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Abstract

We describe a O(log n)-approximation algorithm for computing the homotopic Frechét dis-
tance between two polygonal curves that lie on the boundary of a triangulated topological
disk. Prior to this work, algorithms where known only for curves on the Euclidean plane with
polygonal obstacles.

A key technical ingredient in our analysis is a O(log n)-approximation algorithm for com-
puting the minimum height of a homotopy between two curves. No algorithms were previously
known for approximating this parameter. Surprisingly, it is not even known if computing either
the homotopic Frechét distance, or the minimum height of a homotopy, is in NP.

1 Introduction

Comparing the shapes of curves – or sequenced data in general – is a challenging task that
arises in many different contexts. The Frechét distance and its variants (e.g. dynamic time-
warping [KP99]) have been used as a similarity measure in various applications such as matching
of time series in databases [KKS05], comparing melodies in music information retrieval [SGHS08],
matching coastlines over time [MDBH06], as well as in map-matching of vehicle tracking data
[BPSW05, WSP06], and moving objects analysis [BBG08a, BBG+08b]. See [Fre06, AB05, AG95]
for algorithms for computing the Frechét distance.

Informally, for a pair of such curves f, g : [0, 1] → D, for some ambient space (D, d), their
Frechét distance is the minimum length leash needed to traverse both curves in sync. To this end,
imagine a person traversing f starting from f(0), and a dog traversing g starting from g(0), both
traveling along these curves without ever moving backwards. Then, the Frechét distance is the
infimum over all possible traversals, of the maximum distance between the person and the dog.
More precisely, the Frechét distance between f and g is defined to be

δ(f, g) = inf
φ:[0,1]→[0,1]

sup
x∈[0,1]

d
(
f(x), g(φ(x))

)
,
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Figure 1: (i) Two curves f and g, and (ii) the parametrization of their homotopic Frechét distance.

where φ ranges over all orientation-preserving homeomorphisms.
While this distance makes complete sense when the underlying distance is the Euclidean metric,

it becomes less useful if the distance function is more interesting. For example, imagine walking a
dog in the woods. The leash might get tangled as the dog and the person walk on two different
sides of a tree. Since the Frechét distance cares only about the distance between the two moving
points, the leash would “magically” jump over the tree.

Homotopic Frechét distance. To address this shortcoming, a natural extension of the above
notion called homotopic Frechét distance was introduced by Chambers et al. [CdVE+08a].
Informally, revisiting the above person-dog analogy, we consider the infimum over all possible
traversals of the curves, but this time, we require that the person is connected to the dog via a
leash, i.e. a curve that moves continuously over time. Furthermore, one keeps track of the leash
during the motion, where the purpose is to minimize the maximum leash length needed. To this end,
consider a continuous mapping ψ : [0, 1]2 → D, where ψ(·, 0) and ψ(·, 1) are reparameterizations
of f and g. Furthermore, let `(t) = ψ(t, ·) be the leash at time t. Then, the homotopic Frechét
distance between f and g is

δH(f, g) = inf
ψ:[0,1]2→D

max
t∈[0,1]

|`(t)| ,

where |·| denotes the length of a curve.
Clearly, δH(f, g) ≥ δ(f, g); in fact, δH(f, g) can be arbitrary larger than δ(f, g). We remark

that δH(f, g) = δ(f, g) for any pair of curves in the Euclidean plane, as we can always pick the
leash to be a straight line segment between the person and the dog. In other words, the map ψ in
the definition of δH can be obtained from the map φ in the definition of δ via an appropriate affine
extension. However, this is not true for general ambient spaces, where the leash might have to pass
over obstacles, hills, and such.

Another measure of interest is the homotopy height of such a mapping. Formally, given ψ as
above, for s ∈ [0, 1], let µ(s) = ψ(·, s) be the morph of f to g at time s. Here, µ(s) is a curve that
starts as µ(0) = f and continuously deforms as s increases, and ends up as µ(1) = g. Under this
interpretation, the homotopic Frechét distance is refereed to as the morphing width of f and g,
and it bounds how far a point on f has to travel to its corresponding point in g under the morphing
of ψ [EGH+02]. The length of µ(s) is the height of the morph at time s, and the height of
such a morphing is height(µ) = maxs∈[0,1] |µ(s)|. The homotopy height between f and g bounded
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by `(0) and `(1) is
h(f, g, `(0), `(1)) = inf

µ
height(µ) ,

where µ varies over all possible morphings between f and g, such that each curve in µ has one end
on `(0) and one end in `(1). See Figure 1 for an example. Note that if we do not constraint the
endpoints of the curves during the morphing to stay on `(0) and `(1), the problem of computing
the minimum height homotopy is trivial. One can contract f to a point, send it to g from the
shortest (f, g)-path, and then expand it to g. In this paper, we first consider the problem for the
special case that f and g have common endpoints. In Section 3 we show that our algorithm can be
extended to the general case with the same approximation ratio. To keep the notation simple, we
use h(f, g) when f and g have common endpoints.

Intuitively, the homotopy height measures how long the curve has to become as it deforms from
f to g, and it was introduced by Chambers and Letscher [CL09, CL10]. Observe that if we are
given the starting and ending leashes `(0) and `(1) then the homotopy height of f and g, is the
homotopic Frechét distance between `(0) and `(1).

In this paper, we are interested in the problems of computing the homotopic Frechét distance
and the homotopic height between two simple polygonal curves that lie on the boundary of an
arbitrary triangulated topological disk.

Why are these measures interesting? For the sake of the discussion here, assume that we
know the starting and ending leash of the homotopy between f and g. The region bounded by the
two curves and these leashes, form a topological disk, and the mapping realizing the homotopic
Frechét distance is a mapping of the unit square to this disk D. This mapping specifies how to
sweep over D in a geometrically “efficient” way (especially if the leash does not sweep over the same
point more than once), so that the leash (i.e., the sweeping curve) is never too long [EGH+02]. As
a concrete example, consider the two curves as enclosing several mountains between them on the
surface – computing the homotopic Frechét distance corresponds to deciding which mountains to
sweep first and in which order.

Furthermore, this mapping can be interpreted as surface parameterization [Flo97, SdS00] and
can thus be used in applications such as texture mapping [BVIG91, PB00]. In the texture mapping
problem, we wish to find a continuous and invertible mapping from the texture, usually a two-
dimensional rectangular image, to the surface.

Another interesting interpretation is when f is a closed curve, and g is a point. Interpreting f
as a rubber band in a 3d model, the homotopy height between f and g here is the minimum length
the rubber band has to be so that it can be collapsed to a point (here, the rubber band stays on
the surface as this is happening). In particular, a short closed curve with large homotopic height
to any point in the surface is a “neck” in the 3d model.

To summarize, these measures seem to provide us with a fundamental understanding of the
structure of the given surface/model.

Previous work. Chambers et al. [CdVE+08a] gave a polynomial time algorithm to compute the
homotopic Frechét distance between two polygonal curves on the Euclidean plane with polygonal
obstacles. Chambers and Letscher [CL09, CL10] introduced the notion of minimum homotopy
height, and proved structural properties for the case of a pair of paths on the boundary of a
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topological disk. We remark that in general, it is not known whether the optimum homotopy has
polynomially long description. In particular, it is not known whether the problem is in NP.

