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Abstract
A common approach for dealing with large data sets is to
stream over the input in one pass, and perform computations
using sublinear resources. For truly massive data sets, how-
ever, even making a single pass over the data is prohibitive.
Therefore, streaming computations must be distributed over
many machines. In practice, obtaining significant speedups
using distributed computation has numerous challenges in-
cluding synchronization, load balancing, overcoming proces-
sor failures, and data distribution. Successful systems in
practice such as Google’s MapReduce and Apache’s Hadoop
address these problems by only allowing a certain class of
highly distributable tasks defined by local computations that
can be applied in any order to the input.

The fundamental question that arises is: How does the
class of computational tasks supported by these systems
differ from the class for which streaming solutions exist?

We introduce a simple algorithmic model for massive,
unordered, distributed (mud) computation, as implemented
by these systems. We show that in principle, mud algo-
rithms are equivalent in power to symmetric streaming algo-
rithms. More precisely, we show that any symmetric (order-
invariant) function that can be computed by a streaming
algorithm can also be computed by a mud algorithm, with
comparable space and communication complexity. Our sim-
ulation uses Savitch’s theorem and therefore has superpoly-
nomial time complexity. We extend our simulation result to
some natural classes of approximate and randomized stream-
ing algorithms. We also give negative results, using com-
munication complexity arguments to prove that extensions
to private randomness, promise problems and indeterminate
functions are impossible. We also introduce an extension of
the mud model to multiple keys and multiple rounds.

1 Introduction

We now have truly massive data sets, many of which
are generated by logging events in physical systems.
For example, data sources such as IP traffic logs, web
page repositories, search query logs, and retail and
financial transactions, consist of billions of items per
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day, and are accumulated over many days. Internet
search companies such as Google, Yahoo!, and MSN,
financial companies such as Bloomberg, retail businesses
such as Amazon and WalMart, and other companies use
this type of data.

In theory, the data stream model facilitates the
study of algorithms that process such truly massive
data sets. Data stream models [1, 9] make one pass
over the logs, read and process each item on the stream
rapidly and use local storage of size sublinear—typically,
polylogarithmic—in the input. There is now a large
body of algorithms and lower bounds in data stream
models (see [12] for a survey).

Yet, streaming models alone are not sufficient. For
example, logs of Internet activity are so large that no
single processor can make even a single pass over the
data in a reasonable amount of time. Therefore to
accomplish even a simple task we need to distribute
the computations. This distribution poses numerous
challenges, both theoretical and practical. In theory,
the streaming model is highly sequential and one needs
to design distributed versions of algorithms. In practice,
one has to deal with data distribution, synchronization,
load balancing, processor failures, etc. Distributed
systems such as Google’s MapReduce [7] and Apache’s
Hadoop [4] are successful large scale platforms that can
process many terabytes of data at a time, distributed
over hundreds or even thousands of machines, and
process hundreds of such analyses each day. One reason
for their success is that algorithms written for these
platforms have a simple form that allow the machines
to process the input in an arbitrary order, and combine
partial computations using whatever communication
pattern is convenient.

The fundamental question that arises is: Does the
class of computational tasks supported by these systems
differ from the class for which streaming solutions exist?
That is, successful though these systems may be in
practice, does using multiple machines (rather than a
single streaming process) inherently limit the set of
possible computations?

To address this problem, we first introduce a simple
model for these algorithms, which we refer to as “mud”



Φ(x) = 〈x, x〉 Φ(x) = 〈x, h(x), 1〉

⊕(〈a1, b1〉, 〈a2, b2〉) = 〈min(a1, a2),max(b1, b2)〉 ⊕(〈a1, h(a1), c1〉, 〈a2, h(a2), c2〉)

=
{
〈ai, h(ai), ci〉 if h(ai) < h(aj)
〈a1, h(a1), c1 + c2〉 otherwise

η(〈a, b〉) = b− a η(〈a, b, c〉) = a if c = 1

Figure 1: Examples of mud algorithms for computing the total span (left), and a uniform random sample of the
unique items in a set (right). Here h is an approximate minwise hash function [5, 6].

(massive, unordered, distributed) algorithms. Later, we
relate mud algorithms to streaming computations.

1.1 Mud algorithms. Distributed systems such as
MapReduce and Hadoop are engines for executing tasks
with a certain simple structure over many machines.
Algorithms written for these platforms consist of three
functions: (1) a local function to take a single in-
put data item and output a message, (2) an aggre-
gation function to combine pairs of messages, and in
some cases (3) a final post-processing step. The sys-
tem assumes that the local function can be applied
to the input data items independently in parallel, and
that the aggregation function can be applied to pairs
of messages in any order. The platform is therefore
able to synchronize the machines very coarsely (assign-
ing them to work on whatever chunk of data becomes
available), and does not need machines to share vast
amounts of data (thereby eliminating communication
bottlenecks)—yielding a highly distributed, robust exe-
cution in practice.

Example. Consider this simple algorithm to compute
the sum of squares of a large set of numbers:1

x = input_record;

x_squared = x * x;

aggregator: table sum;

emit aggregator <- x_squared;

This program is written as if it only runs on a single
input record, since it is interpreted as the local func-
tion in MapReduce. Instantiating the aggregator ob-
ject as a “table” of type “sum” signals MapReduce to
use summation as its aggregation function. “Emitting”
x squared into the aggregator defines the message out-
put by the local function. When MapReduce executes
this program, the final output is the result of aggre-
gating all the messages (in this case the sum of the

1This program is written in Sawzall [15], a language at

Google for logs processing that runs on the MapReduce platform.
The example is a complete Sawzall program minus some type

declarations.

squares of the numbers). This output can then be post-
processed in some way (e.g., taking the square root, for
computing the L2 norm). Many algorithms of this form
are used daily for processing logs [15].

