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ABSTRACTA probabilisti C-embedding of a (guest) metri M intoa olletion of (host) metris M ′
1, . . . , M

′
k is a randomizedmapping F of M into one of the M ′

1, . . . , M
′
k suh that, forany two points p, q in the guest metri:1. The distane between F (p) and F (q) in any M ′

i is notsmaller than the original distane between p and q.2. The expeted distane between F (p) and F (q) in (ran-dom) M ′
i is not greater than some onstant C timesthe original distane, for C ≥ 1.The onstant C is alled the distortion of the embedding.Low-distortion probabilisti embeddings enable reduing al-gorithmi problems over "hard" guest metris into "easy"host metris.We show that every metri indued by a graph of boundedgenus an be probabilistially embedded into planar graphs,with onstant distortion. The embedding an be omputede�iently, given a drawing of the graph on a genus-g sur-fae.

Categories and Subject DescriptorsF.2 [Analysis of Algorithms and Problem Complex-ity℄: General
General TermsAlgorithms Theory
KeywordsEmbeddings, Probabilisti Approximation, Bounded GenusGraphs, Planar Graphs
1. INTRODUCTIONPlanar graphs onstitute an important lass of ombina-torial strutures, sine they an often be used to model a
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wide variety of natural objets. At the same time, theyhave properties that give rise to improved algorithmi solu-tions for numerous graph problems, if one restrits the setof possible inputs to planar graphs (see e.g. [3℄).A natural generalization of planarity an be obtained us-ing the notion of the genus of a graph. Informally, a graphhas genus g, for some g ≥ 0, if it an be drawn without anyrossings on the surfae of a sphere with g additional han-dles (see later in this setion for a formal de�nition). Forexample, a planar graph has genus 0, and a graph that anbe drawn on a torus has genus 1.The genus of a graph an be interpreted as a quantityexpressing how far a graph is from being planar. To thatextend, graphs of small genus usually exhibit nie algorith-mi properties, mainly due to their inherent similarities withplanar graphs. More preisely, algorithms for planar graphsan usually be extended to graphs of bounded genus, witha small loss in e�ieny, or in the quality of the solution.However, suh extensions an in some ases be ompliated,and based on ad-ho tehniques.In this paper we give a general method for solving prob-lems on graphs of bounded genus, by reduing them to or-responding problems on planar graphs. Our approah isinspired by Bartal's probabilisti approximation of generalmetris by trees [4℄. We show that for any graph G ofbounded genus, there exists a distribution F over planargraphs, suh that for any pair of verties u, v ∈ V (G), if wepik a graph H from F , then the expeted distane between
u and v in H is distorted by at most a onstant fator (seelater in this setion for a preise de�nition). This in turn im-plies that a general lass of problems on graphs of boundedgenus involving optimizing a ombination of distanes, anbe redued to orresponding problems on planar graphs.
1.1 Our resultsWe show that every graph of genus g an be O(1)-proba-bilistially approximated by a distribution over graphs ofgenus g− 1. By repeatedly applying this proedure g times,we obtain that every graph of genus g an be 2O(g)-probabi-listially approximated by a distribution over planar graphs.In partiular, this implies that for graphs of bounded genus,the expeted streth in the above approximation is O(1).We omplement this result by two lower bounds. First,we show that for any n > 0, there exist an n-vertex graphthat annot be o(log n/ log log n)-probabilistially approxi-mated by planar graphs. Sine the genus of a graph is atmost polynomial in n, this implies that for any g > 0, weannot always have a probabilisti approximation of a graph