The problem of computing the (standard) Frechét distance between curves has been considered
by Alt and Godau [AG95], who gave a polynomial time algorithm. Eiter and Mannila [EM94]
studied the easier discrete version of this problem. Computing the Frechét distance between surfaces
[Fre24], appears to be a much more difficult task, and to the time of this writing, its complexity is
poorly understood. The problem has been shown to be NP-hard by Godau [God99], while the best
algorithmic result is due to Alt and Buchin [AB05], who showed that it is upper semi-computable.

Efrat et al. [EGH+02] considered the Frechét distance inside a simple polygon as a way to
facilitate sweeping it efficiently. They also used the Frechét distance using the underlining geodesic
metric as a way to get a morphing between two curves. For recent work on the Frechét distance,
see [CW10, DHW10, HR11, CDHP+11] and references therein.

Our results. In this paper, we consider the problems of computing the homotopic Frechét dis-
tance and the homotopy height between two simple polygonal curves that lie on the boundary of a
triangulated topological disk D that is composed of n triangles.

We give a polynomial time O(log n)-approximation algorithm for computing the homotopy
height between f and g. Our algorithm to compute an approximate homotopy between f and g is
via a simple, yet delicate divide and conquer algorithm.

We use the homotopy height algorithm as an ingredient for a O(log n)-approximation algorithm
for the homotopic Frechét distance problem. Intuitively, our algorithm for homotopic Frechét
distance works as follows. We first approximately guess the optimum (i.e. δH). Using this guess,
we classify parts of D as “obstacles”, i.e. regions over which a short leash cannot pass. Let D′

be the punctured disk obtained from D after removing these obstacles. The isotopy class of any
leash is determined by the set of punctures that are on its left side. Observe that the leashes of
the optimum solution belong to the same isotopy class. We describe a greedy algorithm to pick an
isotopy class out of exponential number of choices, s.t. the homotopic Frechét distance constrained
inside it is a constant factor of the homotopic Frechét distance in D. Then, we use an extended
version of our homotopy height algorithm to compute the homotopic Frechét distance.

The O(log n) factor shows up in the homotopic Frechét distance algorithm only because it uses
the homotopy height as a subroutine. Thus, any constant factor approximation algorithm for the
homotopy height problem implies a constant factor approximation algorithm for the homotopic
Frechét distance.

As a warm-up exercise and in order to simplify the presentation we first consider the discrete ver-
sion of the homotopy height problem in Section 2.1. This is how Chambers and Letscher formulated
the problem. Later, in Section 2.2, we describe an algorithm to approximately find the shortest
homotopy in continuous settings. In Section 3, we address the homotopic Frechét distance, both
discrete and continuous. Later, in Section 4, we show that the homotopic Frechét distance between
two curves on a boundary of any orientable surface of constant genus can be O(log n)-approximated
in the same asymptotic running time. Basic definitions are provided in Appendix A.

2 Approximating the height of a homotopy

In this section we give an approximation algorithm for finding a homotopy of minimum height in
a topological disc, D, whose boundary is defined by two walks L and R that share their end-points
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s, t. We start with the discrete case, i.e. when the disk is a triangulated edge-weighted planar
graph and then generalize it to the continuous case. We then use this algorithm as a subroutine
(in the next section) in our algorithm for the minimum homotopic Frechét distance problem.

2.1 The discrete case

To start, let us assume we are given an embedded planar graph G all of whose faces (except possibly
the outer face) are triangles. Let s, t ∈ ∂G and L and R be the two non-crossing (s, t)-walks on
∂G in counter-clockwise and clockwise order, respectively. We use D to denote the topological disk
enclosed by L∪R. We abuse the notation and refer to vertices of G (inside of D) as vertices of D.
Our goal is to find a minimum height homotopy from L to R of non-crossing walks. Informally, the
homotopy is defined by a sequence of walks, where every two consecutive walks differ by either by
a triangle or by an edge (being traversed twice). For a formal definition, see Appendix A.4.

Lemma 2.1 Let x and y be vertices of G that are at distance ρ. Then any homotopy between L
and R has height at least ρ.

Proof : Fix a homotopy of height δ. This homotopy contains an s-t walk P that passes through x,
and an s-t walk Q that passes through y. We have ρ ≤ |P [s, y]|+|Q[s, y]|, and ρ ≤ |P [x, t]|+|Q[y, t]|.
Therefore, ρ ≤ (|P |+ |Q|)/2 ≤ δ, as required.

Suppose d1 is the maximum distance of a vertex of G from either of L or R, d2 is the largest
edge weight, and let d = max{d1, d2}.

Lemma 2.2 Suppose D, L, R, and d are defined as above. Then any homotopy between L and R
has height at least d.

Proof : For every homotopy between L and R, and for every edge e, there exists a walk in the
homotopy that passes through e. Therefore, the height of the homotopy is at least d2. Moreover,
the height is at least d1 by Lemma 2.1.

Here we present an algorithm which finds an (L,R)-homotopy of height at most |L| + |R| +
O(d log n).

Lemma 2.3 Let D be an edge-weighted triangulated topological disk with n faces such that its
boundary is formed by two walks L and R that share endpoints s and t. Then, one can compute, in
O(n log n) time, a homotopy from L to R of height at most |L| + |R| + O(d log n), where d is the
largest among (a) maximum distance of a vertex of D from either of L and R, and (b) maximum
edge weight, .

Proof : Let f(|L| + |R|, d, n) denote the maximum height of such a homotopy. We will show that
f(u, d, n) ∈ O(u+ d log n).

The base case n = 0 is easy. Indeed, if we have two edges (u, v) and (v, u) consecutive in R (or
in L) we can retract these two edges. By repeating this we arrive at both L and R being identical,
and we are done. The case n = 1 is handled in a similar fashion. After one face flip, the problem
reduces to the case n = 0. As such, f(|L|+ |R|, d, 1) ≤ |L|+ |R|+ d.

For n > 1, compute for each vertex of G its shortest path to L, and consider the set of edges
E used by all these shortest paths. Clearly L ∪ E form a tree. We consider each edge of R to be
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“thick” and have two sides (i.e., we think about these edges as being corridors with thickness). If
E uses an edge of R then it uses the inner copy of this edge, while R uses the outer side. Similarly,
we will consider vertices of R to be two vertices (one inside and other one on the boundary R).
The set E would use only the inner vertices of R, while R would use only the outer vertices. To
keep the graph triangulated we also arbitrarily triangulate inside each thick edge of R by adding
corridor edges. Observe that, each corridor edge either connects two copies of a single vertex (thus
has weight zero) or copies of two neighbors on R (and so has the same weight as the original edge).

Clearly, if we cut the plane along the edges of E, what remains is a simple triangulated polygon
(it might have “thin” corridors along the edges of R). One can find a diagonal uv such that each
side of the diagonal contains at least dn/3e triangles of G (and at most (2/3)n). (Here, we count
only the “real” triangles of G – we consider the faces of the thin corridors of the edges of R to
have weight 0.) Observe that, because the faces inside corridors have weight zero, we can ensure
that if uv is a corridor edge then u and v are copies of a same vertex. We use this property in the
following case analysis.

u

v

v′

L R

s

t

D2D1

M

(A) Consider the case that u and v are both vertices of R. In this case,
let R[u, v] be the portion of R in between u and v, and let D2 be the disk
having R[u, v] ∪ uv as its outer boundary. Let D1 be the disk D \ D2. Let
M = R[s, u] ∪ uv ∪R[v, t].