Definition of a mud algorithm. We now formally
define a mud algorithm as a triple m = (Φ,⊕, η). The
local function Φ : Σ → Q maps an input item to a
message, the aggregator ⊕ : Q × Q → Q maps two
messages to a single message, and the post-processing
operator η : Q → Σ produces the final output. The
output can depend on the order in which ⊕ is applied.
Formally, let T be an arbitrary binary tree circuit with
n leaves. We use mT (x) to denote the q ∈ Q that results
from applying ⊕ to the sequence Φ(x1), . . . ,Φ(xn) along
the topology of T with an arbitrary permutation of
these inputs as its leaves. The overall output of the
mud algorithm is then η(mT (x)), which is a function
Σn → Σ. Notice that T is not part of the algorithm
definition, but rather, the algorithm designer needs to
make sure that η(mT (x)) is independent of T .2 We
say that a mud algorithm computes a function f if
η(mT (·)) = f for all trees T .

We give two examples in Figure 1. On the left is a
mud algorithm to compute the total span (max−min)
of a set of integers. On the right is a mud algorithm to
compute a uniform random sample of the unique items
in a set (i.e, items that appear at least once) by using
an approximate minwise hash function h [5, 6].

The communication complexity of a mud algorithm
is log |Q|, the number of bits needed to represent a “mes-
sage” from one component to the next. We consider the
{space, time} complexity of a mud algorithm to be the
maximum {space, time} complexity of its component
functions Φ, ⊕, and η.3

2Independence is implied if ⊕ is associative and commutative;

however, being associative and commutative are not necessary
conditions for being independent of T .

3This is the only thing that is under the control of the

algorithm designer; indeed the actual execution time—which we
do not formally define here—will be a function of the number of



1.2 How do mud algorithms and streaming al-
gorithms compare? Recall that a mud algorithm to
compute a function must work for all computation trees
over ⊕ operations; now consider the following tree:
⊕(⊕(. . . ⊕ (⊕(q,Φ(x1)),Φ(x2)), . . . ,Φ(xk−1)),Φ(xk)).
This sequential application of ⊕ corresponds to the con-
ventional streaming model (see e.g. the survey [12]).

Formally, a streaming algorithm is given by s =
(σ, η), where σ : Q × Σ → Q is an operator ap-
plied repeatedly to the input stream, and η : Q →
Σ converts the final state to the output. The no-
tation sq(x) denotes the state of the streaming algo-
rithm after starting at state q, and operating on the se-
quence x = x1, . . . , xk in that order, that is, sq(x) =
σ(σ(. . . σ(σ(q, x1), x2), . . . , xk−1), xk). On input x ∈
Σn, the streaming algorithm computes η(s0(x)), where
0 is the starting state. We say a streaming algorithm
computes a function f if f = η(s0(·)). As in mud,
we define the communication complexity to be log |Q|
(which is typically polylogarithmic), and the {space,
time} complexity as the maximum {space, time} com-
plexity of σ and η.

If a function can be computed by a mud algorithm,
it can also be computed by a streaming algorithm: given
a mud algorithm m = (Φ,⊕, η), there is a streaming
algorithm s = (σ, η) of the same complexity with
same output, by setting σ(q, x) = ⊕(q,Φ(x)). The
central question then is, can any function computable
by a streaming algorithm also be computed by a mud
algorithm? The immediate answer is clearly no. For
example, consider a streaming algorithm that counts
the number of occurrences of the first element in the
stream: no mud algorithm can accomplish this since
it cannot determine the first element in the input.
Therefore, in order to be fair, since mud algorithms
work on unordered data, we restrict our attention to
functions Σn → Σ that are symmetric (order-invariant)
and address this central question.

1.3 Our Results. We present the following positive
and negative results comparing mud to streaming algo-
rithms, restricted to symmetric functions:

• We show that any deterministic streaming algo-
rithm that computes a symmetric function Σn → Σ
can be simulated by a mud algorithm with the same
communication complexity, and the square of its
space complexity. This result generalizes to cer-
tain approximation algorithms, and randomized al-
gorithms with public randomness.

machines available, runtime behavior of the platform and these
local complexities.

• We show that the claim above does not extend to
richer symmetric function classes, such as when the
function comes with a promise that the domain is
guaranteed to satisfy some property (e.g., finding
the diameter of a graph known to be connected),
or the function is indeterminate, i.e., one of many
possible outputs is allowed for “successful compu-
tation.” (e.g., finding a number in the highest 10%
of a set of numbers.) Likewise, with private ran-
domness, the claim above is no longer true.

The simulation in our result takes time
Ω(2polylog(n)) from the use of Savitch’s theorem.
Therefore our simulation is not a practical solution
for executing streaming algorithms on distributed
systems; for any specific problem, one may design
alternative mud algorithms that are more efficient or
even practical. One of the implications of our result
however is that any separation between mud algorithms
and streaming algorithms for symmetric functions
would require lower bounds based on time complexity.