of genus g by a distribution over planar graphs, with ex-peted expansion o(log g/ log log g).Furthermore, we show that for any g ≥ 1, and for any n0 >
0, there exists n ≥ n0, and an n-vertex graph of genus g, forwhih any (deterministi) embedding into a graph of genus
g − 1, has distortion Ω(n/g). This lower bound motivatesour use of probabilisti approximations, sine in the worstase, any single embedding annot have small distortion.
1.2 Our techniquesPrior work on probabilisti approximation (see later inthis setion for details), is based on onstruting a proba-bility distribution over partitions of the input metri spae.The partitions are hosen so that they an later be ombinedinto a simple graph struture.Our approah deviates from this general framework, sineour arguments are inherently topologial. Informally, our al-gorithm for onstruting a probabilisti approximation worksas follows. We pik a small non-separating yle C of theinput graph G, and ompute a randomly shifted version of
C. Intuitively, this an be seen as shifting C randomly alonga handle. We then remove C from G, obtaining a graph ofsmaller genus. By hoosing an appropriate C, we an showthat the expeted expansion of the distane between anypair of verties is bounded by some onstant.
1.3 Applications

Graph optimization.As in the ase of probabilistially approximating metrisby distributions over tree metris [4℄, we obtain a generalredution from a lass of graph optimization problems overbounded genus graphs, to a restrition over planar graphs.More preisely, we show the following.Corollary 1. Let Π be a graph optimization problem inwhih the objetive funtion depends linearly on the distanesof the input graph. If there exists an α-approximation al-gorithm for Π on planar graphs, then there exists a O(α)-approximation algorithm for graphs of bounded genus.
Embedding into ℓ1.Gupta et. al. [14℄ onjetured that planar graphs em-bed into ℓ1 with distortion O(1). The onjeture has beenproven for the speial ase of series-parallel [14℄, and O(1)-outerplanar graphs [8℄. Our result implies a strengtheningof this onjeture for graphs of bounded genus that was sug-gested by Thilikos [22℄. This strengthening is obtained asfollows. Assume that every planar graph embeds into ℓ1with distortion c. Then, given a graph G of bounded genus,we an �rst O(1)-probabilistially approximate G by a dis-tribution F over planar graphs. For eah H ∈ F there existsan embedding into ℓ1 with distortion c, and so by onate-nating all the embeddings (weighted by their orrespondingprobabilities), we obtain an embedding of G into ℓ1 withdistortion O(c). We thus show the following result.Corollary 2. If every planar graph embeds into ℓ1 withdistortion c, then every graph of bounded genus embeds into
ℓ1 with distortion O(c).

1.4 Related WorkProbabilisti embeddings were �rst onsidered by Karp[16℄, where it was shown that the n-yle an be O(1)-probabilistially approximated by a distribution over span-ning subtrees. The �rst result for general graphs was ob-tained in [2℄, where it was shown that any graph an be
2O(log n log log n)-probabilistially approximated by a distribu-tion over spanning trees.The notion of probabilisti embeddings was introdued byBartal in [4℄, where it was shown that every metri an be
O(log2 n)-probabilistially approximated by a distributionover trees. The same paper gave a Ω(log n) lower bound forthe same quantity. The upper bound was later improved to
O(log n log log n) in [5℄, and subsequently to O(log n) in [12℄.For the ase of approximating by spanning subgraphs, itwas shown in [9℄ that every graph an be O(log2 n log log n)-probabilistially approximated by a distribution over span-ning subtrees. When the input is a series-parallel graph, thesame bound was improved to O(log n) in [10℄.Probabilisti approximation by distributions over moreomplex lasses of graphs has also been onsidered. In par-tiular, [21℄ shows that every metri of onstant doublingdimension an be (1 + ǫ)-probabilistially approximated bya distribution over graphs of bounded treewidth. In [7℄ itwas shown that there exist graphs of treewidth k that annotbe o(log n)-probabilistially approximated by a distributionover graphs of treewidth k−3. In the same paper it was alsoshown that for any k, there exist planar graphs that annotbe o(log n)-probabilistially approximated by a distributionover graphs of treewidth k.The later bound implies in partiular that in order toobtain a o(log n)-probabilisti approximation for graphs ofbounded genus, one needs to onsider distributions overmore omplex families of graphs.Moreover, the results in [7℄ imply that there exists a �xedminor H , suh that the family of H-minor free graphs annotbe o(log n)-probabilistially approximated by a distributionover planar graphs. Therefore, it is impossible to general-ize our positive results to arbitrary minor-free families ofgraphs.
1.5 Notation and Definitions