Clearly, the distance of any vertex of D1 from L is at most d. By induction,
there is a homotopy of height f(|L|+ |M | , d, (2/3)n) from L to M . Similarly,
the distance of any vertex of D2 from uv is smaller than its distance to L. As
such, by induction, there is a homotopy between uv and R[u, v] of height at
most f(|R[u, v]| + d, d, (2/3)n). Clearly, we can extend this to a homotopy of M to R of height
|R[s, u]|+ f(|R[u, v]|+ d, d, (2/3)n) + |R[v, t]|.

Putting these two homotopies together results in the desired homotopy from L to R.
(B) If u and v are both vertices of L. The symmetric argument to the above applies.
(C) If uv is a corridor edge then, v is a vertex of E and u is an outer vertex of R (recall that we

can assume that when uv is a corridor edges, v and u are inner and outer copies of a same vertex
of R). Let πv be the shortest path in D from v to L, and let v′ be its endpoint on L.

u
v

πv

v′

L

R

s

t

D1

D2

Consider the disk D1 having the “left” boundary L1 = L[s, v′] ∪ πv ∪
vu and R1 = R[s, u] as its “right” boundary. This disk contains at most
(2/3)n triangles, and by induction, it has a homotopy of height f(|L1| +
|R1|, d, (2/3)n). To see why we can apply the recursion, observe that u and
v are copies of a vertex. That is, all shortest paths of vertices inside D1 to
L are completely inside D1. Particularly, the distance of all vertices in D1 to
L1 are at most d.

Similarly, the topological disk D2 with the left boundary L2 = uv ∪ πv ∪
L[v′, t] and the right boundary R2 = R[u, t] has a homotopy of height f(|L2|+
|R2|, d, (2/3)n).

Starting with L, extending a tendril from v′ to v, from v to u, and then applying the homotopy
to first half of this walk (i.e., L1) to move to R1, and then the homotopy of D2 to the second part,
results in a homotopy of L to R of height

max(|L|+ 2d, f(|L1|+ |R1|, d, (2/3)n) + |L2| , |R1|+ f(|L2|+ |R2|, d, (2/3)n)) .
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If the first number is the maximum, we are done. Otherwise, the above value is at most f(|L| +
|R|+ d, d, 2/3n).

u

v

πu

πv

u′

v′

L

R

s

t

D1

D2

(D) Here we handle the case that u and v are both vertices of L∪E. Then,
as before, let u′ and v′ be the closest points on L to u and v, respectively.
Similarly, let πu (resp. πv) be the shortest path from u (resp. v) to u′ (resp.
v′).

Consider the disk D1 having L1 = L[u′, v′] as left boundary, and R1 =
πu ∪ uv ∪ πv as right boundary. This disk contains between n/3 and 2n/3
triangles of the original surface. The distance of any vertex of D1 to L1

(when restricted to D1) is at most d, and as such by induction, there is a ho-
motopy from L1 to R1 of height α = f(|L1|+ |R1|, d, (2/3)n) ≤ f(|L[u′, v′]|+
3d, d, (2/3)n). This yields a homotopy of height α1 = |L[s, u′]|+α+ |L[v′, t]|,
from L to L2 = L[s, u′] ∪ πu ∪ uv ∪ πv ∪ L[v, t]. It is straight forward to check that α1 ≤
f(|L|+ 3d, d, (2/3)n).

Next, let D2 be the disk with its left boundary being L2 and its right boundary being R2 = R.
Observe, that as before, the maximum distance of any vertex of D2 to L2 is at most d. As before,
by induction, there is a homotopy form L2 to R2 of height α2 = f(|L2| + |R2|, d, (2/3)n). Since
|L2| ≤ |L|+ 3d, we have α2 ≤ f(|L|+ |R|+ 3d, d, (2/3)n).

In all cases the length of the homotopy is at most

f(|L|+ |R|+ 3d, d, (2/3)n)

Now, it is easy to verify that the solution to the recursion f(u, d, n) that complies with all the
above inequalities is f(u, d, n) = u+O(d log n), as desired.

We can compute the shortest path tree in linear time using the algorithm of Henzinger et al.
[HKRS97]. The separating edge can also be found in linear time using DFS. So, the running time
for a graph with n faces is T (n) = T (n1) + T (n2) + O(n), where n1 + n2 = n and n1, n2 ≤ 2/3n.
It follows that T (n) = O(n log n).

Remark 2.4 In the algorithm of Lemma 2.3, it is not necessary that we have the shortest paths
from the L to all the vertices of D. Instead, it is sufficient if we have a tree structure that provides
paths from any vertex of D to L of distance at most d in this tree. We will use this property in the
continuous case, where recomputing the shortest path tree is relatively expensive.

2.2 The continuous case

In this section we extend the arguments to the continuous case. Here we are given a piecewise
linear triangulated topological disk, D, with n triangles. The boundary of D is composed of two
paths L and R with shared endpoints s and t. Observe that the distance of any point x in D from
L and R is not longer than the homotopy height; there is a (s, t)-path that contains x. Here, we
build a homotopy of height |L| + |R| + O(d log n), where d is the maximum distance of any point
in D from either L or R.

Remember that the shortest path from a set of O(n) edges to the whole surface can be computes
in O(n3 log n) time. Also, remember that a shortest path (a geodesic) intersects a face along a
segment and it locally looks like a segment if the adjacent faces are rotated to be coplanar.
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2.2.1 Homotopy height if edges are short

Here, we assume that the longest edge in D has length at most 2d, where d is the maximum distance
for any point of D from either L or R.

As in the discrete case, let E be the union of all the shortest paths from the vertices of D to
L (as before, we treat the edges and vertices of R as having infinitesimal thickness). For a vertex
v of D, its shortest path πv is a polygonal path that crosses between faces (usually) in the middle
of edges (it might also go to a vertex, merge with some other shortest paths and then follow a
common shortest path back to L). In particular, each such shortest path might intersect a face of
D along a single segment. As such, the polygon resulting from cutting D along E, call it P , is a
polygon that has complexity O(n2). A face of P is a hexagon, a pentagon, a quadrilateral, or a
triangle. However, it has at most 3 edges that are portions of the edges of D. We say the degree
of a face is i if it has i edges that are portions of the edges of D. Observe that, each triangle of
D is now decomposed into a set of faces. Obviously, each triangle of D contains at most 1 face of
degree 3. Overall, there are O(n) faces of degree 3 in P .

Now consider C∗, the dual of the graph that is inside the polygon (ignore the edges on the
boundary). Precisely, C∗ has a vertex corresponding to each face inside the polygon P . Two
vertices of C∗ are adjacent if and only if their corresponding faces share a portion of an edge of
D (a diagonal after cutting). Since the maximum degree of C∗ is 3, there is an edge that is a
good separator. We use this edge in a similar fashion to the proof of Lemma 2.3, except that
in the recursion we avoid recomputing the shortest paths (i.e., we use the old shortest paths and
distances computed in the original disk), see Remark 2.4. So, we compute the shortest paths once
in the beginning in O(n3 log n) time. Then, in each step we can find the separator in O(n2) time;
remember there are O(n2) faces after cutting. That is the total time required to find the separators
in all steps is T (n) = T (n1) + T (n2) + O(n2), where n1 + n2 = n and n1, n2 ≤ 2/3n; that is
T (n) = O(n2 log n) which is dominated by the time required to compute the shortest paths.