Also, when we consider symmetric problems that
have been addressed in the streaming literature, they
seem to always yield mud algorithms (e.g., all streaming
algorithms that allow insertions and deletions in the
stream, or are based on various sketches [1] can be
seen as mud algorithms). In fact, we are not aware
of a specific problem that has a streaming solution, but
no mud algorithm with comparable complexity (up to
polylog factors in space and per-item time).4 Our result
here provides some insight into this intuitive state of our
knowledge and presents rich function classes for which
mud is provably as powerful as streaming.

1.4 Techniques. One of the core arguments used to
prove our positive results comes from an observation
in communication complexity. Consider evaluating a
symmetric function f(x) given two disjoint portions of
the input x = xA · xB , in each of the two following
models. In the one-way communication model (OCM),
David knows portion xA, and sends a single message
D(xA) to Emily who knows portion xB ; she then out-
puts E(D(xA),xB) = f(xA · xB). In the simultaneous
communication model (SCM) both Alice and Bob send
a message A(xA) and B(xB) respectively, simultane-
ously to Carol who must compute C(A(xA), B(xB)) =
f(xA · xB). Clearly, OCM protocols can simulate SCM
protocols.5 At the core, our result relies on observing

4There are specific algorithms—such as one of the algorithms

for estimating F2 in [1]—that are sequential and not mud al-
gorithms, but there are other alternative mud algorithms with

similar bounds for the problems they solve.
5The SCM here is identical to the simultaneous message

model [2] or oblivious communication model [16] studied previ-



that SCM protocols can simulate OCMs too, for sym-
metric functions f , by guessing the inputs that result in
the particular message received by a party.

To prove our main result—that mud can simulate
streaming—we apply the above argument many times
over an arbitrary tree topology of⊕ computations, using
Savitch’s theorem to guess input sequences that match
input states of streaming computations. This argument
is delicate because we can use the symmetry of f only
at the root of the tree; simply iterating the argument at
each node in the computation tree independently would
yield weaker results that would force the function to be
symmetric on subsets of the input, which is not assumed
by our theorem.

To prove our negative results, we also use communi-
cation limitations—of the intermediate SCM. We define
order-independent problems easily solved by a single-
pass streaming algorithm and then formulate instances
that require a polynomial amount of communication
in the SCM. The order-independent problems we cre-
ate are variants of parity and index problems that are
traditionally used in communication complexity lower
bounds.

1.5 Multiple rounds and multiple keys. Mud
algorithms model many useful computations performed
every day on massive data sets, but to fully capture
the capabilities of the modern distributed systems such
as MapReduce and Hadoop, we can generalize the
algorithms by allowing both multiple keys and multiple
rounds. In Section 4 we define this extended model and
discuss its computational power.

2 Main Result

In this section we give our main result, that any
symmetric function computed by a streaming algorithm
can also be computed by a mud algorithm.

2.1 Preliminaries. As is standard, we fix the space
and communication to be polylog(n).6

Definition 2.1. A symmetric function f : Σn →
Σ is in the class MUD if there exists a polylog(n)-
communication, polylog(n)-space mud algorithm m =
(Φ,⊕, η) such that for all x ∈ Σn, and all computation
trees T , we have η(mT (x)) = f(x).

ously if there are k = 2 players. For k > 2, our mud model is

not the same as in previous work [2, 16]. The results in [2, 16]
as it applies to us are not directly relevant since they only show

examples of functions that separate SCM and OCM significantly.
6The results in this paper extend to other sub-linear (say

√
n)

space, and communication bounds in a natural way.

Definition 2.2. A symmetric function f : Σn →
Σ is in the class SS if there exists a polylog(n)-
communication, polylog(n)-space streaming algorithm
s = (σ, η) such that for all x ∈ Σn we have η(s0(x)) =
f(x).

Note that for subsequences xα and xβ , we get
sq(xα · xβ) = ss

q(xα)(xβ). We can apply this identity
to obtain the following simple lemma.

Lemma 2.1. Let xα and x′α be two strings and q a state
such that sq(xα) = sq(x′α). Then for any string xβ, we
have sq(xα · xβ) = sq(x′α · xβ).

Proof. We have sq(xα · xβ) = ss
q(xα)(xβ) =

ss
q(x′

α)(xβ) = sq(x′α · xβ) �

Also, note that for some f ∈ SS, because f is symmetric,
the output η(s0(x)) of a streaming algorithm s = (σ, η)
that computes it must be invariant over all permutations
of the input; i.e. ∀x ∈ Σn, permutations π:

(2.1) η(s0(x)) = f(x) = f(π(x)) = η(s0(π(x)))

This fact about the output of s does not necessarily
mean that the state of s is permutation-invariant; in-
deed, consider a streaming algorithm to compute the
sum of n numbers that for some reason remembers the
first element it sees (which is ultimately ignored by the
function η). In this case the state of s depends on the
order of the input, but the final output does not.

2.2 Statement of the result. We argued that
streaming algorithms can simulate mud algorithms by
setting σ(q, x) = ⊕(Φ(x), x), which implies MUD ⊆ SS.
The main result in this paper is:

Theorem 2.1. For any symmetric function f : Σn →
Σ computed by a g(n)-space, c(n)-communication
streaming algorithm (σ, η), with g(n) = Ω(log n) and
c(n) = Ω(logn), there exists a O(c(n))-communication,
O(g2(n))-space mud algorithm (Φ,⊕, η) that also com-
putes f .

This immediately gives: MUD = SS.

2.3 Proving Theorem 2.1. We prove Theorem 2.1
by simulating an arbitrary streaming algorithm with a
mud algorithm. The main challenges of the simulation
are in

(i) achieving polylog communication complexity in
the messages sent between ⊕ operations,

(ii) achieving polylog space complexity for compu-
tations needed to support the protocol above, and



(iii) extending the methods above to work for an
arbitrary computation tree.