Topological graph theory.Let us reall some notions from topologial graph theory(an in-depth exposition an be found in [19℄). A surfae is atwo-dimensional manifold. Let Sg be a ompat onnetedorientable surfae without boundary, and of genus g. For agraph G we an de�ne a one-dimensional simpliial omplex
C assoiated with G as follows: The 0-ells of C are theverties of G, and for eah edge {u, v} of G, there is a 1-ellin C onneting u and v. An embedding of G on a surfae Sis a ontinuous injetion f : C → V . The genus of a graph
G is the smallest integer g suh that C an be embedded on
Sg.
Graphs and metric embeddings.Unless stated otherwise, all the graphs that we onsiderin this paper, are assumed to be �nite, simple, undireted,weighted, and without loops. For a graph G = (V, E), andfor u, v ∈ V (G), we denote by DG(u, v) the length of theshortest-path between u and v in G. By saling the edge



weights of G, we may assume that the minimum distanebetween any pair of points in G is 1.An embedding of a graph G into a graph H is a funtion
f : V (G) → V (H). The distortion of suh an embedding isequal to the minimum c, suh that there exists r > 0, suhthat for any u, v ∈ V (G),

r · DG(u, v) ≤ DH(u, v) ≤ c · r · DH(u, v).The embedding f is alled an isometry if for any u, v ∈
V (G), DH(u, v) = DG(u, v), and it is alled non-ontratingif for any u, v ∈ V (G), DH(u, v) ≥ DG(u, v).We use the notion of probabilisti approximation intro-dued in [4℄. We say that a graph H dominates a graph
G, if V (G) ⊆ V (H), and for any u, v ∈ V (G), DG(u, v) ≤
DH(u, v). For a graph G, a parameter α ≥ 1, and a prob-ability distribution F over graphs H that dominate G, wesay that F , α-probabilistially approximates G, if for any
u, v ∈ V (G),

EH∈F [DH(u, v)] ≤ α · DG(u, v).A detailed exposition of ombinatorial and algorithmi re-sults onerning metri embeddings, an be found in [18℄,and [15℄.
2. PRELIMINARIESLet G be a graph embedded on Sg, and let C be a yleof G. Then, C is alled non-separating, if the orrespondingyle in Sg does not separate Sg.Given a graph embedded on a surfae of bounded genus, itis essential for our algorithm to be able to ompute the short-est non-separating yle of the graph. The �rst polynomial-time algorithm for this problem was given by Thomassen in[23℄. The next lemma states the best urrently known timebound, obtained by Cabello and Chambers [6℄.Lemma 1. [[6℄℄ Let G be an n-vertex graph of genus g.Given an embedding of G on Sg, we an ompute the shortestnon-separating yle of G, in time O(g3n log n).We will now introdue a basi operation that redues thegenus of a graph. Let G be a graph of genus g, embedded on
Sg. Let C be a non-separating yle of G. We say that theut along C in G indues a graph G′, if G′ an be obtainedfrom G by utting Sg along C, and by attahing two opiesof C on the boundary of eah resulting disk. The followingis a standard fat from ombibatorian topology (f. lemma4.2.4, page 106 of [19℄).Lemma 2. Let G be a graph of genus g, embedded on Sg,and let C be a non-separating yle of G. If a ut along Cindues a graph G′, then the genus of G′ is less than g.
3. CONSTRUCTING THE DISTRIBUTIONLet G be a graph of genus g, embedded on Sg. We willdesribe an algorithm that omputes a distribution F overgraphs of genus at most g − 1, whih O(1)-probabilistiallyapproximates G.By triangulating eah fae of G, we an assume w.l.o.g.that G is a triangulation of Sg . Note that when triangulating
G, for eah new edge that we add, we an set its length to beequal to the shortest-path distane between its end-points.This way, the shortest-path metri of the resulting graphremains the same.

