) = ∅.

Lemma 32. Let ε ∈ (0, 1/3), and let d ≥ 2. Let T = (V,E) be a rooted tree of

depth t. Let w : V → R≥0 be a function such that for any interval vertex v ∈ V (T ),

with children u1, . . . , uk, w(v) ≥ ∑k
i=1w(ui). Then, there exists a 1/ε-hierarchical

hyperrectangular partition f : V → P(Rd) for (T, w) with ε-slack.

Proof. We create a mapping f such that for each u ∈ V , f(u) is a hyperrectangle.

We start from a hypercube of volume w(r), where r is the root of the the tree. We

fix f(x) to be this hypercube. Its rectangular aspect ratio is 1.

We show by induction how to construct f and prove that the rectangular aspect

ratio of each f(u) is at most 1/ε. This implies that the (standard) aspect ratio of

each f(u) is at most
√
d/ε.

For each f(u), we define w′
v = Vol(f(u))

w(u)
· w(v) for each child v of u in T . Then we

shrink f(u) so that the volume of the shrunken hyperrectangle R is exactly equal to

the sum of w′
v over the children v of u.

Whenever we want to subdivide a hyperrectangle R of rectangular aspect ratio

at most 1/ε among a subset S of at least two children of u, we do what follows. We

split S with a cut which is perpendicular to the longest side of R. Let s ∈ S be the

child in S of the largest w′
s. There are two cases.
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• If w′
s/
∑

v∈S w
′
v ≤ 1 − ε, then we can split S into two sets S1 and S2 each of

weight which is at most an 1 − ε fraction of the total weight of S. Then we

split R with a cut which is perpendicular to the longest cut, so that we create

two hyperrectangles R1 and R2 of volume proportional to the total weight of

S1 and S2, respectively. All sides but the longest are preserved in the new

hyperrectangles, and the length of the initially longest side becomes an at least

ε fraction of the original value. This implies that if the rectangular aspect ratio

of R1 or R2 increases with respect to the ratio of R, then it cannot be greater

than 1/ε.

• The second case is when w′
s/
∑

v∈S w
′
v > 1 − ε, i.e., there is a very heavy

element in S. In this case, we must be more careful to avoid assigning a bad

hyperrectangle. We first split R into two hyperrectangles R1 and R2 with a

cut perpendicular to the longest side, so that Vol(R1) = (1 − ε) Vol(R) and

Vol(R2) = εVol(R). The rectangular aspect ratio of both R1 and R2 is at most

1/ε. We set f(s) to be R1. This means that we assign to s a hyperrectangle of

volume smaller by a factor of at most 1− ε than what is implied by the weight

of s. To the other elements we assign R2 uniformly shrunken so that its volume

equals
∑

x∈S\{s}w
′
x. The shrunken R2 is a subset of the initial R2. We proceed

with it recursively, until S has only one element.

5.4 Improved embeddings of ultrametrics into Rd

In this section, we give an approximation algorithm for embedding ultrametrics into

Rd. Let M = (X,D) be the given ultrametric. After scaling M , we can assume that

the minimum distance is 1, and the diameter is ∆. It is known, and easy to see that

for any α > 1, M can be embedded into an α-HST, with distortion α (cf. [10]). Given

M , we initially compute an embedding of M into a 2-HST T , with distortion 2. Let

M ′ = (X,D′) be the metric space corresponding to T . Any embedding of M ′ into Rd
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with distortion c′, is clearly also an embedding of M into Rd with distortion at most

c = O(c′). It therefore suffices to embed of M ′ into Rd.

The intuition behind our algorithm is as follows. We first compute a hierarchical

partition of Rd into sets with small aspect ratio. The sets in the lower level of the

partition would roughly correspond to balls around the images of the points in our

embedding. Therefore, given the hierarchical partition we will be able to easily obtain

the embedding.

More precisely, the algorithm works as follows. Initially, we compute the val-

ues C(v), for each vertex v of the HST T . Then, using Lemma 32, we compute

a (log ∆)-hierarchical hyperrectangular partition g for (T, C) (i.e. with weight as-

signment w(v) = C(v)). We further define a mapping g′ : V (T ) → P(Rd) by

slightly modifying g as follows. Starting from the root of T , we traverse all the

vertices of T . When we visit a vertex u, and we shrink uniformly all the hyper-

rectangles of the vertices in the subtree rooted at u, by a factor of 1 − 1/ log ∆,

with the center of the hyperrectangle of u being the fixed point in the transfor-

mation. Let g′ : V (T ) → P(Rd) be the resulting mapping. Observe that for

each v ∈ V (T ), Vol(g′(v)) ≥ (1 − 1/ log ∆)log ∆ Vol(g(v)) = Ω(Vol(g(v)), and that

λrect(g(v
′)) = λrect(g(v)). For each point x ∈ X, let vx be the leaf of T corresponding

to x. Having computed g′, we simply set f(x) to be the center of the hyperrectangle

g′(vx). It remains to bound the distortion of f .

Lemma 33. The expansion of f is O(log ∆ · c′).

Proof. Consider points x, y ∈ X ′, and let vx, vy, be the leafs of T that correspond to

x, and y respectively. Let v be the nearest common ancestor of vx, and vy, in T . We

have D′(x, y) = l(v). By Lemma 32, it follows that in the partition g′ computed by

the algorithm, v is mapped to a hyperrectangle g(v′) ⊂ Rd, with λrect(g
′(v)) ≤ log ∆.

Note that f(x) ∈ g′(vx), f(y) ∈ g′(vy), and also g′(vx) ⊆ g′(v), g′(vy) ⊆ g′(v). Since

Vol(g′(v)) ≤ Vol(g(v)) ≤ C(v), we have ‖f(x)−f(y)‖2 ≤ diam(g′(v)) ≤ diam(g(v)) ≤
d · log ∆ · (C(v))1/d. Therefore, by Corollary 2, we obtain that ‖f(x) − f(y)‖2 =

O(c′ · l(v) · log ∆) = O(log ∆ · c′ ·D′(x, y)).
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Lemma 34. The contraction of f is O(logO(1) ∆).

Proof. Since the depth of T is log ∆, it follows that for each vertex u ∈ V (T ),

Vol(g′(u)) = Ω(Vol(g(u))) = Ω((1 − 1/ log ∆)log ∆C(u)) = Ω(C(u)). Consider points

x, y ∈ X ′, and let vx, vy ∈ V (T ) be the leafs of T corresponding to x, y respectively.

Let v be the nearest common ancestor of vx, and vy in T . We will consider the

following two cases for v:

Case 1: v is the parent of vx, and vy in T . Since the minimum distance in M ′ is

1, it follows that D′(x, y) = 1. By the construction, f(x) is the center of g′(vx). Let

t be the distance between f(x), and ∂g′(vx). Since λrect(g
′(vx)) ≤ log ∆, we have

t ≥ (Vol(g′(vx)))
1/d

log ∆
=

Ω((C(vx)
1/d)

log ∆
= Ω(1/ log ∆).

Thus, ‖f(x) − f(y)‖2 ≥ t = Ω(D(x, y)/ log∆).

Case 2: v is not the parent of vx, and vy in T . Let ux be the child of v, that

lies on the path from v to vx, in T . Let γ be the distance between x, and ∂g′(ux).

By the construction of g′ we have ‖f(x) − f(y)‖2 ≥ γ = Ω((C(ux))
1/d/ logO(1) ∆) =

Ω(l(ux)/ logO(1) ∆) = Ω(D(x, y)/ logO(1) ∆).