We tackle these three challenges in order.

(i) Communication complexity. Consider the final
application of ⊕ (at the root of the tree T ) in a mud
computation. The inputs to this function are two mes-
sages qA, qB ∈ Q that are computed independently from
a partition xA,xB of the input. The output is a state qC
that will lead directly to the overall output η(qC). This
task is similar to the one Carol faces in SCM: the input
Σn is split arbitrarily between Alice and Bob, who inde-
pendently process their input (using unbounded compu-
tational resources), but then must transmit only a single
symbol from Q to Carol; Carol then performs some final
processing (again, unbounded), and outputs an answer
in Σ. We show:

Theorem 2.2. Every function f ∈ SS can be computed
in the SCM with communication polylog(n).

Proof. Let s = (σ, η) be a streaming algorithm that
computes f . We assume (wlog) that the streaming
algorithm s maintains a counter in its state q ∈ Q
indicating the number of input elements it has seen so
far.

We compute f in the SCM as follows. Let xA
and xB be the partitions of the input sequence x sent
to Alice and Bob. Alice simply runs the streaming
algorithm on her input sequence to produce the state
qA = s0(xA), and sends this to Carol. Similarly, Bob
sends qB = s0(xB) to Carol. Carol receives the states qA
and qB , which contain the sizes nA and nB of the input
sequences xA and xB . She then finds sequences x′A and
x′B of length nA and nB such that qA = s0(x′A) and
qB = s0(x′B). (Such sequences must exist since xA and
xB are candidates.) Carol then outputs η(s0(x′A · x′B)).
To complete the proof:

η(s0(x′A · x′B)) = η(s0(xA · x′B)) (by Lemma 2.1)
= η(s0(x′B · xA)) (by (2.1))
= η(s0(xB · xA)) (by Lemma 2.1)
= η(s0(xA · xB)) (by (2.1))
= f(xA · xB) (correctness of s)
= f(x). �

(ii) Space complexity. The simulation above uses
space linear in the input. We now give a more space-
efficient implementation of Carol’s computation. More
precisely, if the streaming algorithm uses space g(n), we
show how Carol can use only space O(g2(n)); this space-
efficient simulation will eventually be the algorithm used
by ⊕ in our mud algorithm.

Lemma 2.2. Let s = (σ, η) be a g(n)-space streaming
algorithm with g(n) = Ω(log n). Then, there is a
O(g2(n))-space algorithm that, given states qA, qB ∈ Q
and lengths nA, nB ∈ [n], outputs a state qC = s0(xC),
where xC = x′A · x′B for some x′A,x

′
B of lengths nA, nB

such that s0(x′A) = qA and s0(x′B) = qB. (If such a qC
exists.)

Proof. Note that there may be many x′A,x
′
B that satisfy

the conditions of the theorem, and thus there are many
valid answers for qC . We only require an arbitrary such
value. However, if we only have g2(n) space, and g2(n)
is sublinear, we cannot even write down x′A and x′B .
Thus we need to be careful about how we find qC .

Consider a non-deterministic algorithm for comput-
ing a valid qC . First, guess the symbols of x′A one at a
time, simulating the streaming algorithm s0(x′A) on the
guess. If after nA guessed symbols we have s0(x′A) 6= qA,
reject this branch. Then, guess the symbols of x′B , sim-
ulating (in parallel) s0(x′B) and sqA(x′B). If after nB
steps we have s0(x′B) 6= qB , reject this branch; other-
wise, output qC = sqA(x′B). This procedure is a non-
deterministic, O(g(n))-space algorithm for computing a
valid qC . By Savitch’s theorem [17], it follows that qC
can be computed by a deterministic, g2(n)-space algo-
rithm. (The application of Savitch’s theorem in this
context amounts to a dynamic program for finding a
state qC such that the streaming algorithm can get from
state qA to qC and from state 0 to qB using the same
input string of length nB .) �

The running time of this algorithm is super-
polynomial from the use of Savitch’s theorem, which
dominates the running time in our simulation.

(iii) Finishing the proof for arbitrary compu-
tation trees. To prove Theorem 2.1, we will simu-
late an arbitrary streaming algorithm with a mud algo-
rithm, setting ⊕ to Carol’s procedure, as implemented
in Lemma 2.2. The remaining challenge is to show that
the computation is successful on an arbitrary computa-
tion tree; we do this by relying on the symmetry of f
and the correctness of Carol’s procedure.

Proof of Theorem 2.1: Let f ∈ SS and let s = (σ, η) be a
streaming algorithm that computes f . We assume wlog
that s includes in its state q the number of inputs it has
seen so far. We define a mud algorithm m = (Φ,⊕, η)
where Φ(x) = σ(0, x), and using the same η function
as s uses. The function ⊕, given qA, qB ∈ Q and input
sizes nA, nB , outputs some qC = qA⊕qB = s0(xC) as in
Lemma 2.2. To show the correctness of m, we need to
show that η(mT (x)) = f(x) for all computation trees
T and all x ∈ Σn. For the remainder of the proof,
let T and x∗ = (x∗1, . . . , x

∗
n) be an arbitrary tree and



input sequence, respectively. The tree T is a binary in-
tree with n leaves. Each node v in the tree outputs a
state qv ∈ Q, including the leaves, which output a state
qi = Φ(x∗i ) = σ(0, x∗i ) = s0(x∗i ). The root r outputs qr,
and so we need to prove that η(qr) = f(x∗).