We begin by omputing a shortest non-separating yle
C of G, using the algorithm from lemma 1. Let k be thelength of C. Let G′ be the graph indued by the ut along
C in G. Let also C1, and C2 be the two opies of C in G′.Claim 1. DG′ (C1, C2) ≥ k/2.Proof. Assume that the assertion is not true. Pik apath p from v1 ∈ C1 to v2 ∈ C2, with length less than k/2.Let v′

2 be the opy of v2 in C1. Observe that either thelok-wise ar of C1 from v1 to v′
2, of the lok-wise ar of

C1 from v′
2 to v1 has length at most k/2. Let A be thisar. The onatenation of p and A gives a non-separatingyle in G of length stritly less than k, ontraditing theminimality of C.Let L = DG′(C1, C2). For eah α ≥ 0, let Vα be the setof verties of G′ that are at distane α from C1. Formally,

Vα = {v ∈ V (G′)|DG′ (C1, v) ≤ α}.Let I = [0, L/2). For eah α ∈ I , let Eα be the set of edgesof G′ that are between the sets Vα, and V (G′) \ Vα. Thatis, Eα = {{u, v} ∈ E(G′)|u ∈ Vα, v /∈ Vα}. By removing Eαfrom G′ we obtain a set of onneted omponents. Moreover,there exists a onneted omponent Hα, suh that C2 ⊆ Hα.De�ne E′
α to be the set of edges between Hα and the restof G′. Formally, E′

α = {{u, v} ∈ E(G′)|u /∈ Hα, v ∈ Hα}.Note that E′
α is also a subset of the edge set of G. Foreah α ∈ I , let Gα be the graph obtained from G as follows.Fix a shortest path P of length L between C1 and C2 in G′.First, we remove E′

α from G. Starting from C1, let zα bethe �rst vertex of V (G) \ Vα, visited by P . For eah edge
e ∈ E′

α, let u be the end-point of e in V (G) \ Vα. We addan edge {u, zα}, with length DG(u, zα).We will use the following result from [1℄.Lemma 3 ([1℄). Let U ⊆ V (G′) be suh that the re-moval of U from G′, disonnets C1 from C2. Then, thereexists Z ⊆ U , whih indues a non-separating yle in G.The desribed onstrution is depited in Figure 1. Wede�ne F to be the uniform distribution over {Gα}α∈I . Thisis the �nal distribution that we onstrut, so it remains toshow that it has the laimed properties. First, we need toshow that for eah α ∈ I , Gα is indeed a onneted graphof genus less than g.Lemma 4. For eah α ∈ I, Gα is a onneted graph ofgenus at most g − 1.Proof. We �rst argue that Gα is onneted. Observethat for eah v ∈ V (G), there exists a path from v either to
C1, or to C2 in Gα. It follows that there exists a path from
v to C in Gα, and sine C is a onneted subgraph, Gα isonneted.Next, we show that the genus of Gα is stritly less thanthat of G. Let U be the set of verties of Vα that are end-points of edges in E′

α. Clearly, U separates C1 from C2 in
G′. Thus, by lemma 3 there exists Z ∈ U that indues anon-separating yle in G. By lemma 2, it follows that Gαhas genus at most g − 1.Next, we need to show that every graph in the support of
F dominates the input graph G.Lemma 5. For eah u, v ∈ V (G), for eah α ∈ I,

DGα (u, v) ≥ DG(u, v).