Combining lemmas 34, and 33, we obtain the main result of the section.

Theorem 11. For any fixed d ≥ 2, there exists a polynomial-time, polylog(∆)-

approximation algorithm, for the problem of embedding ultrametrics into Rd with

minimum distortion.
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Chapter 6

NP-hardness of embedding

ultrametrics into R2

In this chapter we show that the problem of computing a minimum distortion em-

bedding of an ultrametric into the plane under the ℓ∞ norm is NP-hard.

The results presented in this chapter are from [19].

6.1 Preliminaries

We say that a square S ⊂ R2 is orthogonal if the sides of S are parallel to the axes.

We perform a reduction from the following NP-complete problem (see [40]): Given a

packing square S and a set of packed squares L = {s1, . . . , sn}, is there an orthogonal

packing of L into S? We call this problem SquarePacking.

For a square s, let a(s) denote the length of its side. Assume w.l.o.g. for

each i ∈ [n], a(si) ∈ N, a(S) ∈ N, and that a(s1) ≤ a(s2) ≤ . . . ≤ a(sn). The

SquarePacking problem is strongly NP-complete. Thus we can assume w.l.o.g.

that there exists N = poly(n), such that 1 ≤ a(s1) ≤ . . . ≤ a(sn) ≤ a(S) < N .
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r

x1

. . .
y1,1 y1,2 y1,k2

x2

. . .
y2,1 y2,2 y2,k2

. . . xn

. . .
yn,1 yn,2 yn,k2

Figure 6-1: The constructed tree T . The labels of the vertices are: l(r) = a(S) and
l(xi) = a(si) − a(S)/(k − 1).

6.2 The construction

Consider an instance of the SquarePacking problem, where S is the packing square,

and L = {s1, . . . sn} is the set of packed squares. We will define an ultrametric

M = (X,D) and an integer k, such that M embeds into the plane with distortion

at most k − 1 iff there exists an orthogonal packing of L into S. It is convenient to

define M by constructing its associated labeled tree T , where each v ∈ V (T ) has a

label l(v) ∈ Q.

Let k = N10. For each square si ∈ L, we introduce a set of k2 leaves yi,1, . . . yi,k2 in

T . We connect all of these leaves to a vertex xi, and we set l(xi) = a(si)−a(S)/(k−1).

Note that l(xi) is very close to a(si). Next, we introduce a root vertex r ∈ V (T ), and

for each i ∈ [n], we connect xi to r. We set l(r) = a(S).

For a vertex v ∈ V (T ), we denote by Xv the set of leaves of T having v as an

ancestor. Figure 6-1 depicts the described construction.

6.2.1 Satisfiable instances

Assume that there exists an orthogonal packing of L into S. We will show that there

exists an embedding f : X → R2 with distortion k − 1.

As a first step, for each vertex xi : 1 ≤ i ≤ n, we embed all the vertices of Xxi
in a

square Qi of side (k− 1)l(xi). This is done by simply placing a k× k orthogonal grid

with step l(xi) inside Qi and embedding the vertices of Xxi
on the grid points. Next,

we transform the squares Qi into squares Q′
i by adding empty strips of width a(S)/2
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S

s1

s2

s3

s4

→

f(Xx1
)

f(Xx2
)

f(Xx3
)

f(Xx4
)

Figure 6-2: The embedding constructed for the YES instance.

around Qi. Notice that the side of Q′
i is exactly (k − 1)l(xi) + a(S) = (k − 1)a(si).

Finally, we embed the squares Q′
i into a square S of side (k−1)a(S) according to the

packing of the input squares in S. Figure 6-2 depicts the resulting embedding f .

We now show that the distortion of the embedding f is at most k − 1.

Let u, v ∈ X. We have to consider the following cases for u, v:

Case 1: u, v ∈ Xxi
for some i ∈ [n]. Since the vertices of Xxi

are embedded on a

grid of step l(xi), it follows that ‖f(u) − f(v)‖∞ ≥ l(xi) = D(u, v). Thus, the

contraction is at most 1. Moreover, since all the vertices of Xxi
are embedded

inside a square Qi of side l(xi)(k − 1), the expansion is at most k − 1.

Case 2: u ∈ Xxi
and v ∈ Xxj

, for some i 6= j. Since we add empty strips of width

a(S)/2 around the squares Qi, Qj, we have that ‖f(u) − f(v)‖∞ ≥ a(S) =

l(r) = D(u, v). Thus, the contraction is 1. On the other hand, all the vertices

are embedded inside a square S of side l(r)(k− 1) = a(S)(k− 1), and therefore

the expansion is at most k − 1.

Thus, we have shown that the distortion is at most k − 1.
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6.2.2 Unsatisfiable instances

Assume that there is no orthogonal packing of L inside S. We show that the minimum

distortion required to embed M into the plane is greater than k − 1. Assume that

there exists an embedding f : X → R2, with distortion at most k − 1. W.l.o.g. we

can assume that f is non-contracting.

The following lemma will be useful in the analysis.

Lemma 35. Let M = (X,D) be a uniform metric on k2 points, for some integer

k > 0. Then, the minimum distortion for embedding M into the plane is k − 1.

Moreover, an embedding f has distortion k − 1 iff f(X) is an orthogonal grid.

Proof. By scaling M , we can assume w.l.o.g. that for any u, v ∈ X, D(u, v) = 1.

Consider an non-contracting embedding f : X → R2. For any v ∈ X, let Av be

square of side length 1, centered at f(v). Clearly, for any u, v ∈ X, with u 6= v,

the interiors of squares Au and Av are disjoint. Let A =
⋃

v∈X Av. It follows that

Vol(A) = |X|. Thus, there exist p1, p2 ∈ A, such that ‖p1 − p2‖∞ ≥ |X|1/2 = k.

Let v1, v2 ∈ X be the centers of the squares Av1 , Av2 to which p1 and p2 belong,

respectively. Then ‖f(v1) − p1‖∞ ≤ 1/2, and ‖f(v2) − p2‖∞ ≤ 1/2. It follows that

‖f(v1) − f(v2)‖∞ ≥ k − 1. Thus the distortion is at least k − 1.

Clearly, if f maps X onto a k × k orthogonal grid, the distortion of f is k − 1. It

remains to show that this is the only possible optimal embedding.

Assume that an embedding f has distortion k − 1, and let f be non-contracting.

Observe that since the diameter of f(X) is at most k − 1, f(X) must be contained

inside a square K of side length k − 1. Let {Av}v∈X be defined as above. It follows

that A is contained inside a square K ′ of side length k. Since Vol(A) = Vol(K ′), it

easily follows that f(X) is an orthogonal k × k grid.

Corollary 3. For each i ∈ [n], f(Xxi
) is an orthogonal k × k grid of side length

(k − 1)l(xi) = (k − 1)a(si) − a(S).

For each i ∈ [n], let Q′
i be the square of side length (k−1)a(si), that has the same

center of mass as f(Xxi
).
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Claim 22. For each i, j ∈ [n], i 6= j, the interiors of the squares Q′
i, Q

′
j are disjoint.

Proof. Assume that the assertion is not true. That is, there exist i, j ∈ [n], with

i 6= j, and p ∈ R2, such that p belongs to the interiors of both squares Q′
i, Q

′
j . By

the definition of Q′
i and Q′

j , there are points v1 ∈ Xxi
, v2 ∈ Xxj

which are embedded

within distance smaller than a(S)/2 from p. But then ‖f(v1) − f(v2)‖∞ < a(S),

contradicting the fact that the embedding is non-contracting.