The proof is inductive. We associate with each node
v a “guess sequence,” xv, which for internal nodes is
the sequence xC as in Lemma 2.2, and for leaves i is
the single symbol x∗i . Note that for all nodes v, we have
qv = s0(xv), and the length of xv is equal to the number
of leaves in the subtree rooted at v.

Define a frontier of tree nodes to be a set of nodes
such that each leaf of the tree has exactly one ancestor
in the frontier set. (A node is considered an ancestor of
itself.) The root itself is a frontier, as is the complete set
of leaves. We say a frontier V = {v1, . . . , vk} is correct if
the streaming algorithm on the data associated with the
frontier is correct, that is, η(s0(xv1 · xv2 · · · · · xvk)) =
f(x∗). Since the guess sequences of a frontier always
have total length n, the correctness of a frontier set is
invariant of how the set is ordered (by (2.1)). Note that
the frontier set consisting of all leaves is immediately
correct by the correctness of f . The correctness of
our mud algorithm would follow from the correctness of
the root as a frontier set, since at the root, correctness
implies η(s0(xr)) = η(qr) = f(x∗).

To prove that the root is a correct frontier, it suffices
to define an operation to take an arbitrary correct
frontier V with at least two nodes, and produces another
correct frontier V ′ with one fewer node. We can then
apply this operation repeatedly until the unique frontier
of size one (the root) is obtained. Let V be an arbitrary
correct frontier with at least two nodes. We claim
that V must contain two children a, b of the same node
c.7 To obtain V ′ we replace a and b by their parent
c. Clearly V ′ is a frontier, and so it remains to show
that V ′ is correct. We can write V as {a, b, v1, . . . , vk},
and so V ′ = {c, v1, . . . , vk}. For ease of notation, let
x̂ = xv1 · xv2 · · · · · xvk .

The remainder of the argument follows the logic in
the proof of Theorem 2.2.

f(x∗) = η(s0(xa · xb · x̂)) (correctness of V )
= η(s0(x′a · xb · x̂)) (by Lemma 2.1)
= η(s0(xa · x′b · x̂)) (by (2.1))
= η(s0(x′b · x′a · x̂)) (by Lemma 2.1)
= η(s0(x′a · x′b · x̂)) (by (2.1))
= η(s0(xc · x̂)) (by Lemma 2.2) �

7Proof: consider one of the nodes a ∈ V furthest from the root.
Suppose its sibling b is not in V . Then any leaf in the tree rooted
at b must have its ancestor in V further from r than a; otherwise

a leaf in the tree rooted at a would have two ancestors in V . This
contradicts a being furthest from the root.

Observe that in the above we now have to be
careful that the guess for a string is the same length
as the original string; this property is guaranteed in
Lemma 2.2.

2.4 Extensions to randomized and approxima-
tion algorithms. We have proved that any determinis-
tic streaming computation of a symmetric function can
be simulated by a mud algorithm. However most non-
trivial streaming algorithms in the literature rely on ran-
domness, and/or are approximations. Still, our results
have interesting implications as described below.

Many streaming algorithms for approximating a
function f work by computing some other function g
exactly over the stream, and from that obtaining an
approximation f̃ to f , in postprocessing. For example,
sketch-based streaming algorithms maintain counters
computed by inner products ci = 〈x,vi〉 where x is the
input vector and each vi is some vector chosen by the
algorithm. From the set of ci’s, the algorithms compute
f̃ . As long as g is a symmetric function (such as the
counters), our simulation results apply to g and hence
to the approximation of f : such streaming algorithms,
approximate though they are, have equivalent mud
algorithms. This is a strengthening of Theorem 2.1 to
approximations.

Our discussion above can be formalized easily for
deterministic algorithms. There are however some de-
tails in formalizing it for randomized algorithms. In-
formally, we focus on the class of randomized stream-
ing algorithms that are order-independent for particu-
lar choices of random bits, such as all the randomized
sketch-based [1, 10] streaming algorithms. Formally,

Definition 2.3. A symmetric function f : Σn → Σ
is in the class rSS if there exists a set of polylog(n)-
communication, polylog(n)-space streaming algorithms
{sR = (σR, ηR)}R∈{0,1}k , k = polylog(n), such that for
all x ∈ Xn,

1. PrR∼{0,1}k
[
ηR(sR(x)) = f(x)

]
≥ 2

3 , and

2. for all R ∈ {0, 1}k, and permutations π,
ηR(sR(x)) = ηR(sR(π(x))).

We define the randomized variant of MUD analogously.

Definition 2.4. A symmetric function f : Σn → Σ
is in rMUD if there exists a set of polylog(n)-
communication, polylog(n)-space mud algorithms
{mR = (ΦR,⊕R, ηR)}R∈{0,1}k , k = polylog(n), such
that for all x ∈ Xn,

1. for all computation trees T , we have
PrR∼{0,1}k

[
ηR(mR

T (x)) = f(x)
]
≥ 2

3 , and



2. for all R ∈ {0, 1}k, permutations π, and pairs of
trees T , T ′, we have ηR(mR

T (x)) = ηR(mR
T ′(π(x))).

The second property in each of the definitions ensures
that each particular algorithm (sR or mR) computes
a deterministic symmetric function after R is chosen.
This makes it straightforward to extend Theorem 2.1 to
show rMUD = rSS.

