# Ordinal Embeddings of Minimum Relaxation: General Properties, Trees, and Ultrametrics

Noga Alon (Tel Aviv University)
Mihai Bădoiu (MIT)
Erik D. Demaine (MIT)
Martín Farach-Colton (Rutgers University)
MohammadTaghi Hajiaghayi (MIT)
Anastasios Sidiropoulos (MIT)

### Embeddings of Metric Spaces

- Given a finite metric space (X,D)
  - $D(p,q)=0 \Leftrightarrow p=q$
  - D(p,q)=D(q,p)
  - $D(p,q) \le D(p,r) + D(r,q)$
- Mapping f:X→Y
- Distortion of f is:

$$\max_{p,q} \frac{D'(f(p), f(q))}{D(p,q)} \times \max_{p,q} \frac{D(p,q)}{D'(f(p), f(q))}$$

**Goal**: Minimize distortion

### Metric Embedding - Example



distortion = 
$$5 \cdot (1/3) = 5/3$$

#### Motivation

- Compact data representation
- Embedding into algorithmically good spaces (e.g. Euclidean spaces, trees)
- Visualization / Clustering

#### Results on Low-Distortion Embeddings

- Worst-case bounds
  - Any n-point metric into Euclidean space with O (log n) distortion. [Bourgain 1985]
  - $\Omega(\log n)$  bound. [Linial, London, Rabinovich 1995]
- Approximation algorithms
  - Any n-point metric into  $\ell_2$  with OPT distortion. [Linial, London, Rabinovich 1995]
  - Unweighted graphs into line, with O(OPT<sup>2</sup>), etc. [Bădoiu, Dhamdhere, Gupta, Rabinovich, Raecke, Ravi, S. 2005], also [Bădoiu,Indyk,Rabinovich,S. 2004]
  - General metrics into Trees (additive) [Agarwala, Bafna, Farach, Narayan, Paterson, Thorup 1999]

## Ordinal Embeddings

- Relax constraints on embedded lengths:
  - Ignore exact distances
  - Require only the total order on the distances to match between source and target metrics
- Such an embedding called ordinal embedding
- "Normal" embedding called metric embeddings

## Ordinal Embeddings - Example



## Ordinal Embeddings – Motivation

- Sometimes order is all that matters
- Nearest neighbors
  - Preserved by ordinal embedding
- Visualization
  - Distinguish large from small distances.
  - Classical approach in Visualization/MDS in early 60s.

#### Known Results on Ordinal Embedding

- NP-hard to decide whether a distance matrix can be ordinally embedded into a tree metric [Shah & Farach-Colton 2004]
- A metric is an ultrametric iff it requires
   n-1 dimensions [Holman 1972]
- Every distance matrix on n points can be ordinally embedded into (n-1)-dimensional Euclidean space, and almost every distance matrix requires Ω(n) dimensions [Bilu & Linial 2004]

## Relaxing ordinal embeddings

Instead preserving the total order, preserve a partial order.

#### Question:

Which orders should we preserve?

#### Ordinal Relaxation

- Analog to metric distortion
- □ Embedding f has relaxation  $\alpha \ge 1$  if
- $\blacksquare$  I.e., must preserve the order between distances that are different by a factor of more than  $\alpha$
- □ Note: α≤c

**Goal:** Minimize relaxation

## Ordinal relaxation - Example



### Tie breaking

Uniform metric into the line:



#### Our Results

- When is it relaxation = distortion?
- Worst-case bounds of unweighted trees into d-dimensional Euclidean space
- O(1)-approximation algorithm for embedding unweighted trees into the line
- Ultrametrics into the line with relaxation 1
- OPT for embedding into ultrametrics

### Our Results (cont.)

Worst case relaxation for embedding into ddimensional Euclidean space is at least

```
\log n/(\log d + \log\log n + O(1))
```

```
\log n/(\log d + \log(\log n + \log p) + O(1))
```

 $\hfill \square$  For d-dimensional  $\ell_p$  space, for every odd integer p

```
\log n/(\log 2d^2 + 3d \log n + d \log p + O(d))
```

 $\blacksquare$  For d-dimensional  $\ell_{\infty}$  space

```
\log n/(\log d + \log\log n + O(1))
```

## Lower bound for $\ell_2^{d}$

□ Let  $P_1$ , ...,  $P_m$  be m polynomials of degree at most k, on t real variables. If  $2m \ge t$ , then the number of *sign-patterns* of  $(P_1, ..., P_m)$  is at most  $(8ekm/t)^t$ . [Alon 1995]

□ For every g≥3, n≥3, there are n-vertex graphs with at least n¹+¹/g/4 edges, and girth at least g. [Erdős, Sachs 1963]

## Lower bound for $\ell_2^{d}$ (cont.)

#### In Euclidean embedding:

- Each edge-edge order is specified by a quadratic equation.
- There are n<sup>4</sup>/4 such order polynomials on nd variables.
- Therefore there are few possible orderings in our target space.

## Lower bound for $\ell_2^d$ (cont.)

Since there exists a dense high-girth graph, it has many subgraphs with of m/2 edges,

$$G_1, G_2, ...$$

By PHP, two such graphs must end up with same ordering.



## Lower bound for $\ell_2^{d}$ (cont.)

□ Thus, relaxation > g - 1 = log n / (log d + log log n + 5) - 1

- Theorem: Any unweighted tree can be embedded into d-dimensional Euclidean space with relaxation O(n¹/d).
- □ **Theorem**: There is a tree for which every embedding has relaxation  $\Omega(n^{1/(d+1)})$ .
- □ Any tree can be embedded into ddimensional euclidean space with distortion Õ(n¹/(d-¹)). [Gupta 2000]
- □ Any embedding of the n-star has distortion  $\Omega(n^{1/d})$ .









Repeat n<sup>1/d</sup> times.

 $\Rightarrow$ 

 $O(n^{(d-1)/d})$  leaves.

Using [Gupta 2000]  $\tilde{O}(n^{1/d})$  distortion.



Map every subtree into its root

 $\Longrightarrow$ 

 $\tilde{O}(n^{1/d})$  relaxation

- Theorem: There is a 3-approximation poly-time algorithm for minimizing relaxation of ordinal embedding of an unweighted tree into line.
- In contrast, best approximation algorithm for minimum-distortion embedding is Õ(n<sup>O</sup> (1))-approximation. [Bădoiu,Dhamdhere,

Gupta, Rabinovich, Raecke, Ravi, S. 2005], also [Bădoiu, Indyk, Rabinovich, S. 2004]

Lower bound: 3-spider



 $\Rightarrow$  relaxation  $\Omega(n)$ 



Find longest 3-spider



Find longest 3-spider, embed longest hair



Find longest 3-spider, embed longest legs



Map remaining subtrees into their roots

## Conclusions – Open problems

- □ Worst case relaxation for embedding into  $O(\log n)$ -dimensional Euclidean space is  $Ω(\log n / \log\log n)$ , and  $O(\log n)$ .
- $\square$  Dimensionality reduction in  $\ell_1$ ?
- Approximation algorithms