Claim 23.
⋃n

i=1Q
′
i is contained inside a square of side length ka(S).

Proof. Since f has expansion at most k − 1, f(X) is contained inside an orthogonal

square S of side length (k − 1)l(r) = (k − 1)a(S). Observe that for each i ∈ [n], for

each point p ∈ Qi, there exists v ∈ Xxi
, such that ‖p − f(v)‖∞ ≤ a(S)/2. Let S ′

be the square of side length ka(S) that has the same center as S. It follows that S ′

contains
⋃n

i=1Q
′
i.

Lemma 36. If M can be embedded into the plane with distortion at most k− 1, then

there exists an orthogonal packing of L inside S.

Proof. If there exists an embedding f : X → R2 with distortion k − 1, by Claim 23

we obtain that
⋃n

i=1Qi is contained inside a square of side length ka(S). Moreover,

by Claim 22, the embeddings of squares Q′
i defines a feasible packing of these squares

into the square S ′. Note that for each i : 1 ≤ i ≤ n, Qi has side length (k − 1)a(si).

That is, the squares Q1, . . . , Qn are just scaled copies of the squares s1, . . . , sn. Thus,

we obtain that there exists an orthogonal packing of L inside a square S ′ of side

length a(S) k
k−1

. Recall that k = N10 > a(S)10. Thus, S ′ has side length less than

a(S) + 1/2.

Since a(S) and a(si) for each i ∈ [n] are integers, it follows that there is also an

orthogonal packing of L into a square of side length a(S).

The following theorem is now immediate.

Theorem 12. The problem of minimum-distortion embedding of ultrametrics into

the plane under the ℓ∞ norm is NP-hard.
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Chapter 7

Inapproximability of embedding

into Rd

It has been shown in [43] that for any d ≥ 1, any n-point metric can be embedded

into Rd with distortion Õ(n2/d) via a random projection, and that in the worst case

this bound is essentially optimal. This clearly also implies an Õ(n2/d)-approximation

algorithm for minimizing the distortion. We show that for any fixed d ≥ 2, there is no

polynomial-time algorithm for embedding into Rd, with approximation ratio better

than Ω(n1/(17d)), unless P = NP. Our result establishes that random projection is

not too far, concerning the dependence on d, from the best possible approximation

algorithm for this problem. Note that since for fixed d all norms on Rd are equivalent

up to a constant factor, the same result holds for all norms.

We obtain our hardness result via a reduction from the problem 3-SAT. We en-

code a SAT formula using geometric gadgets, that are subsets of d-dimensional grids.

The main technical difficulty is to characterize the structural properties of these gad-

gets, under any low-distortion embedding into Rd. Our approach for obtaining such

characterizations is as follows. We first construct d-dimensional simplicial complexes

that can be viewed as continuous analogs of our discrete gadgets. Intuitively, a

low-distortion embedding of a discrete object, corresponds to a continuous mapping

of a simplicial complex, satisfying certain non-intersection conditions. This corre-

spondence allows us to translate desired geometric properties, to purely topological

121



counterparts.

In the heart of our topological analysis lies the following lemma. Consider a unit

ball Bd in Rd, under the ℓ2 norm. Assume that there exists a continuous mapping

f : Bd → Rd, such that the image of the origin f(0) lies in the unbounded connected

component of Rd \ f(∂Bd). That is, the origin moves ”outside” the boundary of the

ball. Then, there exist two points in Bd that are far apart from each other, and have

the same image under f .

The above statement is derived via a careful application of Sarkaria’s Coloring-

Embedding theorem [54, 55, 44], The formulation of Sarkaria’s theorem that we are

using is due to Matoušek [44]. It gives sufficient conditions for the embeddability of

a simplicial complex in terms of the chromatic number of a certain Kneser graph.

The results presented in this chapter are from [46].

7.1 A topological prelude

Before we describe our hardness reduction, we prove the main topological lemma

(lemma 37), that we will use later in our analysis.

The system of minimal nonfaces of a simplicial complex T is the set of all minimal

subsets of vertices of T , that are not contained in the same simplex in T . The Kneser

graph of a family of sets F , denoted by KG(F), is the graph with vertex set F , and

edge set {{s, t} ∈
(F

2

)

: s ∩ t = ∅}. Finally, for a graph J , let χ(J) be its chromatic

number.

The following theorem, which is due to Sarkaria [54, 55], gives a necessary condi-

tion for the existence of a continuous mapping from a simplicial complex into Rd, in

which the images of each pair of disjoint simplexes are disjoint. A detailed exposition

of this theorem can be found in [44].

Theorem 13 (Sarkaria’s Coloring/Embedding Theorem, [54, 55]). Let T be a simpli-

cial complex on n vertices, and let F be the system of minimal nonfaces of T . Then,

if d ≤ n−χ(KG(F))− 2, then for any continuous mapping f : |T | → Rd, the images

of some two disjoint faces of T intersect.
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We define a simplicial complex K as follows. Let Bd be the ℓ2 unit ball in Rd.

Let X be the boundary of the d-simplex, mapped on ∂Bd. Erecting a cone over X,

with apex a = 0, results in a triangulation of Bd. Add a new vertex b, and an edge

between a and b. Let K be the resulting simplicial complex. For example, for d = 1,

we get a star with 3 leaves, and for d = 2, we get a disk with an edge attached to its

center.

Let ξd be the minimum distance between any pair of points in Bd, that are mapped

to disjoint simplices in K.

Lemma 37 (Main Topological Lemma). Let d ≥ 2, and let Bd be the unit ball in

Rd. Let f : Bd → Rd be a continuous map, such that f(0) is in the closure of the

unbounded connected component of Rd \ f(∂Bd). Then, there exist x, x′ ∈ Bd, with

‖x− x′‖2 ≥ ξd, and f(x) = f(x′).

Proof. Let K be the simplicial complex defined as above, and let F be the set of

minimal nonfaces of K. Let V be the set of vertices of the original d-simplex X.

Observe that F consists of all the sets {b, c}, c ∈ V , and V ∪{b}, V ∪{a}. Therefore,

any two sets in F have non-empty intersection, and KG(F) does not contain any

edges. It follows that χ(KG(F) = 1. By theorem 13, we have that for any continuous

mapping G : |K| → Rd, the images of two disjoint faces of K intersect.

Let f : Bd → Rd be a continuous mapping, such that f(0) is in the closure of

the unbounded connected component of Rd \ f(∂Bd). If f(0) ∈ f(∂Bd), then there

is clearly a point x ∈ Bd, with ‖x‖2 = 1, such that f(x) = f(0), and the assertion

follows. Thus, we can assume that f(0) is in the interior of the unbounded connected

component of Rd \ f(∂Bd). Fix a path P connecting f(a) to a point outside f(Bd)

and avoiding f(Sd−1). Extend f to a mapping f̄ : |K| → Rd by mapping the part of

K corresponding to Bd by f , and the edge between a and b to P . We know that there

exist simplices s1, s2 ∈ K, with s1 ∩ s2 = ∅, such that f̄(s1) ∩ f̄(s2) 6= ∅. Observe

that s1 cannot be the edge ab, since then s2 would have to be in the boundary

of Bd, but f̄(ab) avoids f̄(Sd−1) by construction. We also cannot have s1 = {a}
since f̄(a) does not intersect f̄(b) ∪ f̄(Sd−1). Thus, s1, s2 ∈ Bd. So we have that
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f(s1)∩f(s2) 6= ∅. Therefore, there exist points p1 ∈ s1, p2 ∈ s2, with ‖p1 −p2‖2 ≥ ξd,

and f(p1) = f(p2).