Figure 1: Obtaining the graph Gα from G.Proof. Observe that Gα if obtained from G be removingthe edges in E′
α, and by adding some new edges. Clearly, byremoving the edges in E′

α we do not derease any distanes.Moreover, for eah edge that we add, we set its length to beequal to the shortest-path distane between its end-pointsin G. Therefore, the distane between any two verties in
Gα is at least their distane in G.Finally, we need to bound the expeted expansion of F .Lemma 6. For eah {u, v} ∈ E(G), EΓ∈F [DΓ(u, v)] ≤
8 · DG(u, v).Proof. Let {u, v} ∈ E(G), and assume w.l.o.g. that
DG′ (C1, u) ≤ DG′ (C1, v). Observe that an edge e is in theset E′

α, only if α ∈ [DG′ (C1, u), DG′ (C1, v)). Thus,
PrΓ∈F [e /∈ E(Γ)] ≤ (DG′ (C1, v) − DG′(C1, u))

2

L
≤ 2 · DG(u, v)/LConsider now α ∈ I , suh that e /∈ E(Gα). We will showthat the distane between u and v in Gα is not too large.Sine e /∈ E(Gα), it follows that e is one of the edges thatare removed from G while onstruting Gα. That is, e ∈ E′

α.We have that u ∈ Vα, and v /∈ Vα.Observe that the shortest path between C1 and u doesnot pass through V (G) \ Vα, and thus it is ontained in Gα.Thus, DGα (u, C) = DG(u, C1) = α ≤ L/2.Moreover,
DGα (v, C2) ≤ DGα (v, zα) + DGα (zα, C2)

≤ DG(v, zα) + L

≤ DG(v, u) + DG(u, C) + diamG(C)

+DG(C, zα) + L

≤ DG(v, u) + α + k/2 + L + L

≤ DG(v, u) + 7L/2Putting everything together, we obtain that for any {u, v} ∈
E(G),
EΓ∈F [DΓ(u, v)] ≤ DG(u, v) · PrΓ∈F [e ∈ E(Γ)]

+(DG(v, u) + 7L/2) · PrΓ∈F [e /∈ E(Γ)]

≤ 8 · DG(u, v)Combining lemmata 5, and 6, we an show the main resultof this setion.Theorem 1. Every graph of genus g an be O(1)-pro-babilistially approximated by a distribution over graphs ofgenus at most g − 1.

Proof. Consider the distribution F over graphs of genusat most g − 1 desribed above. Let u, v ∈ V (G). Sine bylemma 5 the distanes in Gi are non-ontrating, it su�esto show that EΓ∈F [DΓ(u, v)] = O(DG(u, v)). Consider ashortest path q = x1, x2, . . . , xt between u and v in G. Bythe linearity of expetation, and by lemma 6,
EΓ∈F [DΓ(u, v)] ≤

t−1
X

j=1

EΓ∈F [DΓ(xj , xj+1)]

≤ 8 ·
t−1
X

j=1

DG(xj , xj+1)

= 8 · DG(u, v)Corollary 3. Every graph of genus g an be 2O(g)-pro-babilistially approximated by a distribution over planar graphs.Proof. We repeatedly apply theorem 1, g times.
4. LOWER BOUND FOR PROBABILISTIC

APPROXIMATION BY PLANAR GRAPHSIt has been shown by Erd®s and Sahs [11℄ that there existdense graphs of high girth.Lemma 7. For every γ ≥ 3, and every n ≥ 3, there existsa onneted graph on n verties, with at least 1
4
n1+1/γ edges,and girth greater than γ.Theorem 2. For any n > 0, there exists an n-vertexgraph G, suh that any probabilisti approximation of G bya distribution over planar graphs, has expeted expansion

Ω(log n/ log log n).Proof. Let n > 0, and assume that any graph on nverties an be α-probabilistially approximated by a distri-bution over planar graphs.Let H be a graph of girth γ as given by lemma 7, for some
γ > 0 to be de�ned later. Fix a spanning tree T of H . Foreah subset of edges Y ⊆ E(H)\E(T ), let GY be the graphof V (G), with edge set Y ∪E(T ). Let A be the family of allpossible subgraph of H that ontain T . That is,

A = {GY |Y ⊆ E(H)}For eah GY ∈ A, there exists a distribution FY over pla-nar graphs that α-probabilistially approximates GY . Fix
u, v ∈ V (GY ). By the Markov inequality, we have