The proof of Lemma 2.3 then goes through literally in this case. Since all the edges have length
at most 2d, by assumption, we get the following.

Lemma 2.5 Let D be a topological disk with n faces where every face is a triangle (here, the
distance between any two points on the triangle is their Euclidean distance). Furthermore, the
boundary of D is formed by two walks L and R (that share two endpoints). Let d be the maximum
distance of any point of D from either L or R. Furthermore, assume that all edges of D have
length at most 2d. Then, one can compute a continuous homotopy from L to R of height ≤
|L|+ |R|+O(d log n) in O(n3 log n) time.

2.2.2 Homotopy height if there are long edges

For any two points in D consider a shortest path π connecting them. Remember that the signature
of π is the ordered sequence of edges (crossed or used) and vertices used by π.

For a point p ∈ R, let sL(p) denote the signature of the shortest path from p to L. The sL(p)
is well defined in R except for a finite set of medial points, where there are two (or more) distinct
shortest paths from L to p. In particular, let ΠR be the set of all shortest paths from any medial
point on R to L. Observe that, the medial points are the only points that the signature of the
shortest path from R to L changes in any non-degenerate triangulation.

Lemma 2.6 The number of paths in ΠR is O(|V (D)|), where V (D) is the set of vertices of D.
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Proof : Let {p1, p2, . . . , pk} be the paths in ΠR sorted from top to bottom. That is for any 1 ≤ i < k,
there is a vertex v ∈ pi, such that v 6∈ pi+1 and v is in the disc with boundary L[s, a]∪pi+1∪R[s, b],
where a and b are endpoints of pi+1.

Now, consider the set of elements (vertices and edges) that appear in sL(pi), as i increases.
In each two consecutive steps, at least one element is added or removed from this set. Further,
whenever an element is removed from the set it cannot reappear. It follows that the cardinality if
ΠR is at most the total number of vertices and edges in D, which is O(|V (D)|).

delta

strip

c

L
RCutting D along the paths of ΠR breaks D into corridors. We say that a

corridor C is a strip if all the shortest paths to L from the points interior the
segment C ∩R have the same signature.

Each corridor portion on R is either a point, in which case we say that it is a
delta , or alternatively, the corridor portion on R is a segment and in this case it
is a strip. Note that the left side of a strip is either a single vertex or a segment of
L.

We further break each delta into strips. So consider such a delta C with an apex c (i.e., the
point of R on the boundary of C). For a point x ∈ L∩C, we define its signature (in relation to C),
to be the signature of the shortest path from x to c (restricted to lie inside C). Again, we partition
L ∩ C into maximum intervals that have the same signature. Clearly, this breaks the delta into
strips. Observe that the distance of any point of L ∩C to c is at most 2d. Applying this to all the
deltas results in breaking D into strips. Arguing as in Lemma 2.6, we have that the total number
of strips generated is O(|V (D)|).

The shortest paths from R to L can be computed in O(n3 log n) time. The shortest paths inside
a delta to its apex can be computed in O(n2 log n). Since there are linear number of deltas, the
total running time for building the strips is O(n3 log n).

Lemma 2.7 Consider a strip S generated by the above partition of D. Let σL = L ∩ S and
σR = R ∩ S. Let πt and πb be the top and bottom paths forming the two sides of S that do not lie
on R or L.
(A) We have |πb| ≤ 2d and |πt| ≤ 2d.
(B) If |σL| > 0 or |σR| > 0 then there is no vertex of D in the interior of S.
(C) If |σL| > 0 or |σR| > 0 then there is a homotopy from πt∪σL to σR∪πb of height max(|σL| , |σR|)+

4d. This homotopy can be computed in linear time.

Proof : (A) If the strip was generated by the first stage of partitioning then the claim is easy.
Otherwise, consider a delta C with an apex c. For any point x ∈ L ∩ C, consider the shortest

path πx from x to R in D. If this path goes to c the claim holds immediately. Otherwise, the shortest
path (that has length at most d) must cross either the top or bottom shortest path forming the
boundary of C that are emanating from p. We can now modify πx, so that after its intersection
point with this shortest path, it follows it back to c. Clearly, the resulting shortest path has length
at most 2d and lies inside the resulting strip.

(B) Indeed, the boundary paths πt and πb have the same signature (formally, they are the limit
paths of same signature). Since D is non-degenerate, if there was any vertex in the middle, then
the path on one side of the vertex, and the path on the other side of the vertex can not possibly
have same signature.
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σL

σR

πt

πb

(C) Assume that |σL| > 0 and |σR| > 0 (the other cases are degenerate
instances of this case). The strip S has no vertex of D in its interior, and as
such it is formed by taking planar quadrilaterals and gluing them together
along common edges. Observe that by the triangle inequality, all such
edges of any of these quadrilaterals are of length ≤ max(|σL| , |σR|) + 4d.
It is now easy to check that we can collapse each such quadrilateral in
turn to get the required homotopy. Since each of πt and πb is composed
of two shortest paths there are linear number of such quadrilaterals, and each collapse can be done
in constant time. See figure for an example.

The above suggests a natural homotopy from L to R – we compute the strips, and then we
order the strips according to their order along L, and transform each one of them at time, such
that starting with L we end up with R.

To this end, a strip S that has only a single point on both L and R is a pocket . We still need
to show how to compute a homotopy of a pocket. In our case, a pocket has perimeter 4d, and there
is a point on its boundary, such that the distance of any point in it to this base point is at most 2d
(this follows by arguing in a similar fashion to Lemma 2.7 (A)). The following is a consequence of
the triangle inequality.

Observation 2.8 Consider a topological disk D, such that all the points of D are in distance at
most 2d from some point c. Then the longest edge in D has length at most 4d.

As such, all the edges inside a pocket can not be longer than 4d. We can now apply Lemma 2.5
to such a pocket. This results in the desired homotopy. This completes the proof of the following.

Theorem 2.9 Given a triangulated piecewise linear surface with the topology of a disk, such that
its boundary is formed by two walks L and R. Then, there is a continuous homotopy from L to R
of height ≤ |L|+ |R|+O(d log n). This homotopy can be computed in O(n3 log n) time.

3 Homotopic Frechét Distance

In this section, fix D to be a triangulated topological disk with n faces. Let the boundary of D be
composed of A, R, B and L, four internally disjoint walks appearing in clockwise order along the
boundary. Also, let a0 = L∩A, b0 = L∩B, a1 = R∩A and b1 = R∩B. We use the same notation
to argue about both the discrete problem and the continuous problem.

Let δ be the regular Frechét distance and δH be the homotopic Frechét distance between A and
B. Clearly, δ ≤ δH . The following lemma implies that the Frechét distance can be approximated
within a constant factor.