7.2 The reduction

In this section we describe our NP-hardness reduction. We will reduce the problem

3-SAT(5) to our problem. Recall that an instance of 3-SAT(5) is a CNF formula

φ = C1 ∧ . . . ∧ CM , on N variables χ1, . . . , χN , with each variable appearing in at

most five clauses. Given a formula φ, we will construct a weighted undirected graph

G = (V,E). The shortest-path metric of G will be the instance of the problem of

embedding into Rd.

7.2.1 An informal description

Before we give the technical details, we discuss the high-level idea of the reduction.

The graph G contains a main part H that we call the wall. The wall is a very large

d-grid, with edges of length 1/Γ, where Γ is a sufficiently large parameter, to be

specified later. The purpose of the wall is to enforce some kind of structure in any

low-distortion embedding of the rest of the graph. In particular, we chose the edges

of H to be sufficiently small so that in any low-distortion embedding, the image of H

induces a fine net on Rd. We formalize this intuition in section 7.4, where we prove

that c-embeddings of d-grids into Rd, induce O(c)-nets in Rd. At the same time, the

edges of H are sufficiently large, so that given a satisfiable instance, we can construct

a low-distortion embedding of G, by interleaving H with the rest of the gadgets. We

also chose certain regions of the wall as literal-gadgets, encoding the literals in the

3-SAT formula.

The remaining parts of G are gadgets that encode the variables, and the clauses

of the 3-SAT formula. A variable-gadget, encoding a variable, is a path with edges of

length ε, where ε is a small parameter (much smaller than 1/Γ), to be specified later.

We connect a variable-gadget Bi to the wall H by adding edges between Bi and two

paths of H . The two paths of H are sufficiently far from each other. Using the fact
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that the image of H induces a net in Rd, we can show that the image of Bi under

any low-distortion embedding has to be close to the image of one of the two paths

to which it is attached. This is done by a careful argument that relates the image of

Bi with that of the literal-gadgets. This way we encode the two possible true/false

values that the i-th variable can attain in a satisfying assignment.

A clause-gadget, encoding a clause, is the boundary of d-grid, with edges of length

ε. We similarly attach each clause gadget to parts of H that are isomorphic to

boundaries of d-cubes, and correspond to the literals appearing in the clause. We can

again show that the image of the clause-gadget under any low-distortion embedding,

has to be close to the image of exactly one of the literal-gadgets that it is attached

to. This way we encode the fact that in a satisfying assignment, each clause has to

be satisfied by some literal.

Having established that in any low-distortion embedding, the images of variable-

gadgets and the clause-gadgets are close to the images of certain parts of the image

of H , it remains to show that given such an embedding, we can obtain a satisfying

assignment for the 3-SAT formula. To that extend, we need to show that the images

of a clause-gadget and a variable-gadget cannot be both near the same literal-gadget.

This is done by showing that in such a scenario, one end-point of the variable-gadget

is ”inside” the clause-gadget, while the other one is ”outside”. This, implies that the

images of these two gadgets have to ”intersect”.

However, since the gadgets are discrete objects, we can only state a continuous

analog of the above intersection argument. This is done by extending the embedding

linearly to a continuous map of appropriate d-dimensional simplicial complexes. We

define a complex X̃ for each gadget X, so that X can be viewed as a discretization

of X̃. After obtaining the above continuous formulation, we can apply topological

techniques to prove the desired intersections, concluding the analysis.

7.2.2 The gadgets

We now proceed with the formal description of the graph G. We split the construction

into certain parts of G, that encode different parts of the 3-SAT formula. Throughout
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our analysis we use the parameters Γ = 6400 · d4M4/ξd, ε = 1/Γ3, and L = 200 · d ·
Γ4 ·M .

The wall We start with a graph H with vertex set

A = {xi : i ∈ {−L,−L+ 1, ..., L− 1, L}d},

interconnected as a d-dimensional cubic grid; that is, {xi, xj} forms an edge if ‖i −
j‖1 = 1. All the edges in H have length 1/Γ2. We will refer to H as the wall.

For i, j ∈ Zd, we denote by A[i . . . j] the rectangular part of A between xi and xj ,

and by A′[i . . . j] its boundary. Formally, we have

A[i . . . j] = {xk ∈ A : i1 ≤ k1 ≤ j1, . . . , id ≤ kd ≤ jd},

and

A′[i . . . j] = A[i . . . j] \ A[i+ 1d . . . j − 1d].

Literal-gadgets For every literal we define a region of the wall called literal-gadget

and defined as follows: For a variable χi, we have literal-gadgets Λi,0 and Λi,1 for

the literals ¬χi and χi respectively. Each literal-gadget corresponds to a rectangular

region of the wall. More precisely, we set

Λi,j = H
[

A
[

Γ2λi,j − 2Γ3/21d . . .Γ
2λ′i,j + 2Γ3/21d

]]

,

where

λi,j = (0, (4i+ 2j − 4), 0, 0, . . . , 0) ,

and

λ′i,j = (10, (4i+ 2j − 3), 1, 1, . . . , 1) .
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We also define the frontier of a literal-gadget, denoted by Φi,j to be the boundary of

slightly larger region of H , containing the literal-gadget. Formally, we set

Φi,j = H

[

A′
[

Γ2λi,j −
Γ2

2
1d . . .Γ

2λ′i,j +
Γ2

2
1d

]]

.

For each occurrence of a literal in a clause we define a rectangular sub-literal-gadget

to be a region of a literal gadget. We chose these regions such that all sub-literal-

gadgets are disjoint, and sufficiently far from each other. That is, for each l ∈ [5], the

sub-literal-gadget Λi,j,l is

Λi,j,l = H
[

A
[

Γ2λi,j,l − 2Γ3/21d . . .Γ
2λ′i,j,l + 2Γ3/21d

]]

,

where λi,j,l = (2l−1, (4i+2j−4), 0, 0, . . . , 0), and λ′i,j,l = (2l, (4i+2j−3), 1, 1, . . . , 1).

Figure 7-1(a) depicts the placement of the literal-gadgets, the sub-literal-gadgets, and

the frontiers in the wall.

Variable-gadgets For each variable χi, we introduce a graph called variable-gadget,

denoted by Bi. Bi is a path bi,0, bi,1, . . . , bi,9/ε, with each edge having length ε. We

connect a variable-gadget with the wall, by adding edges between to two paths in H .

These two paths lie in the middle of the two literal-gadgets for the variable χi. For-

mally, for each j ∈ {0, 1}, for each bi,l ∈ V (Bi), we add an edge of length 1/Γ between

bi,l and xw, where w = ((⌊l · ε⌋ + 1/2)Γ2, (4i− 4 + 2j + 1/2)Γ2,Γ2/2, . . . ,Γ2/2). Fig-

ure 7-1(b) depicts how a variable-gadget is connected to the wall.

Clause-gadgets For each clause Ci, we introduce a graph called clause-gadget,

denoted by Ki. Each clause-gadget is the boundary of a d-dimensional grid, and has

V (Ki) = {κi,j : j ∈ {0, . . . , 1/ε}d−1, ‖j − 1d · 1/(2ε)‖∞ = 1/(2ε)}.