PrG′∈FY
[DG′ (u, v) > 2αDGY (u, v)] < 1/2Thus, if we pik k = 2 log n planar graphs G1

Y , . . . , Gk
Y ∈

FY , then the minimum distane between u, and v in all of



these graphs, is in the range [DGY (u, v), 2αDGY (u, v)], withprobability at least 1−n−2. By the union bound, this holdsfor all pairs u, v ∈ V (GY ), with positive probability.We next show that we an obtain a suint representationof an approximation of GY , using G1
Y , . . . , Gk

Y . Note thatthis is not immediate, sine eah Gi
Y might ontain steinernodes. For eah i ∈ [k], pik a olletion P i

Y of shortest-paths of Gi
Y , satisfying the following properties:

• For eah u, v ∈ V (H), there exists a unique shortest-path between u and v in P i
Y .

• For eah shortest-path p ∈ PY , and for eah v1, v2 ∈ p,the subpath q of p between v1 and v2, is also in PY .Let J i
Y be the graph obtained by taking the union of all thepaths in P i

Y , and by replaing indued subpaths, by singleedges. Observe that the number of verties of J i
Y with degreegreater than 2 is at most 2

`(n
2)
2

´

< n4. This is beause bythe hoise of P i
Y , eah pair of paths in P i

Y an ontributeat most 2 suh verties. Sine J i
Y does not ontain induedpaths of length greater than 1, it follows that it has at most

n + n4 < 2n4 verties.Sine eah J i
Y is planar, it follows by a result of [17℄ thatthere exist onstants C1, C2 > 0, suh that J i

Y an be em-bedded into C1 log n-dimensional ℓ∞, with distortion C2.Observe that the distane between any pair of verties in
H is an integer between 1 and n. It follows that when em-bedding J i

Y into ℓ∞, after appropriate saling, we an roundeah oordinate to the losest integer in {0, 1, . . . , n2}, andinure distortion at most 2. Thus, the restrition of the em-bedding on V (GY ) an be represented by at most C1n log2 nbits. Sine we use k = 2 log n distint samples Gi
Y , we ob-tain that we an represent the distanes in GY up to a fatorof 4αC2, using at most C1n log3 n bits.Thus, the total number of distint representations of graphs

GY is at most 2C1n log3 n. On the other hand, for eah
GY , GZ ∈ A, with GY 6= GZ , there exist w1, w2 ∈ V (H),suh that either {w1, w2} ∈ E(GY ), and {w1, w2} /∈ E(GZ),or {w1, w2} /∈ E(GY ), and {w1, w2} ∈ E(GZ). Assumew.l.o.g. that {w1, w2} ∈ E(GY ), and {w1, w2} /∈ E(GZ).Sine H has girth more than γ, we have that DGY (w1, w2) =
1, and DGZ (w1, w2) > γ. If we pik γ > 4αC2, it followsthat eah GY 6= GZ should have distint representations.Thus, the number of distint representations is at least thesize of the family A. That is

2C1n log3 n ≥ |A|

= 2|E(H)|−n+1

> 2
1
4

n1+1/γ−n+1

> 2
1
8

n1+1/(4αC2)Thus, α = Ω(log n/ log log n).
5. LOWER BOUND FOR EMBEDDING

GRAPHS OF GENUS G INTO GRAPHS
OF GENUS G − 1In [20℄ (see also [13℄), it is shown that any embedding ofthe n-yle into a tree has distortion Ω(n). This fat moti-vates the use of probabilisti approximation by distributionsover trees. Similarly, we an motivate the use of probabilis-ti approximation of bounded genus graphs, by showing that

any �xed embedding of a graph of genus g into a graph ofgenus g − 1, annot always result in small distortion.Theorem 3. For any g ≥ 1, and for any n > 0, thereexist an n-vertex unweighted graph G of genus g, suh thatany embedding of G into a graph of genus g−1 has distortion
Ω(n/g).Proof. The omplete graph Kt on t verties has genus
g > t2/20. Let G be the graph obtained from Kt by re-plaing every edge by a path of length n/