3 Negative Results

In the previous section, we demonstrated conditions
under which mud computations can simulate streaming
computations. We saw, explicitly or implicitly, that we
have mud algorithms for a function

(i) that is total, ie., defined on all inputs,

(ii) that has one unique output value, and,

(iii) that has a streaming algorithm that, if ran-
domized, uses public randomness.

In this section, we show that each one of these
conditions is necessary: if we drop any of them, we
can separate mud from streaming. Our separations are
based on communication complexity lower bounds in
the SCM model, which suffices (see the “communication
complexity” paragraph in Section 2.3).

3.1 Private Randomness. In the definition of
rMUD, we assumed that the same random string R was
given to each component; i.e, public randomness. We
show that this condition is necessary in order to sim-
ulate a randomized streaming algorithm, even for the
case of total functions. Formally, we prove:

Theorem 3.1. There exists a symmetric total function
f ∈ rSS, such that there is no randomized mud algo-
rithm for computing f using only private randomness.

Proof. We will demonstrate a total function f that is
computable by a single-pass, randomized polylog(n)-
space streaming algorithm, but any SCM protocol for f
with private randomness has communication complexity
Ω(
√
n). Our proof uses a reduction from the string-

equality problem to a problem that we call SetParity.
In the later problem, we are given a collection of records
S = (i1, b1), (i2, b2), . . . , (in, bn), where for each j ∈ [n],
we have ij ∈ {0, . . . , n − 1}, and bj ∈ {0, 1}. We are
asked to compute the following function, which is clearly
a total function under a natural encoding of the input:

f(S) =

{
1 if ∀t ∈ {0, . . . , n− 1},

∑
j:ij=t bj mod 2 = 0

0 otherwise

We give a randomized streaming algorithm that com-
putes f using the ε-biased generators of [13]. Next, in
order to lower-bound the communication complexity of
a SCM protocol for SetParity, we use the fact that
any SCM protocol for string-equality has complexity
Ω(
√
n)[3, 14].
A randomized streaming algorithm for computing f

works as follows. We pick an ε-biased family of n binary
random variables X0, . . . , Xn−1, for some ε < 1/2. Such
a family has the property for any S ⊆ [n],

Pr[
∑
i∈S

Xi mod 2 = 1] > 1/4.

Moreover, this family can be constructed using O(log n)
random bits, such that the value of each Xi can be
computed in time logO(1) n [13]. We can thus compute
in a streaming fashion the bit B = b1 ·Xi1 +b2 ·Xi2 +...+
bn ·Xin . Observe that if f(S) = 1, then Pr[B = 1] = 0.
On the other hand, if f(S) = 0, then let

A = {t ∈ {0, . . . , n− 1}|
∑
j:ij=t

bj mod 2 = 1}.

We have Pr[B = 1] = Pr[
∑
i∈AXi mod 2 = 1] > 1/4.

Thus, by repeating in parallel O(log n) times, we
obtain a randomized streaming algorithm for SetPar-
ity, that succeeds with high probability.

It remains to show that there is no SCM protocol
for SetParity with communication complexity o(

√
n).

We will use a reduction from the string equality problem
[3, 14]. Alice gets a string x1, ..., xn ∈ {0, 1}n, and Bob
gets a string y1, ..., yn ∈ {0, 1}n. They independently
compute the sets of records SA = {(1, x1), . . . , (n, xn)},
and SB = {(1, y1), . . . , (n, yn)}. It is easy to see that
f(SA ∪ SB) = 1 iff the answer to the string-equality
problem is YES. Thus, any private-randomness protocol
for f has communication complexity Ω(

√
n). �

3.2 Promise Functions. In many cases we would
like to compute functions on an input with a particu-
lar structure (e.g., a connected graph). Motivated by
this, we define the classes pMUD and pSS capturing re-
spectively mud and streaming algorithms for symmetric
functions that are not necessarily total (they are defined
only on inputs that satisfy a property that is promised).

Definition 3.1. Let A ⊆ Σn. A symmetric function
f : A → Σ is in the class pMUD if there exists a
polylog(n)-communication, polylog(n)-space mud algo-
rithm m = (Φ,⊕, η) such that for all x ∈ A, and com-
putation trees T , we have η(mT (x)) = f(x).

Definition 3.2. Let A ⊆ Σn. A symmetric function
f : A→ Σ is in the class pSS if there exists a polylog(n)-



communication, polylog(n)-space streaming algorithm
s = (σ, η) such that for all x ∈ A we have s0(x) = f(x).

Theorem 3.2. pMUD ( pSS.

To prove Theorem 3.2, we introduce a promise
problem, that we call SymmetricIndex, and show that
it is in pSS but not in pMUD. Intuitively, we want to
define a problem in which the input will consist of two
sets of records. In the first set, we are given a n-bit
string x1, . . . , xn, and a query index p. In the second
set, we are given a n-bit string y1, . . . , yn, and a query
index q. We want to compute either xq, or yp, and we
are guaranteed that xq = yp. Formally, the alphabet of
the input is Σ = {a, b} × [n] × {0, 1} × [n]. An input
S ∈ Σ2n is some arbitrary permutation of a sequence
with the form

S = (a, 1, x1, p), (a, 2, x2, p), . . . , (a, n, xn, p),

(b, 1, y1, q), (b, 2, y2, q), . . . , (b, n, yn, q).

Additionally, the set S satisfies the promise that xq =
yp. Our task is to compute the function f(S) =
xq. We give a deterministic polylog(n)-space streaming
algorithm for SymmetricIndex, and we show that any
deterministic SCM protocol for the same problem has
communication complexity Ω(n).