We have an edge of length ε between each pair {κi,l, κi,l′}, with ‖l − l′‖1 = 1. We

connect each clause-gadget Ki with the wall by adding edges between Ki and the
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boundaries of three sub-grids of the wall. Each such sub-grid is contained in the

sub-literal-gadget corresponding to a literal appearing in the clause Ci. Formally,

let Ci be the r-th clause in which the variable χt appears. Assume further that χt

appears as the literal y.. We add an edge of length 1/Γ between each vertex κi,w of

Ki and the vertex xΓ2·⌊w·ε⌋+w′ of the wall, where w′ = ((2r− 1)Γ2, (4t− 4)Γ2, 0, . . . , 0)

if yi,j = χt, and w′ = ((2r − 1)Γ2, (4t − 3)Γ2, 0, . . . , 0) if yi,j = ¬χt. Observe that

multiple vertices of Ki get attached to the same vertex of H . Figure 7-1(c) depicts

how a clause-gadget is connected to the wall. This concludes the construction.

7.3 Satisfiable instances

We now show that if the formula φ is satisfiable, then G embeds into Rd with small

distortion.

Lemma 38. If φ is satisfiable, then G embeds into Rd with distortion at most

4
√
dMΓ.

Proof. Assume that φ is satisfiable, and fix a satisfying truth assignment T . We

will define an embedding f : V (G) → Rd. We first define f on the vertices of the

wall H . A natural embedding of the wall into Rd would map each vertex xi to the

point (i1 · Γ−2, . . . , id · Γ−2). This natural embedding is almost an isometry (ignoring

possible short-cuts through the gadgets that might incur only an extra factor of

O(N)). However, it is not appropriate here because it does not leave enough space

for the remaining gadgets. We resolve this problem with the following modification:

Along each dimension, after placing Γ2/2 vertices of H , we leave a gap of length

Γ−1. Since the edges of the wall have length Γ2, this can be done with distortion

roughly O(Γ). Recall that the gadgets are connected to the wall with edges of length

Γ−1. Therefore, we can place the gadgets inside these gaps, without contracting the

distances between the gadgets and the wall by too much. Formally, for a vertex xi of

the wall, we set f(xi) = (g(i1), g(i2), . . . , g(id)), where g(j) =
⌈

2j
Γ2

⌉

· 1
Γ

+ j · 1
Γ2 .

We next define f on the vertices of the variable-gadgets. Note that each gadget

is connected to different parts of the wall, that are within O(1) distance from each
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(a) The part of the wall containing the literal-
gadgets.

(b) Connecting a variable-gadget Bj with the
literal-gadgets Λi,0, and Λi,1.

(c) Connecting a clause-gadget Kt

with a sub-literal-gadget Λi,j,k.

Figure 7-1: The reduction for dimension d = 2.
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Figure 7-2: Example embedding for a satisfiable instance, for d = 2. In the satisfying
assignment the variable χi is set to true, and the clause Cj is satisfied via the positive
literal χi.

other. Since the distance between the gadgets and the wall is Γ−1, by placing a

gadget near a certain literal, we do not expand the distance to the remaining literals

by too much. Formally, for each i ∈ [N ], let τi = 1 if the variable χi is set to

true in T , and τi = 0 otherwise. For each i ∈ [N ], and for each bl ∈ V (Bi), we set

f(bl) =
(

1 + 2
Γ

)

·
(

1
2

+ l · ε, 4i− 4 + 2τi,
1
2
, 1

2
, . . . , 1

2

)

+ 1
2Γ
·1d. Finally, we define f on the

vertices of the clause-gadgets. For each i ∈ [M ], let v = v(i) be such that the clause

Ci contains a literal y of the variable χv, and T (y) = true. Let Ki be the r-th clause in

which the variable χv appears, for some r ∈ [5]. For each κl ∈ V (Ki), we set f(κl) =
(

1 + 2
Γ

)

·
(

1
2

+ 2r − 2, 4v − 4 + 2(1 − τv),
1
2
, 1

2
, . . . , 1

2

)

+ 1
2Γ
·1d +

(

1 + 2
Γ

)

·
(

l · ε− 1
2
· 1d

)

.

The resulting embedding is depicted in figure 7-2. It is straight-forward to verify that

f has expansion at most 2MΓ, and contraction at most 2
√
d.
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7.4 A structural property of embeddings of d-grids

into Rd.

In order to analyze the reduction for the case of unsatisfiable instances, we need to

gain some understanding of the structure of low-distortion embeddings of d-grids into

Rd. To that extend, we show that in any embedding of sufficiently small distortion

of a d-grid into Rd, the image of the grid induces a net on a large ball around the

image of the center of the grid. This basic property will be later used in our analysis

to show that in any low-distortion embedding, the image of the wall induces a net in

Rd.

Since after adding the gadgets in G, the shortest-path metric on the wall is not

anymore isometric to that of a d-grid, we need to prove the property for a slightly

more general class of graphs, that we call central contractions of grids. Intuitively,

a central contraction is obtained from a grid, by adding an arbitrary set of edges

between vertices that are close to the center of the grid.

Definition 4 (Central Contraction of a Grid). Let J be a d-dimensional grid, with

V (J) = {vi : ∀j ∈ [d], 0 ≤ ij ≤ kj}, and E(J) = {{vi, vi′} : ‖i− i′‖1 = 1}, with each

edge having unit length. Let J ′ be a graph obtained from J by adding a finite set of

edges {vi, vj}, each having an arbitrary positive length, and such that for each t ∈ [d],

it, jt ∈ {kt(
1
2
− ξd

8d2 ), . . . , kt(
1
2

+ ξd

8d2 )}. Then, J ′ is called a central contraction of J .

We remark that the proof of the following statement (lemma 39) is the first place

where we need to apply the topological property given by lemma 37. This might come

as a surprise since at a first glance, the two statements seem unrelated. Informally,

the argument is as follows. Consider a low distortion non-contracting embedding f of

a central contraction of a grid, in which there is a large empty ball close to the image

of the centroid of the grid. Let B1 be the largest such ball. We can find a vertex u∗

which is close to the centroid, and its image lies on the boundary of B1. Since u∗

is close to the centroid, there is a sufficiently large sub-grid Q centered at u∗. We

extend f linearly to a continuous mapping g̃ of an appropriate d-dimensional simplicial
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complex Q̃ for which Q is a net. The complex Q̃ is chosen to be homeomorphic to a

solid d-cube, which is in turn homeomorphic to the unit ball. Since the expansion is

small, the image of each simplex of Q̃ is small, relative to the radius of B1. Therefore,

we can slightly modify the mapping g̃, so that the image of the complex avoids the

interior of B1. By applying a suitable homeomorphism on a subset of Rd, we obtain

a continuous map of Q̃ into Rd, such that g̃(u∗), lies on the boundary the unbounded

connected component of Rd \ g̃(∂Q̃). Since Q̃ is homeomorphic to the unit ball, we

can apply lemma 37, to obtain two points in Q̃ that are far from each other, and

have the same image under g̃. Since Q is a net on Q̃, we can find vertices that are

far from each other in Q, and their images are very close under f , contradicting the

non-contraction hypothesis.