Lemma 3.1 Let D be a triangulated topological disk with n faces, and A and B be two internally
disjoint walks on the boundary of D. Then, one can compute a reparameterizations of A and B
that approximates the Frechét distance between A and B. The computed reparameterizations have
width ≤ 2δ in the continuous case, and ≤ 3δ in the discrete case, where δ is the Frechét distance
between A and B. The running time is O(n3 logn) in the continuous case and O(n) in the discrete
case.
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Proof : First, we prove the continuous case. Let Π be the set of shortest paths from all points of
A to the curve B. Similar to Lemma 2.6 we define ΠA to be the set of all shortest paths from
medial points on A to B. The set ΠA is composed of linear number of paths; the proof is similar to
Lemma 2.6. The paths in ΠA do not cross and so partition D into a set of regions. Each region is
bounded by a portion of A, a portion of B and two paths in ΠA. A region is a delta if the two paths
of ΠA in its boundary share a single endpoint (on A), it is a pocket if they share two endpoints
(one on A and one on B), and it is strip if they share no endpoints.

Obviously the endpoints of paths in Π cover all A. Observe that they also cover all B except
the bases of deltas. Now, for each delta we compute the set of all shortest paths from its base to
its apex inside the delta. Let ΠB be the set of all such paths in all deltas. Clearly, the union of Π
and ΠB is a set of non-crossing paths whose endpoints cover both A and B.

The shortest path from any point of A to B is at most δ. So, all paths in Π have length at
most δ. Similarly, the shortest path from a point of B to A is at most δ. Now, consider a delta C
with apex c. Let b be a point on the base of C (and so on B). The shortest path πb from b to A
has length at most δ. Let x be the first point that πb intersects a boundary path of C, πC . Now,
πb[b, x] · πC [x, c] has length at most 2δ and it is inside C. We conclude that all paths in ΠB have
length at most 2δ and the proof is complete.

In O(n3 log n) time, we can compute all shortest paths from A to the whole surface. Then, we
need O(n2 log n) time to compute the shortest paths inside each of the linear number of deltas. It
follows that the total running time is O(n3 log n).

In the discrete case, we first compute the set of shortest paths, Π = {π1, π2, · · · , πk}, from
vertices of A to the path B. Now, let πi and πi+1 be two consecutive paths, that is the endpoints
of πi and πi+1, ai and ai+1, are adjacent vertices on A. For all 1 ≤ i < k, we add the paths
π+i = (ai, ai+1) · πi+1 to the set Π to obtain Π+. Observe that each path in Π+ has length at most
2δ; it is composed of zero or one edge of A and a shortest path from a vertex of A to B. Further,
Π+ partitions the graph into regions, similar to the continuous case. Now for each vertex of B that
is not an endpoint of a path in Π+, we compute the shortest path inside its region to A. Because
the region is bounded by paths of length at most 2δ, the length of such a shortest path is at most
3δ. If ΠB is the set of all such shortest paths, then Π+ ∪ΠB is a leash sequence of height at most
3δ.

We use the algorithm of Henzinger et al. [HKRS97] to compute the shortest paths from A in
linear time. Since all regions are disjoint, we can compute all the shortest paths inside different
regions in O(n) time, as well.

The following lemma implies that if all the vertices in D are not too far from the two curves,
then one can transform the Frechét distance into the continuous variant (i.e., without jumps in the
leash).

Lemma 3.2 Let D be a triangulated topological disk with n faces, and A and B be two internally
disjoint walks on the boundary of D. Further, assume for all p ∈ D, p’s distance to both A and B
is O(δH). Then, one can compute a continuous (A,B)-leash function of height O(δH log n). The
running time is O(n4 log n) for the continuous case and O(n log n) for the discrete case.

Proof : Using the algorithm of Lemma 3.1 we compute a (not necessarily continuous) leash function
s of height 2δ ∈ O(δH).

Note that the leashes are not required to deform continuously in s. For a given time t ∈ [0, 1],
let s−(t) = limt′→t− s(t

′) and s+(t) = limt′→t+ s(t
′). By definition, s is discontinuous at t if and
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only if s−(t) 6= s+(t). In the discrete case let s−(t) = s(t) and s+(t) = s(t + 1). In this case, we
say s is discontinuous at t if s−(t) and s+(t) are more than one flip operation apart. In both cases,
we also say that s has a gap at t.

Observe that a gap at time t can be filled by attaching an (s−(t), s+(t))-homotopy to s at t.
Observe that all the vertices inside the disc with boundary s−(t) ∪ s+(t) have distance O(δH) to
A and B and so to s−(t) and s+(t), so Lemma 2.9 and Lemma 2.3 imply that an (s−(t), s+(t))-
homotopy with height O(δH log n) can be computed.

Suppose that s has a gap at t. In the discrete case, the disc with boundary s−(t)∪s+(t) contains
at least one face. In the continuous case, that disc contains at least one vertex. Thus, in both cases,
there are O(n) gaps.

We start with s and fill in all linear number of gaps to obtain a continuous leash sequence of
height O(δH log n).

In the discrete case, the initial leash sequence can be computed in O(n) time. Since the gaps
are disjoint, they can be filled in overall O(n log n).

In the continuous case, the initial leash sequence can be computed in O(n3 log n) time. Each of
the O(n) number of gaps can be filled in O(n3 log n) time.

Now, we consider the case that vertices exist that are far from at least one of A and B. Intu-
itively, we like to pick the first and the last leash so that we can avoid moving the leash over such
vertices.

A vertex v ∈ V (D) is tall if and only if its distance to A or B is larger than δH . In the discrete
case, we subdivide each edge in the beginning so that if an edge has length > 2δH , then the vertex
inserted in the middle of it is tall. Observe that, no leash of the optimum continuous leash sequence
affords to contain a tall vertex. We use T to denote the set of all tall vertices in V (D).

Now, let p and p′ be two walks connecting A and B. We say that p and p′ are isotopic in D\T
if and only if they are homotopic in D\T after contracting A and B. Consequently, the disc with
boundary A ∪B ∪ p ∪ p′ contains no tall vertices for isotopic p and p′.

Isotopy partitions the set of (A,B)-paths to equivalence classes. Let h be any isotopy class. We
use L(h) and R(h) to denote the shortest (a0, b0)-walk and (a1, b1)-walk in h.

Let p be any walk in h and a ∈ A and b ∈ B be the endpoints of p. We define the left tall set
of h, denote Tl(h) to be the set of all tall vertices to the left of p; inside the disc with boundary
L ∪ A[a0, a] ∪ p ∪ B[b0, b]. We similarly define the right tall set of h, Tr(h), to be the set of all
tall vertices to the right of p; inside the disc with boundary R ∪ A[a, a1] ∪ p ∪ B[b, b1]. Note that
the sets Tl(h) and Tr(h) do not depend on the particular choice of p, since all paths in h are in the
same isotopy class.

We say that h is extendable from the left (or simply extendable) if and only if |L(h)| ≤ δH
and there is an isotopy class h′, such that |L(h′)| ≤ δH and Tl(h) ⊂ Tl(h

′). We say h is saturated
if it is not extendable and |L(h)| ≤ δH .

Lemma 3.3 Let h be a saturated isotopy class. Then, |R(h)| ≤ 4δH .