We start by giving a deterministic polylog(n)-space
streaming algorithm for SymmetricIndex that implies
SymmetricIndex ∈ pSS. The algorithm is given the
elements of S in an arbitrary order. If the first record
is (a, i, xi, p) for some i, the algorithm streams over the
remaining records until it gets the record (b, p, yp, q) and
outputs yp. If the first record is (b, j, yj , q) for some j,
then the algorithm streams over the remaining records
until it gets the record (a, q, xq, p). In either case we
output xq = yp.

We next show that SymmetricIndex /∈ pMUD. It
suffices to show that any deterministic SCM protocol
for SymmetricIndex requires Ω(n) bits of communi-
cation. Consider such a protocol in which Alice and
Bob each send b bits to Carol, and assume for the sake
of contradiction that b < n/40. Let I be the set of
instances to the SymmetricIndex problem. Simple
counting yields that |I| = n222n−1. For an instance
φ ∈ I, we split it into two pieces φA, for Alice and φB ,
for Bob. We assume that these pieces are

φA = (a, 1, xφ1 , p
φ), . . . , (a, n, xφn, p

φ), and

φB = (b, 1, yφ1 , q
φ), . . . , (b, n, yφn, q

φ).

For this partition of the input, let IA and IB be the sets
of possible inputs of Alice, and Bob respectively. Alice
computes a function hA : IA → [2b], Bob computes

a function hB : IB → [2b], and each sends the result
to Carol. Intuitively, we want to argue that if Alice
sends at most n/40 bits to Carol, then for an input that
is chosen uniformly at random from I, Carol does not
learn the value of xi for at least some large fraction of
the indices i. We formalize the above intuition with the
following lemma:

Lemma 3.1. If we pick φ ∈ I, and i ∈ [n] uniformly at
random and independently, then:

• With probability at least 4/5, there exists χ 6= φ ∈
I, such that hA(φA) = hA(χA), pφ = pχ, and
xφi 6= xχi .

• With probability at least 4/5, there exists ψ 6= φ ∈
I, such that hB(φB) = hB(ψB), qφ = qψ, and
yφi 6= yψi .

Proof. Because of the symmetry between the cases for
Alice and Bob, it suffices to prove the assertion for Alice.
For j ∈ [2b], r ∈ [n], let

Cj,r = {γ ∈ I|hA(γA) = j and pγ = r}.

Let αj,r be the set of indices t ∈ [n], such that xγt is
fixed, for all γ ∈ Cj,r. That is,

αj,r = {t ∈ [n]| for all γ, γ′ ∈ Cj,r, xγt = xγ
′

t }.

If we fix |αj,r| elements xi in all the instances in
Cj,r, then any pair γ, γ′ ∈ Cj,r can differ only in some
xi, with i /∈ αj,r, or in the index q, or in yt, with the
constraint that xq = yp. Thus, for each j, r ∈ [2b],

|Cj,r| ≤ n · 22n−|αj,r|−1.(3.2)

Thus, if |αj,r| ≥ n/20, then |Cj,r| ≤ n239n/20−1.
Pick φ ∈ I, and i ∈ [n] uniformly at random, and
independently, and let E be the event that there exists
χ 6= φ ∈ I, such that hA(φA) = hA(χA), pφ = pχ, and
xφi 6= xχi . Then

Pr[E ] = 1−
∑
j∈[2b],r∈[n] |Cj,r| · |αj,r|

n · |I|

≥ 1−
∑
j∈[2b],r∈[n] n · 2n

39
20−1 · n

n3 · 22n−1

−
∑
j∈[2b],r∈[n] |Cj,r| · n/20

n3 · 22n−1

≥ 1− 2n/40 · n3 · 2n 39
20−1 + n2 · 22n−1 · n/20
n3 · 22n−1

> 4/5,

for sufficiently large n. �



Consider an instance φ chosen uniformly at random
from I. Clearly, pφ, and qφ are distributed uniformly
in [n], qφ, and φA are independent, and pφ, and φB are
independent. Thus, by Lemma 3.1 with probability at
least 1− 2

(
1
5

)
there exist χ, ψ ∈ I, such that:

• hA(φA) = hA(χA), pφ = pχ, and xφ
qφ
6= xχ

qφ
.

• hB(φB) = hB(ψB), qφ = qψ, and yφ
pφ
6= yψ

pφ
.

Consider now the instance γ = χA ∪ ψB . That is,

γ = (a, 1, xχ1 , p
χ), . . . , (a, n, xχn, p

χ),

(b, 1, yψ1 , q
ψ), . . . , (b, n, yψn , q

ψ)

Observe that

xγqγ = xχ
qψ

(by the definition of γ)
= xχ

qφ
= 1− xφ

qφ

= 1− yφ
pφ

(by the promise for φ)
= yψ

pφ
= yψpχ

= yγpγ (by the definition of γ).

Thus, γ satisfies the promise of the problem (i.e.,
γ ∈ I). Moreover, we have hC(hA(φA), hB(φB)) =
hC(hA(γA), hB(γB)), while xφ

qφ
6= xγqγ . It follows that

the protocol is not correct. We have thus shown that
pMUD ( pSS and proved Theorem 3.2.

3.3 Indeterminate Functions. In some applica-
tions, the function we wish to compute may have more
than one “correct” answer. We define the classes iMUD
and iSS to capture the computation of “indeterminate”
functions.