Lemma 39 (From Grids to Nets). Let d ≥ 2, and let J = (V,E) be a d-dimensional

grid with V (J) = {vi : ∀j ∈ [d], 0 ≤ ij ≤ kj}, and E(J) = {{vi, vi′} : ‖i − i′‖1 = 1},
such that for each j ∈ [d], kj ≥ R, for some R ≥ c · 128·d

ξd
. Assume that each edge

of J has unit length. Let J ′ be a central contraction of J . Let f : V (J ′) → Rd be

a non-contracting embedding of J ′ into Rd with expansion c. Then, for any p ∈ Rd,

with ‖p− f(vk1/2,...,kd/2)‖2 ≤ R/16, there exists u ∈ V (J ′), with ‖p− f(u)‖2 ≤ 2 · c.

Proof. Let f be a non-contracting embedding of J ′ into Rd with expansion c. As-

sume for the sake of contradiction that there exists a point p ∈ Rd, with ‖p −
f(vk1/2,...,kd/2)‖2 ≤ R/16, such that for any u ∈ V (J), ‖p− f(u)‖2 > 2 · c.

Let u∗ be the vertex of J which is nearest to p under f . That is, u∗ = argminu∈V (J)‖p−
f(u∗)‖2. Since f is non-contracting, we have

DJ(u∗, vk1/2,...,kd/2) ≤ ‖f(u∗) − f(vk1/2,...,kd/2)‖2

≤ ‖f(u∗) − f(p)‖2 + ‖f(p) − f(vk1/2,...,kd/2)‖2

≤ 2 · ‖f(p) − f(vk1/2,...,kd/2)‖2

≤ R/8

Therefore, there exist i∗ ∈ Zd, such that for each j ∈ [d], i∗j ∈ {kj/8, . . . , 7kj/8}, with

132



u∗ = vi∗ .

Let A = {vi1,...,id ∈ V (J) : ‖i− i∗‖∞ ≤ 3R/8}, and define the vertex-induced sub-

graph Q = J [A]. We construct a d-dimensional simplicial complex Q̃ corresponding

to the graph Q as follows. The set of 0-simplices of Q̃ is A. For each i ∈ Zd, such

that for each j ∈ [d], ij ∈ {i∗j − 3R/8, i∗j + 3R/8 − 1}, let Ti be the triangulation of

the hypercube Ai = Q[{vj : j ∈ {i1, i1 + 1}× . . .×{id, id + 1}}]. We add to Q̃ all the

simplices in Ti.

Let g be the restriction of f on V (Q). Recall that for a simplicial complex K, |K|
denotes the union of all its simplices. Let g̃ be the linear extension of g on |Q̃|.

Let B1 = B(p, ‖p − f(u∗)‖2). Note that f(V (J)) ∩ Int(B1) = ∅. We proceed to

define a map h̃ : |Q̃| → Rd \ Int(B1). For each point x ∈ |Q̃| with g̃(x) /∈ Int(B1), we

set h̃(x) = g̃(x). For each point x ∈ |Q̃| with g̃(x) ∈ Int(B1), let rx be the ray starting

at p and passing through g̃(x). We set h̃(x) to be the point where rx intersects ∂B1.

Define φ : |Q̃| → Rd where for each 0-simplex vi1,...,id ∈ Q̃, φ(vi) = (i1− i∗1, . . . , id−
i∗d), and for all other points x ∈ Q̃, φ(x) is defined via a linear extension.

Let C denote the unit ball in Rd under the ℓ2 norm. We define a map µ : C → |Q̃|
as follows. Let µ(0) = u∗, and for each x ∈ Rd \ {0}, let µ(x) = φ−1(3R

8
· x · ‖x‖2

‖x‖∞ ).

Consider the map ψ : C → Rd \ Int(B1) defined by ψ(x) = h̃(µ(x)). The map

ψ is clearly continuous. Furthermore, ψ(C) is homeomorphic to a subset of the unit

ball in Rd, under a homeomorphism that sends 0 to the boundary of the unit ball.

We can thus apply lemma 37 and obtain points y, y′ ∈ C, such that ‖y − y′‖2 ≥ ξd,

and ψ(y) = ψ(y′). Let µ(y) = x, and µ(y′) = x′, for some x, x′ ∈ |Q̃|. Let σ, σ′ be

simplices of Q̃ such that x ∈ σ, x′ ∈ σ′. Pick vertices w,w′ ∈ Q̃, with w ∈ σ, w′ ∈ σ′.

Observe that for each p ∈ |Q̃|, ‖h̃(p) − g̃(p)‖2 < c. Thus,

‖f(w) − f(w′)‖2 = ‖h̃(w) − h̃(w′)‖2

≤ ‖h̃(w) − h̃(x)‖2 + ‖h̃(x′) − h̃(w′)‖2

< ‖g̃(w) − g̃(x)‖2 + ‖g̃(x′) − g̃(w′)‖2 + 4 · c

≤ 6 · c (7.1)
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Figure 7-3: A tight example for lemma 39.

Since J ′ is a central-contraction of J , it follows that for each u, v ∈ V (J ′),

DJ ′(u, v) ≥ DJ(u, v) −R · ξd

4d
. Thus,

DJ ′(w,w′) ≥ ‖φ(w) − φ(w′)‖1 − R · ξd
4d

≥ ‖x− x′‖1 − ‖φ(w) − x‖1 − ‖φ(w′) − x′‖2 −R · ξd
4d

≥ 1

d
· 3R

8
· ‖y − y′‖2 − 2 · d−R · ξd

4d

≥ 1

d
· 3R

8
· ξd − 2 · d−R

ξd
4d

>
ξd
8d

· R− 2 · c

≥ 14 · c (7.2)

Combining (7.1) and (7.2) we obtain a contradiction of the fact that f is non-

contracting.

Remark 2. For any fixed d ≥ 2, the bound on ‖p−f(u)‖2 given in lemma 39 is tight

up to a constant factor. Figure 7-3 depicts an embedding of a 2-dimensional grid into

R2 with distortion O(c), such that ‖p− f(u)‖2 = Ω(c).

7.5 Unsatisfiable instances

We will now show that if there exists an embedding of G into Rd with small enough

distortion, then φ is satisfiable. Let f : V (G) → Rd be an embedding with distortion

at most Γ3/2. After scaling f , we can assume w.l.o.g. that it is non-contracting and
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has expansion at most Γ3/2.

For each clause-gadget Ki, we define a simplicial complex K̃i corresponding to Ki

as follows. We set V (Ki) to be the set of 0-simplices of K̃i. We also add simplices in

K̃i so that each hypercube in Ki corresponds to a subdivision of a solid hypercube in

K̃i.

Similarly, we define a simplicial complex H̃ corresponding to the wall H as follows.

We add all the vertices of H as 0-simplices in H̃. We will add simplices in H̃ , so that

each hypercube ofH corresponds to a subdivision of a solid hypercube in H̃ . This way,

each literal-gadget Λi,j, sub-literal-gadget Λi,j,k, and frontier Φi,j induces naturally a

subcomplex Λ̃i,j, Λ̃i,j,k, and Φ̃i,j of H̃ respectively. Recall that each Λi,j,k is a grid of

side-length s1 = Γ2 + 4Γ3/2, and each Kl is a grid of side-length s2 = 1/ε. We can

assume w.l.o.g. that s2 is a multiple of s1. In this case, by adding extra vertices on

each ∂Λ̃i,j,k, we can pick a triangulation of H̃ such that each Λ̃i,j,k is combinatorially

isomorphic to each K̃l.

We extend f to a map f̃ defined on all of the above complexes, via linear extension

over the simplices.

Lemma 40 shows via an application of lemma 37 that the image of each literal-

gadget has to be ”inside” the image of its frontier.