Proof : Let hopt be the isotopy class of the leashes in the optimum solution. Remember that no leash
of the optimum solution contains a tall vertex. That is, all leashes in that solution are isotopic.

Since h is saturated Tl(h) is not a proper subset of Tl(hopt). If Tl(h) = Tl(hopt) then h = hopt,
particularly |R(h)| = |R(hopt)| ≤ δH .
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Otherwise, the set Tl(h) ∩ Tr(hopt) is not empty. It follows that L(h)
crosses R(hopt). Let x, y ∈ L(h)∩R(hopt), such that both R(hopt)[a1, x] and
R(hopt)[y, b1] are internally disjoint from L(h). Also, let w, z ∈ L(h)∩L(hopt),
such that both L(h)[w, x] and L(h)[z, y] are internally disjoint from L(hopt).
In the figure, the gray paths are L(hopt) and R(hopt), and the dashed path
is L(h). Observe that the shaded area contains no tall vertex.

Clearly, the walk A[a1, a0] · L(h)[a0, b0] · B[b0, b1] is isotopy to L(h). Observe that the walk
A′ = R(hopt)[a1, x] · L(h)[x,w] · L(hopt)[w, a0] is homotopic to A. Similarly, B′ = L(hopt)[b0, z] ·
L(h)[z, y] ·R(hopt)[y, b1] is homotopic to B. It follows that R(h) = A′ · L(h) ·B′ is also isotopic to
L(h). Now, it is straight forward to check that |R(h)| ≤ 2 |L(h)|+ |L(hopt)|+ |R(hopt)| ≤ 4δH .

Lemma 3.4 Let h be an isotopy class of (A,B)-leashes in D\T such that |L(h)| , |R(h)| = O(δH)
and D′ be the disk with boundary A · R(h) · B · L(h). Then, all points inside D′ are closer than
O(δH) to both A and B in D′.

Proof : Consider a point p ∈ D′ and its shortest path πp to either of A or B in D. Assume that
πp = O(δH) and let x be the first intersection point of πp with either L(h) or R(h). Then, taking
πp from p to x and then taking the boundary path (L(h) or R(h)) from x to A or B has length
O(δH). So, we only need to prove that the distance of any point to both A and B is O(δH) in D.

This is by construction true for the vertices of the triangulation.

In the discrete case, since each edge of length 2δH contains a tall vertex after the subdivision,
there is no edge of length > 2δH inside D′. That is, the points on the edges inside D′ have length
O(δH) to both A and B.

In the continuous case, let Dopt = A · R(hopt) · B · L(hopt). If p ∈ Dopt then its distance to A
and B is at most δH and we are done. Otherwise, assume that p is on the right side R(hopt), the
other case that p is on the left sue of L(hopt) is exactly similar.

Let x and y be the intersection points of R(h) and R(hopt) such that p
is inside the disk with boundary D = R(h)[x, y] ·R(hopt)[y, x]. Let ∆ be the
triangle in D that contains p. ∆ ∩D is a polygon whose vertices are either
(not tall) vertices of D that have distance at most δH to A and so to the
boundary of D or intersection points of ∆ and R(h)∪R(hopt). Then, triangle
inequality implies that the perimeter of ∆ ∩ D is at most O(δH). Connect
each vertex of ∆ that is inside D to D’s boundary through its shortest path
(of length at most δH) and use the triangle inequality to bound the lengths
of the sides of ∆ ∩D and so its perimeter. In particular, p has distance O(δH) to a vertex of the
polygon ∆ ∩D, that is p’s distance to A is O(δH).

Lemma 3.5 Let D be a triangulated topological disk with n faces, and A and B be two internally
disjoint walks on D’s boundary. Assuming that the homotopic Frechét distance between A and B is
given, one can compute a saturated isotopy class in O(n7 log n) time and in O(n3) in the continuous
and discrete cases, respectively.

Proof : Let δH denote the homotopic Frechét distance between A and B. Let h0 be the homotopy
class of the (a0, b0)-shortest path. That is, L(h0) is an (a0, b0)-shortest path. Obviously, |L(h0)| ≤
δH .
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Now, let hi be any isotopy class such that L(hi) ≤ δH . Then, hi is extendable to some hi+1 if
and only if there exists a tall vertex v ∈ Tr(hi), such that L(hi+1) ≤ δH and Tl(hi+1) ⊇ Tl(hi)∪{v}.
Note that Tl(hi+1) may contain other tall vertices as well. In other words, hi is extendable if and
only if the shortest path homotopic to A[a0, a1] ·R[a1, b1] ·B[b1, b0] in D\(Tl(hi)∪{v}) is not longer
than δH . Given Tl(hi) and v, we compute such a shortest path as follows.

We compute the shortest path from each vertex in Tl(hi) ∪ {v} to L. This can be done in
O(n3 logn) time and O(n) time in the continuous and discrete cases, respectively. Then, we cut
the graph along all the computed shortest paths, to obtain a graph of complexity O(n2) in both
cases. Finally we compute the shortest (a0, b0)-path in this graph. The total running time is
O(n6 logn) and O(n2) in continuous and discrete cases, respectively.

To compute a saturated homotopy class, we start with h0. In each iteration, we extend hi to
hi+1 if possible. To do so, we test for all v ∈ Tr(hi) whether it can be used to extend hi to hi+1.
If we find such a vertex we extend hi to hi+1 and iterate. Otherwise, we return hi as a saturated
homotopy class. Observe that if a vertex cannot be used in some iteration it cannot be used in a
later iterations either. So, we need to consider each vertex at most once.

There are O(n) number of extensions. So, the total running time is O(n7 logn) and O(n3) in
the continuous and the discrete cases, respectively.

Theorem 3.6 Let D be a triangulated topological disk with n faces, and A and B be two internally
disjoint walks on the boundary of D. Then, one can compute a continuous leash sequence between
A and B of height O(δH log n), where δH is the homotopic Frechét distance between A and B. The
running time is O(n7 log n log δH) in the continuous case and O(n3 log δH) in the discrete case.

Proof : We use geometrically increasing values as an upper bound guess for δH . Given δH ,
Lemma 3.5 ensures that a saturated homotopy class, h, can be computed in polynomial time.
Lemma 3.3 implies that both L(h) and R(h) are at most 4δH . Let D′ ⊆ D be the disc with bound-
ary A ∪B ∪L(h) ∪R(h). Since L(h) and R(h) are homotopic there is no tall vertices inside D′. It
follows that the shortest path inside D′ from any vertex v to both A and B is at most 5δH . Finally,
Lemma 3.2 implies that a continuous leash sequence of height O(δH log n) between A and B, inside
D′, can be computed.

4 Homotopic Frechét distance on surfaces with positive genus

Fix X to be an orientable triangulated surface of genus g that is composed of n triangles. Let A
be a (a0, a1)-path and B be a (b0, b1)-path, both on the boundary of X. We assume (without loss
of generality) that X contains no other boundary except for those containing A and B; one can
attach a face fσ to every other boundary σ and then insert a very tall vertex fσ to make sure that
no leash of any approximate solution intersects fσ.