`

t
2

´. Note that Ghas n verties. Let g′ be the genus of G. Observe that Ktis a minor of G, thus g′ ≥ g. Moreover, every drawing of
G indues a drawing of Kt: for eah u, v ∈ V (Kt), the aronneting {u, v} is the image of the path onneting u and
v in G. Thus, g′ = g.Consider now an embedding f of G into a graph H ofgenus g − 1, with distortion c. We need to show a lowerbound for c. After saling the edge lengths of H , we anassume that f is non-ontrating. For a graph A, and fora pair of verties u, v of A, let P A

u,v denote a shortest pathbetween u and v in A. For any u, v ∈ Kt, with u 6= v, de�ne
Hu,v to be the edge-indued subgraph of H ontaining allthe edges in the shortest paths between the edges in P G

u,v.Formally, the edge set of Hu,v is de�ned to be
E(Hu,v) =

[

{x,y}∈E(P G
u,v)

[

{z,w}∈E(P H
x,y)

{{z, w}}Consider now an non-rossing embedding σ of H into
Sg−1. We an onstrut a (rossing) embedding σ′ of Kt into
Sg−1 as follows. For eah u, v ∈ V (Kt), σ(Hu,v) is a on-neted one-dimensional simpliial omplex, whih is a sub-spae of Sg−1. Pik a path ρu,v in σ(Hu,v) between σ(u), and
σ(v). Then, the union of the paths ρu,v, for u, v ∈ V (Kt)indue an embedding σ′ of Kt into Sg−1.Sine the genus of Kt is g, there exist u1, v1, u2, v2 ∈
V (Kt) suh that ρu1,v1 ∩ ρu2,v2 6= ∅. We �rst show thatwe an pik u1, v1, u2, v2, so that their end-points are dis-tint. Assume otherwise, and let u1 = u2. We an furtherassume w.l.o.g. that ρu1,v1 and ρu2,v2 interset at a singlepoint. Otherwise, we an �nd two onseutive intersetionpoints p1, p2 that an be removed by replaing the sub-pathof ρu1,v1 between p1 and p2 by a slightly translated opy ofthe sub-path of ρu1,v2 between p1 and p2.Let now p be the distint intersetion point of ρu1,v1 and
ρu2,v2 . By exhanging the parts of the two paths that appearbetween v1 and p, and by slightly perturbing the two ars,we an redue the number of rossings of a1 and a2 by one.By repeating the above proess, we obtain a drawing withno rossings, ontraditing the fat that the genus of Kt is
g.We have thus shown that we an pik distint u1, v1, u2, v2,so that ρu1,v1 ∩ρu2,v2 6= ∅. It follows that Hu1,v1 ∩Hu2,v2 6=
∅. That is, there exists an edge {u′

1, v
′
1} in P G

u1,v1
, andand edge {u′

2, v
′
2} in P G

u2,v2
, suh that the paths P H

u′

1,v′

1
and

P H
u′

2,v′

2
interset. It follows that there exists q ∈ V (P H

u′

1,v′

1
)∩

V (P H
u′

2,v′

2
), suh that for any i ∈ {1, 2},

DH(u′
i, v

′
i) = DH(u′

i, q) + DH(q, v′
i).



Sine the embedding is non-ontrating, we have
DH(u′

1, u
′
2) ≤ DH(u′

1, q) + DH(u′
2, q)

≤ DH(u′
1, v

′
1) + DH(u′

2, v
′
2)

≤ cDG(u′
1, v

′
1) + cDG(u′

2, v
′
2)

= 2cOn the other hand, sine the end-points of the edges {u1, v1},and {u2, v2} are distint in Kt, we obtain DG(u′
1, u

′
2) ≥

n/
`

t
2

´. By non-ontration, 2c = DH(u′
1, u

′
2) ≥ DG(u′

1, u
′
2) ≥

n/
`

t
2

´. Thus, c = Ω(n/g).
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