Lemma 40. For each i ∈ [N ], for each j ∈ {0, 1}, and for each v ∈ V (Λi,j), f(v) is

contained in the interior of a bounded connected component of Rd \ f̃(Φ̃i,j).

Proof. Let X be the subcomplex of H̃ induced on the vertex set

A

[

Γ2λi,j −
Γ2

2
1d . . .Γ

2λ′i,j +
Γ2

2
1d

]

.

Observe that ∂X = Φ̃i,j. Let Y be the unit ball in Rd under the ℓ2 norm. It is easy

to see that there exists a homeomorphism φ : X → Y with φ(v) = 0, and such that

for each x, x′ ∈ X, ‖φ(x) − φ(x)‖2 ≥ ‖x− x′‖2/(20 · d).
Assume that the assertion is true. Then, by lemma 37 we obtain that there exist

z, z′ ∈ X, such that f̃(z) = f̃(z′), and ‖z−z′‖2 ≥ ξd/(20 ·d). Let w and w′ be vertices
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from simplices of X that contain z and z′ respectively. We have

‖w − w′‖2 ≥ ‖z − z′‖2 −
2 ·

√
d

Γ2
≥ ξd

20 · d − 2 ·
√
d

Γ2
>

ξd
40 · d.

On the other hand,

‖f(w) − f(w′)‖2 ≤ ‖f̃(w) − f̃(z)‖2 + ‖f̃(w′) − f̃(z′)‖2 ≤ Γ3/2 · 2 · d
Γ2

< ‖w − w′‖2,

contradicting the non-contraction of f .

Lemma 41. For each i, i′ ∈ [N ], and for each j, j′ ∈ {0, 1}, with either i 6= i,

or j 6= j′, for each v ∈ V (Λi,j), f(v) is contained in the closure of the unbounded

connected component of Rd \ f̃(Φ̃i′,j′).

Proof. Assume for the sake of contradiction that the assertion is not true. Pick

i, i′ ∈ [N ], and j, j′ ∈ {0, 1}, with (i, j) 6= (i′, j′), and v ∈ Λi,j, such that f(v) is

contained in the interior of a bounded connected component X of Rd \ f̃(Φ̃i′,j′).

Let u be a vertex in ∂H̃ . Observe that there exists a path P in the 1-skeleton of

H̃ between v and u, such that for any p ∈ P , and any x ∈ X, ‖p−x‖2 ≥ 1. Note that

the diameter of X is at most Γ3/2 · 8 · d, while the distance between X and f(u) is at

least L/2. Thus, f(u) is not contained in X. It follows that f̃(P )∩ f̃(Φ̃i′,j′) 6= ∅. Pick

z ∈ P , z′ ∈ Φ̃i′,j′, such that f̃(z) = f̃(z′). Pick vertices w and w′ from the simplices

that contain z and z′ respectively. Similarly to the proof of lemma 40, we obtain that

‖f(w) − f(w′)‖2 < ‖w − w′‖2, contradicting the fact that f is non-contracting.

Definition 5 (Variable Gadget Near a Literal Gadget). For j ∈ [M ], l ∈ {0, 1}, we

say that the variable gadget Bj is near the literal gadget Λj,l if for each v ∈ V (Bi)

there exists u ∈ V (Λi,j) such that ‖f(v) − f(u)‖2 ≤ 2/Γ1/2.

Definition 6 (Clause Gadget Near a Literal Gadget). For i ∈ [N ], j ∈ [M ], l ∈
{0, 1}, we say that the clause gadget Ki is near the literal gadget Λj,l if for each

v ∈ V (Ki) there exists u ∈ V (Λi,j) such that ‖f(v) − f(u)‖2 ≤ 2/Γ1/2.
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Lemma 42. For each vertex v in either a variable-gadget, or a clause-gadget, there

exists u ∈ V (H), with ‖f(u) − f(v)‖2 ≤ 2/Γ1/2.

Proof. Observe that the shortest-path metric of G restricted on the wall H , is the

shortest-path metric of a central contraction of G[V (H)]. Note that for each vertex

v in either a variable-gadget, or a clause-gadget,

‖f(x(0,...,0)) − f(v)‖2 ≤ Γ3/2DG(x0,...,0, v) < 10Γ3/2dΓ2 < L/16.

Thus, by lemma 39 if follows that there exists u ∈ V (H), with ‖f(u) − f(v)‖2 ≤
2Γ3/2/Γ2 = 2/Γ1/2.

Lemma 43. For each variable χi, i ∈ [N ], there exists unique j ∈ {0, 1}, such that

the variable-gadget Bi is near the literal gadget Λi,j.

Proof. Let v ∈ V (Bi). By lemma 42 there exists u ∈ V (H), with ‖f(u) − f(v)‖2 ≤
2/Γ1/2. Since f is non-contracting, DG(u, v) ≤ 2/Γ1/2. Let w be the neighbor of v

in H which is closest to u. We have DG(w, u) ≤ 2/Γ1/2. By the construction w is

contained in a literal-gadget Λi,j, for some j ∈ {0, 1}. Moreover, the ball of radius

2/Γ1/2 around w in G, is contained in Λi,j. Thus, u ∈ Λi,j.

It remains to show that for any v′ ∈ V (Bi), u
′ ∈ V (H), such that ‖f(u′)−f(v′)‖2 ≤

2/Γ1/2, u′ ∈ V (Λi,j). Assume for the sake of contradiction that u′ ∈ V (Λi,j′), j
′ 6=

j. It follows that there exists a path P in H from u′ to w′ = x(L,...,L), such that

DG(P,Φi,j) ≥ 1/2. Let P̃ be the polygonal curve in Rd connecting the images under

f of consecutive vertices in P . Since DG(w′,Φi,j) > L/3, it follows that f(w′) is in

the unbounded connected component of Rd \ f̃(Φ̃i,j). By lemma 40, f(u) is contained

in the closure of a bounded connected component X of Rd \ f̃(Φ̃i,j). Therefore, if

f(u′) ∈ X, then P̃ ∩ f̃(Φ̃i,j) 6= ∅. This however implies that there exist z ∈ V (Φi,j),

and z′ ∈ V (P ) such that ‖f(z) − f(z′)‖2 ≤ 2/Γ2, and DG(z, z′) > 1/2, contradicting

the non-contraction of f . We thus obtain that f(u′) /∈ X.

The distance between f(u) and f̃(Φ̃i,j) is at least 1/(2d) > 2/Γ1/2. Thus, f(v) ∈
X. Similarly, it follows that f(v′) /∈ X. Thus, f̃(Bi) ∩ f̃(Φ̃i,j) 6= ∅, contradicting the

non-contraction of f . This concludes the proof.
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Lemma 44. For each i ∈ [N ], there exists a unique variable χj appearing in Ci,

j ∈ [M ], such that the clause-gadget Ki is near the literal-gadget Λj,l, where l = 0 if

χi appears as a positive literal in Ci, and l = 1 otherwise.

Proof. The proof is analogous to the proof of lemma 43.

The following lemma shows that main structural property satisfied by the variable-

gadgets, and the clause-gadgets; they cannot be both near the same literal-gadget.

This is essentially the most technically involved part of this section.

Lemma 45. For each i ∈ [N ], j ∈ [M ], l ∈ {0, 1}, if the variable-gadget Bi is near

the literal-gadget Λi,l, then the clause-gadget Kj is not near the literal-gadget Λi,l.