Let `opt(·) be the optimum leash function; the function that obtains the minimum homotopic
Frechét distance. Indeed, all `opt(t) are isotopic in X; they are homotopic in X after contracting
A and B. Intuitively, we can think of the collection of `opt(t)’s, where 0 ≤ t ≤ 1, as a thick edge.

Following Chambers et al. [CdVE+08b] and Erickson and Whittlesey [EW05], we find a greedy
system of arcs (p1, p2, · · · , pβ), with the following properties.

• β = 2g if A and B are on the same boundary and β = 2g + 1 otherwise.

• Each pi is either a path between a0 and b0 or a loop that contains either a0 or b0.
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• Each pi is composed of two shortest paths

• If we cut X along all pi’s we obtain a topological disc P that contains 2 copies (p+i and p−i )
of each pi on its boundary.

To compute a system of arcs in the continuous case we imitate the discrete algorithm. First,
we use Mitchel et al. [MMP87] to compute the set of all medial points for the shortest paths
from {a0, b0}. Observe that this set includes β cycles {c1, c2, · · · , cβ} whose removal makes X a
topological disc; see [DL09]. By adding a single point from each ci to the shortest paths computed
from a0 and b0 we obtain a greedy system of arcs with the same set of properties.

Now, we assign a signature of β integers η = (η1, η2, · · · , ηβ) to each path γ on X. Consider
an arbitrary direction for each pi, the integer ηi is the algebraic intersection number between γ and
pi; the number of times that γ crosses pi considering the direction. Note that ηi can be a negative
number.

Let C be the universal cover of X, i.e. the space that contains a copy of P , for any signature.
For a given signature η, we use P [η] to denote the copy of P in the universal cover corresponding
to η. In addition, we use v[η], e[η], A[η] and B[η] to denote copies of a vertex v, an edge e, A or
B in P [η]. The paths p+i in P [η] and p−i in P [ζ] are identified if and only if η = (η1, η2, · · · , ηβ),
ζ = (ζ1, ζ2, · · · , ζβ), ζi − ηi = 1 and ζj = ηj for all j 6= i.

Observe that each path in X corresponds to an infinite number of paths in the universal cover.
In particular, each (u, v)-path γ with signature η in X is mapped to a path γ′ in the universal cover
that starts from u[0, 0, · · · , 0] and ends in v[η]. In this case, we call γ′ the canonical image of γ.

Now, consider the canonical images of the set of leashes of `opt(·). Since, all leashes in `opt(·) are
isotopic, they have the same signature ηopt and so their canonical images in C are paths between
A[0, 0, · · · , 0] and B[ηopt].

Figure 2: Left: A doubly punctured torus, a greedy system of arcs, and two canonical leashes,
right: the same surface cut open along the greedy system of arcs.

The following lemma bounds the search space for ηopt.

Lemma 4.1 Let π be any shortest path in X. Then, there exists an optimum leash function `opt,
such that `opt(0) crosses π at most twice.

Proof : Let `opt(·) be the optimum solution with the minimum number of crossings on π. Assume
to the contrary that π crosses `opt(0) in x, y and z in this order along π.

15



Figure 3: Shortcutting the leashes.

First, assume that `opt(0) crosses π in two different directions and without loss of generality at
x and y; see Figure 3-left. Isotopy of the `opt(t)’s implies that there is a t′ ∈ [0, 1] such that for any
t < t′, `opt(t) crosses π after x in x(t) and before y in y(t), in the same directions as `opt(0). For
each t < t′ we change `opt(t) to `opt(t)[A, x(t)] · π[x(t), y(t)] · `opt[y(t), B]. Because π is a shortest
path the length of no leash has been increased while the number of crossings is reduced.

Second, assume that `opt(0) crosses π in the same direction at x, y and z; see Figure 3-right.
Isotopy of the `opt(t)’s implies that all `opt(t)’s cross π between x and y and between y and z in
order. Assume that x(t) and y(t) are the first crossing points of `opt(t) on π after x and y alone
π, respectively. For all t ∈ [0, 1] we change `opt(t) to `opt(t)[A, x(t)] · π[x(t), y(t)] · `opt(t)[y[t], B].
Again, we reduced the number of crossings on π without increasing the length of any leash.

The following corollary is immediate because each pi is composed of two shortest paths.

Corollary 4.2 Each arc in the greedy system of arcs crosses `opt(0) at most 4 times.

We say a signature is feasible if the absolute value of each one of its corrdinates is at most 4; it
follows that there are 2O(g) feasible signatures. Corollary 4.2 implies that ηopt is feasible. We build
Σ, a sub-space of C that only contains copies of P correspondent to feasible signatures. Observe
that Σ is a topological disc composed of 2O(g)n triangles and it has 2O(g) copies of A and B on its
boundary.

Lemma 4.1 implies that the canonical images of all the leashes in the optimum solution are
completely inside Σ. If we know ηopt we can compute the homotopic Frechét distance between
A[0, 0, · · · , 0] and B[ηopt]. But, there are 2

O(g) candidates for ηopt in Σ. For each such candidate we
use Theorem 3.6 to compute the best leash function. We obtain the following:

Theorem 4.3 Let X be a triangulated topological surface (2-manifold) of genus g that is composed
of n faces, and A and B be two internally disjoint paths on X’s boundary. Then, one can compute
a continuous leash sequence between A and B of height O(δH log n), where δH is the homotopic
Frechét distance between A and B. The running time is 2O(g)n7 log n log δH in the continuous case
and 2O(g)n3 log δH in the discrete case.

5 Conclusions

We presented a O(log n) approximation algorithm for approximating the homotopy height and the
homotopic Frechét distance between curves on piecewise linear surfaces. It seems quite believable
that the approximation quality can be further improved, and we leave this as the main open problem
of our work. Since our algorithm works both for the continuous and discrete cases, it seems natural
to conjecture that this algorithm should work more general surfaces and metrics.
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A Some standard definitions used in the paper

A.1 Planar Graphs

An embedding of a graph G on the plane maps the vertices of G to different points on the plane
and its edges to disjoint paths except for the endpoints. The faces of an embedding are maximal
connected subsets of the plane that are disjoint from the image of the graph. We use ∂F to denote
the boundary of a set of faces F . We abuse the notation and use ∂G to denote the boundary of
outer face of G. In particular, ∂f refers to the boundary of a single face f . The term plane graph
refers to a graph together with its embedding on the plane.

The dual graph G∗ of a plane graph G is the (multi-)graph whose vertices correspond to the
faces of G, where two faces are joined by a (dual) edge if and only if their corresponding faces are
separated by an edge of G. Thus, any edge e in G corresponds to a dual edge e∗ in G∗, any vertex
v in G corresponds to a face v∗ in G∗ and any face f in G∗ corresponds to a vertex f∗ in G∗.

Let G = (V,E) be a simple undirected plane graph with edge weights w : E → R+. A walk W
in G is a sequence of vertices (v1, v2, · · · , vk) such that each adjacent pair ei = (vi, vi+1) is an edge
in G. The length of W is |W | =

∑k−1
i=1 w(ei).

Let vi and vj be two vertices that appear on W . By W [vi, vj ] we mean the sub-walk of W that
starts from the first appearance of vi and ends at the first appearance of vj after vi on W . For
two walks, W1 = (v1, v2, . . . , vi) and W2 = (vi, vi+1, . . . , vj), we define their concatenation to be
W1 ·W2 = (v1, v2, . . . , vi, vi+1, . . . , vj).