Definition 3.3. A total symmetric function f : Σn →
2Σ is in the class iMUD if there exists a polylog(n)-
communication, polylog(n)-space mud algorithm m =
(Φ,⊕, η) such that for all x ∈ Σn, and computation
trees T , we have η(mT (x)) ∈ f(x).

Definition 3.4. A total symmetric function f : Σn →
2Σ is in the class iSS if there exists a polylog(n)-
communication, polylog(n)-space streaming algorithm
s = (σ, η) such that for all x ∈ Xn we have s0(x) ∈
f(x).

Consider a promise function f : A → Σ, such
that f ∈ pMUD. We can define a total indeterminate
function f ′ : Σn → 2Σ, such that for each x ∈ A,
f ′(x) = f(x), and for each x /∈ A, f(x) = Σ. That
is, for any input that satisfies the promise of f , the
two functions are equal, while for all other inputs, any
output is acceptable for f ′. Clearly, a streaming or mud
algorithm for f ′, is also a streaming or mud algorithm
for f respectively. Therefore, Theorem 3.2 implies the
following result.

Theorem 3.3. iMUD ( iSS.

4 Multiple Keys, Multiple Passes

The MUD class includes many useful computations per-
formed every day on massive data sets, but to fully cap-
ture the capabilities of the modern distributed systems
such as MapReduce and Hadoop, we can generalize it
in two different ways.

First, we can allow multiple mud algorithms run-
ning simultaneously over the same input. This is imple-
mented by computing (key, value) pairs for each input
xi, and then aggregating the values with the same key
using the ⊕ function. More formally, a multi-key mud
algorithm is a triple (Φ,⊕, η) where Φ : Σ → 2K×Q,
K is the set of keys, and ⊕ and η are defined as in
single-key mud algorithms (for each key). The com-
munication complexity of the multi-key mud algorithm
is log |Q| per key. As before, we consider the {space,
time} complexity of a multi-key mud algorithm to be
the maximum {space, time} complexity of its compo-
nent functions Φ, ⊕, and η per key. When the algorithm
is executed on the input x, the function Φ produces a
set ∪iΦ(xi) of key-value pairs. Each set of values with
the same key is aggregated independently using ⊕ and
an arbitrary computation tree, followed by a final ap-
plication of η. The final output is an unordered set of
symbols x′ ∈ Σn

′
, where n′ is the number of unique keys

produced by Φ. For more details on how this is achieved
in a practical system, see [4, 7].

Second, we can allow multiple rounds of computa-
tion, where each round is a mud algorithm, perhaps us-
ing multiple keys. Since each round constitutes a func-
tion Σn → Σn

′
, mud algorithms naturally compose to

produce an overall function Σn → Σn
′
.

Example. Let x ∈ [m]n, and define ni to be the
number of occurrences of the element i in the sequence
x. The k-th frequency moment of x is the quantity
Fk(x) =

∑
i∈[m] n

k
i . For any constant k, the function

Fk(x) can be computed with an m-key, 2-round mud
algorithm as follows: (1) In the first pass we compute
the frequencies {ni}i∈[m] using the element names as
keys, and counting with ⊕. (2) In the second pass,
we just need to compute

∑
i∈[m] n

k
i . We do this with

a single-key mud algorithm where Φ(x) = xk, and
⊕ is addition. This is because the generalized mud
algorithms can use polylog(n) bits of communication
per key per round. In contrast, one-pass streaming
algorithms cannot even approximate Fk for certain k
with polylog(n) space [1]. �

These extensions make the model much more pow-
erful. In fact, one can solve any problem in NC [8] with
an O(n)-key, polylog(n)-round mud algorithm (we leave



the full statement and proof of this result for a full ver-
sion of the paper).

5 Concluding Remarks

Conventional streaming algorithms that make a pass
over data with a single processor are insufficient for
large-scale data processing tasks. Modern distributed
systems like Google’s MapReduce [7] and Apache’s
Hadoop [4] rely on massive, unordered, distributed
(mud) computations to do data analysis in practice,
and obtain speedups. We have introduced mud algo-
rithms, and asked how the power of these algorithms
compares to conventional streaming. Our main result is
that any symmetric function that can be computed by
a streaming algorithm can also be computed by a mud
algorithm with comparable space and communication
resources, showing the equivalence of the two classes in
principle. At the heart of the proof is a nondetermin-
istic simulation of a streaming algorithm that guesses
the stream, and an application of Savitch’s theorem to
be space-efficient. This result formalizes some of the
intuition that has been used in designing streaming al-
gorithms in the past decade. This result has certain nat-
ural extensions to approximate and randomized compu-
tations, and we show that other natural extensions to
richer classes of symmetric functions are impossible.

Unfortunately, our simulation does not immediately
provide a practical algorithm for obtaining speedups
from distributing streaming computations over multi-
ple machines because of the running time needed for the
simulation, and for any specific streaming computation,
alternative mud algorithms may be faster. This raises
the following question: Can one obtain a more time-
efficient simulation for Theorem 2.1? Another interest-
ing question, posed by D. Sivakumar [11], is whether
there are natural problems for which this simulation
provides an interesting algorithm.

Beyond One-pass Streaming. In the past decade,
researchers have generalized single pass streaming to
multiple passes and to semi-streaming, where one has
a linear number of streaming computations. Here we
offer a definition of a multiple-key, multiple-pass mud
algorithm that extends the mud model analogously.
We hope this will inspire further work in this area to
develop the theoretical foundation for successful modern
distributed systems.
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