Proof. Assume for the sake of contradiction that Bi and Kj are both near the literal-

gadget Λi,l. Assume that Cj is the t-th clause in which the variable χi appears. By

the construction of the complex H̃, there exists a simplicial map φ : K̃j → Λ̃i,l,t, such

that φ(K̃j) = ∂Λ̃i,l,t.

Since Kj is near Λi,l, it follows that for each v ∈ V (Kj), there exists r(v) ∈
V (Λi,l,t), such that ‖f(v) − f(r(v))‖2 ≤ 2/Γ1/2. Pick a shortest path Pv between

φ2(v) and φ1(r(v)) in the 1-skeleton of Λ̃i,l,t.

Let Ỹ be the subcomplex of Λ̃i,l,t obtained by contracting each Pv into r(v), and

removing any simplices that contain the same vertex at least twice. Let s : Λ̃i,l,t → Ỹ

be the resulting map. Observe that s is simplicial, and that s(φ(K̃j)) = ∂Ỹ . Note

that by contracting an edge of a path Pv, with one end-point on the boundary, and

removing the simplices with multiply occurrences of a vertex, the resulting space is

homeomorphic to Λ̃i,l,t. Since Ỹ is obtained after a finite number of such contractions,

it follows that it is homeomorphic to Λ̃i,l,t.

Let p be the centroid of Λi,l,t. That is, p = xΓ2(λi,l,t+λ′
i,l,t)/2. Let z = bi,(2t−1)/ε.

Note that {p, z} ∈ E(G), is an edge of length 1/Γ. Since Bi is near Λi,j, it follows that

there exists w ∈ V (Λi,l,t), such that ‖f(z)−f(w)‖2 ≤ 2/Γ1/2, and DG(w, p) ≤ 2/Γ1/2.

We will first show that f(z) is contained in a bounded connected component of

Rd\ f̃(K̃j). Suppose that this is not true. We define a map g̃(Ỹ ) → Rd as follows. For
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each 0-simplex v ∈ ∂Ỹ , we set g̃(v) = f̃(φ−1(s−1(v))). For each 0-simplex v ∈ Int(Ỹ ),

we set g̃(v) = f̃(s−1(v)). For each other point of Ỹ , g̃ is defined via linear extension on

each simplex. Let Bd denote the ℓ2 unit ball in Rd. Note that X̃ is homeomorphic to

Bd, via a homeomorphism h, with h(φ1(w)) = 0, and such that for each q, q′ ∈ Λ̃i,j,t,

‖q − q′‖ ≥ ‖h(φ1(q)) − h(φ1(q
′))‖2/(2d). Observe that if f(w) is contained in the

unbounded connected component of Rd \ f̃(K̃j), then g̃(h(0)) is contained in the

unbounded connected component of Rd \ g̃(h(Bd)). Thus, by applying lemma 37 on

the map g̃ ◦ h, we obtain that there exist a, a′ ∈ Bd, with g̃(h(a)) = g̃(h(a′)), and

‖a− a′‖2 ≥ ξd. Let b, b′ ∈ V (Λi,j,l) be the nearest vertices to h(a), h(a′) respectively

in Λ̃i,j,l. We have ‖g̃(b) − g̃(b′)‖2 ≤ 2Γ3/2/Γ2 = 2/Γ1/2. Since f is non-contracting, it

follows each Pv has length at most 2/Γ1/2. Therefore, DG(b, b′) ≥ ξd/d− 6/Γ2. Note

that by the definition of g̃, we have that for any v ∈ Ỹ , ‖f̃(v)−g̃(v)‖2 ≤ 2/Γ1/2. Thus,

‖f̃(b)− f̃(b′)‖2 ≤ 6/Γ1/2 < DG(b, b′), contradicting the non-contraction of f . We thus

obtain that f(w) is contained in a bounded connected component of Rd\ f̃(K̃j). Since

‖f(w) − f(z)‖2 ≤ 2/Γ2, and the distance between f(w) and f̃(∂K̃j) is at least 1/3,

it follows that f(z) is also in a bounded connected component of Rd \ f̃(K̃j).

Let, p′ = xΓ2(3λi,l,t+λ′
i,l,t)/2. Let z′ = bi,(2t−2)/ε. Note that {p′, z′} ∈ E(G), is an

edge of length 1/Γ. Since Bi is near Λi,j, it follows that there exists w′ ∈ V (Λi,l,t),

such that ‖f(z′) − f(w′)‖2 ≤ 2/Γ1/2, and DG(w′, p′) ≤ 2/Γ1/2.

We now claim that f̃(z′) is in the unbounded connected component of Rd \ f̃(K̃j).

To see that, let Q be a path between w and x′ = x(L,...,L) in G, such that DG(Q,Kj) >

1/4. Observe that the distance between f̃(x′) and f̃(K̃j) is greater than the diam-

eter of f̃(K̃j). Thus, f̃(x′) is contained in the unbounded connected component of

Rd \ f̃(K̃j). By the non-contraction of f , it follows that the polygonal curve con-

necting consecutive vertices in Q, cannot intersect f̃(K̃j). Thus, f̃(w′) is also in

the unbounded connected component of Rd \ f̃(K̃j). Also, since ‖f̃(w′) − f̃(z′)‖2 is

less that the distance between f̃(w′) and f̃(K̃j), it follows that f̃(z′) is also in the

unbounded connected component of Rd \ f̃(K̃j).

Since f̃(z) is in the bounded component of Rd \ f̃(K̃j), and f̃(z′) is in the un-

bounded component of Rd \ f̃(K̃j), it follows that there exist c ∈ V (Kj), c
′ ∈ V (Bi),
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such that ‖f(c) − f(c′)‖2 ≤ 2Γ3/2ε. On the other hand, DG(c, c′) ≥ DG(Kj , Bi) =

2/Γ > ‖f(c) − f(c′)‖2, contradicting the non-contraction of f .

Lemma 46. If there exists an embedding of G into Rd with distortion at most Γ3/2,

then φ is satisfiable.

Proof. We define a truth assignment T as follows. By lemma 43 we have that for each

variable χi, there exists unique ji ∈ {0, 1} such that the variable-gadget Bi is near

the literal-gadget Λi,j. We set T (χi) = true if ji = 1, and T (χi) = false otherwise.

By lemma 44, we have that for each clause Ci, there exists unique j ∈ [M ], and

unique l ∈ {0, 1}, such that the variable χj appears in Ci, Ki is near Λj,l, and l = 0

iff χj appears as a positive literal in Ci. Let y be the literal of χj in Ci. By lemma

45, Bj is not near Λj,l, and therefore T (y) = true. It follows that T satisfies φ.

Theorem 14. For any fixed d ≥ 2, the problem of computing a minimum distortion

embedding of an n-point metric space into Rd, is NP-hard to approximate within

Ω(n1/(17d)).

Proof. We have n = |V (G)| = |V (H)| +∑i∈[M ] |V (Ki)| +
∑

j∈[N ] |V (Bj)| = O(Ld) +

O(Md(1/ε)d−1) + O(N/ε) = O(Ld) = O(M17d). By lemma 38, if φ is satisfiable,

then G embeds into Rd with distortion at most O(MΓ) = O(M5). Also, by lemma

46, if φ is unsatisfiable, then any embedding of G into Rd has distortion at least

Ω(Γ3/2) = Ω(M6). Therefore, it is NP-hard to approximate the optimal distortion

within a factor better than Ω(M) = Ω(n1/(17d))
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