A walk with distinct vertices is called a path . We use the terms (u, v)-walk to refer to a walk
that starts at u and ends in v; (u, v)-path is defined similarly. A walk is closed if its first and last
vertices are identical. A closed path is a cycle . Two walks cross if and only if their images cross
on the plane. That is, no infinitesimal perturbation makes them disjoint.

A.2 Piecewise Linear Surfaces and Geodesics

A piecewise linear surface is composed of finite number of Euclidean triangles by identifying pairs
of equal length edges. In this paper we work with piecewise linear surfaces that can be embedded
in three dimensional space such that all triangles are flat and the surface does not cross itself.
Equivalently, the surface can be presented by a set of edges and three dimensional coordinates of
the vertices.

We say that a triangulated surface is non-degenerate if no interior point has curvature 0,
i.e. when for every non-boundary vertex x, the sum of the angles of the triangles incident to x is
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not equal to 2π. We can turn any triangulated surface into a non-degenerate one by perturbing all
edge lengths by a factor of at most 1 + ε, for some ε = O(1/n2). This changes the metric of the
surface by at most a factor of O(1+1/n), and thus the minimum height of a homotopy. Since such
a factor will be negligible for our approximation guarantee, we can assume that the input surface
is always non-degenerate.

A path γ on the surface D is a function γ : [0, 1] → X; γ(0) and γ(1) are the endpoints of the
path. We use |γ| to denote the length of γ. The path γ is simple if and only if it maps [0, 1] to
distinct points on X. A path is a geodesic if and only if it is locally a shortest path; i.e. it cannot
be shortened by an infinitesimal perturbation. In particular, global shortest paths are geodesics.
We use the term curve as an alternative for path. A path or a curve is polygonal if it is composed
of a finite number of segments.

Mitchel et al. [MMP87] describe an algorithm to compute the shortest path distance from a
single source to the whole surface in O(n2 log n) time. The same algorithm can be adapted to
compute the shortest path distance from an edge to the whole surface in the same running time.
It follows that the shortest path from a set of O(n) edges to the whole surface can be computed in
O(n3 logn).

The shortest path from a point in X to a set is a geodesic. So, it is a polygonal line that
intersects every edge at most once at a point and passes through a face along a segment. The
shortest path crossing an edge looks locally like a straight segment, if one rotates the adjacent faces
so that they are coplanar. See [MMP87] for more details.

Let the source S be a set of edges of X and let π be a shortest path from a point p to S. We
define the signature of π, to be the ordered set of edges (crossed or used) by π. Since π is locally
a straight segment, we can rotate all faces that intersect π one by one so that π becomes a straight
line. It follows that there cannot be two geodesics from p with the same signature.

A point p on the surface is a medial point if there are more than one shortest paths (with
different signatures) from p to S.

A.3 Homotopy and Leash Function

Let γ and γ′ be two paths with same endpoints s and t on a surfaceD. A homotopy h : [0, 1]×[0, 1] →
D is a continuous function, such that h(0, ·) = γ, h(1, ·) = γ′, h(·, 0) = s and h(·, 1) = t. So, for each
τ ∈ [0, 1], h(τ, ·) is an (s, t)-path. The height of such a homotopy is defined to be supτ∈[0,1] |h(τ, ·)|.

Let A and B be two disjoint curves. A curve connecting a point in A to a point in B is called
an (A,B)-leash . We define a (A,B)-leash function to be a function f that sends every τ ∈ [0, 1]
to a leash with endpoints a(τ) ∈ A and b(τ) ∈ B such that a : [0, 1] → A and b : [0, 1] → B are
reparametrizations of A and B, respectively. We say that a (A,B)-leash function f is continuous
if the leash f(τ) varies continuously with τ . The height of a leash function f is defined to be
supτ∈[0,1] |f(τ)|. The Frechét distance between A and B is the height of the minimum height
(A,B)-leash function. The homotopic Frechét distance between A and B is the height of the
minimum height continuous (A,B)-leash function.

A.4 Discrete Problems

LetW1 be an (s, t)-walk and f be a face in G. Assume that α1 is a subwalk ofW1 and ∂f = α1∪α2,
where α1 and α2 are walks that share endpoints u and v, such that u is closer to s on W1. We
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define the face flip operation as follows. The walk W2 = W1[s, u] · α2 ·W1[v, t] is the result of
flipping W1 over f . In this case, we say that W1 and W2 are one face flip operation apart.

Now, let W1 be an (s, t)-walk and e = (u, v) be and edge in G. Assume that u ∈W1. We obtain
the walk W2 =W1[s, u] · (u, v) · (v, u) ·W1[u, t] after applying a spike operation on W1 along e. In
this case, we can obtain W1 from W2 by applying a reverse spike operation along e. We say that
W1 andW2 are a spike operation apart. In general, we say thatW1 andW2 are one operation apart
if we can transform one to the other using a single face flip, spike, or reverse spike. Letscher and
Chambers introduce the same set of operations with the names: face lengthening, face shortening,
spike and reverse spike.

Figure 4: From left to right: face-flip, spike/reverse spike, man-move and dog-move.

Let L and R be two (s, t)-walks on the outer face of G. We define the sequence of walks
(L = W0,W1, . . . ,Wm = R) to be a (L,R)-discrete homotopy if and only if for all 1 ≤ i ≤ m,
Wi and Wi−1 are one operation apart. We may use the word homotopy as a short form of discrete
homotopy when it is clear from context. A homotopy is monotonic (or equivalently it avoids
backward moves) if Wi−1 is inside the disc with boundary L ∪Wi for every 1 ≤ i ≤ m. The height
of the homotopy is defined to be length of the longest walk in its sequence. The homotopy height
between L and R, is the height of the shortest possible (L,R)-homotopy.

Let A = (a0, a1, . . . , ak) and B = (b0, b1, . . . , bl) be walks of G. The walk W1 = (ai =
w1, w2, . . . , wk = bj) changes to the walk W2 = (ai+1, ai = w1, w2, . . . , wk) after a man move .
Similarly, the walk W1 = (ai = w1, w2, . . . , wk = bj) changes to the walk W2 = (w1, w2, . . . , wk =
bj , bj+1) after a dog move . We say that the walk W1 changes to the walk W2 by a move if there
is a dog move or a man move that changes W1 to W2. A leash operation is a move, a face flip, a
spike or a reverse spike.

An (A,B)-walk is a walk that has one endpoint on A and one endpoint on B. A sequence of
(A,B)-walks, (W1,W2, . . . ,Wq) is called an (A,B)-leash sequence if W1 is a (a0, b0)-walk, Wq

is a (ak, bl)-walk and for all 1 ≤ i < q, Wi changes to Wi+1 by a set of leash operations that
contains at most one move. The height of a leash sequence is the length of its longest walk. The
discrete Frechét distance of A and B is the height of the minimum height (A,B)-leash sequence.
The leash sequence (W1,W2, . . . ,Wq) contains no gap if Wi changes to Wi+1 by exactly one leash
operation. The homotopic discrete Frechét distance of A and B is the height of the minimum
height (A,B)-leash sequence that contains no gap.
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