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ABSTRACTA probabilisti
 C-embedding of a (guest) metri
 M intoa 
olle
tion of (host) metri
s M ′
1, . . . , M

′
k is a randomizedmapping F of M into one of the M ′

1, . . . , M
′
k su
h that, forany two points p, q in the guest metri
:1. The distan
e between F (p) and F (q) in any M ′

i is notsmaller than the original distan
e between p and q.2. The expe
ted distan
e between F (p) and F (q) in (ran-dom) M ′
i is not greater than some 
onstant C timesthe original distan
e, for C ≥ 1.The 
onstant C is 
alled the distortion of the embedding.Low-distortion probabilisti
 embeddings enable redu
ing al-gorithmi
 problems over "hard" guest metri
s into "easy"host metri
s.We show that every metri
 indu
ed by a graph of boundedgenus 
an be probabilisti
ally embedded into planar graphs,with 
onstant distortion. The embedding 
an be 
omputede�
iently, given a drawing of the graph on a genus-g sur-fa
e.

Categories and Subject DescriptorsF.2 [Analysis of Algorithms and Problem Complex-ity℄: General
General TermsAlgorithms Theory
KeywordsEmbeddings, Probabilisti
 Approximation, Bounded GenusGraphs, Planar Graphs
1. INTRODUCTIONPlanar graphs 
onstitute an important 
lass of 
ombina-torial stru
tures, sin
e they 
an often be used to model a
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wide variety of natural obje
ts. At the same time, theyhave properties that give rise to improved algorithmi
 solu-tions for numerous graph problems, if one restri
ts the setof possible inputs to planar graphs (see e.g. [3℄).A natural generalization of planarity 
an be obtained us-ing the notion of the genus of a graph. Informally, a graphhas genus g, for some g ≥ 0, if it 
an be drawn without any
rossings on the surfa
e of a sphere with g additional han-dles (see later in this se
tion for a formal de�nition). Forexample, a planar graph has genus 0, and a graph that 
anbe drawn on a torus has genus 1.The genus of a graph 
an be interpreted as a quantityexpressing how far a graph is from being planar. To thatextend, graphs of small genus usually exhibit ni
e algorith-mi
 properties, mainly due to their inherent similarities withplanar graphs. More pre
isely, algorithms for planar graphs
an usually be extended to graphs of bounded genus, witha small loss in e�
ien
y, or in the quality of the solution.However, su
h extensions 
an in some 
ases be 
ompli
ated,and based on ad-ho
 te
hniques.In this paper we give a general method for solving prob-lems on graphs of bounded genus, by redu
ing them to 
or-responding problems on planar graphs. Our approa
h isinspired by Bartal's probabilisti
 approximation of generalmetri
s by trees [4℄. We show that for any graph G ofbounded genus, there exists a distribution F over planargraphs, su
h that for any pair of verti
es u, v ∈ V (G), if wepi
k a graph H from F , then the expe
ted distan
e between
u and v in H is distorted by at most a 
onstant fa
tor (seelater in this se
tion for a pre
ise de�nition). This in turn im-plies that a general 
lass of problems on graphs of boundedgenus involving optimizing a 
ombination of distan
es, 
anbe redu
ed to 
orresponding problems on planar graphs.
1.1 Our resultsWe show that every graph of genus g 
an be O(1)-proba-bilisti
ally approximated by a distribution over graphs ofgenus g− 1. By repeatedly applying this pro
edure g times,we obtain that every graph of genus g 
an be 2O(g)-probabi-listi
ally approximated by a distribution over planar graphs.In parti
ular, this implies that for graphs of bounded genus,the expe
ted stret
h in the above approximation is O(1).We 
omplement this result by two lower bounds. First,we show that for any n > 0, there exist an n-vertex graphthat 
annot be o(log n/ log log n)-probabilisti
ally approxi-mated by planar graphs. Sin
e the genus of a graph is atmost polynomial in n, this implies that for any g > 0, we
annot always have a probabilisti
 approximation of a graph



of genus g by a distribution over planar graphs, with ex-pe
ted expansion o(log g/ log log g).Furthermore, we show that for any g ≥ 1, and for any n0 >
0, there exists n ≥ n0, and an n-vertex graph of genus g, forwhi
h any (deterministi
) embedding into a graph of genus
g − 1, has distortion Ω(n/g). This lower bound motivatesour use of probabilisti
 approximations, sin
e in the worst
ase, any single embedding 
annot have small distortion.
1.2 Our techniquesPrior work on probabilisti
 approximation (see later inthis se
tion for details), is based on 
onstru
ting a proba-bility distribution over partitions of the input metri
 spa
e.The partitions are 
hosen so that they 
an later be 
ombinedinto a simple graph stru
ture.Our approa
h deviates from this general framework, sin
eour arguments are inherently topologi
al. Informally, our al-gorithm for 
onstru
ting a probabilisti
 approximation worksas follows. We pi
k a small non-separating 
y
le C of theinput graph G, and 
ompute a randomly shifted version of
C. Intuitively, this 
an be seen as shifting C randomly alonga handle. We then remove C from G, obtaining a graph ofsmaller genus. By 
hoosing an appropriate C, we 
an showthat the expe
ted expansion of the distan
e between anypair of verti
es is bounded by some 
onstant.
1.3 Applications

Graph optimization.As in the 
ase of probabilisti
ally approximating metri
sby distributions over tree metri
s [4℄, we obtain a generalredu
tion from a 
lass of graph optimization problems overbounded genus graphs, to a restri
tion over planar graphs.More pre
isely, we show the following.Corollary 1. Let Π be a graph optimization problem inwhi
h the obje
tive fun
tion depends linearly on the distan
esof the input graph. If there exists an α-approximation al-gorithm for Π on planar graphs, then there exists a O(α)-approximation algorithm for graphs of bounded genus.
Embedding into ℓ1.Gupta et. al. [14℄ 
onje
tured that planar graphs em-bed into ℓ1 with distortion O(1). The 
onje
ture has beenproven for the spe
ial 
ase of series-parallel [14℄, and O(1)-outerplanar graphs [8℄. Our result implies a strengtheningof this 
onje
ture for graphs of bounded genus that was sug-gested by Thilikos [22℄. This strengthening is obtained asfollows. Assume that every planar graph embeds into ℓ1with distortion c. Then, given a graph G of bounded genus,we 
an �rst O(1)-probabilisti
ally approximate G by a dis-tribution F over planar graphs. For ea
h H ∈ F there existsan embedding into ℓ1 with distortion c, and so by 
on
ate-nating all the embeddings (weighted by their 
orrespondingprobabilities), we obtain an embedding of G into ℓ1 withdistortion O(c). We thus show the following result.Corollary 2. If every planar graph embeds into ℓ1 withdistortion c, then every graph of bounded genus embeds into
ℓ1 with distortion O(c).

1.4 Related WorkProbabilisti
 embeddings were �rst 
onsidered by Karp[16℄, where it was shown that the n-
y
le 
an be O(1)-probabilisti
ally approximated by a distribution over span-ning subtrees. The �rst result for general graphs was ob-tained in [2℄, where it was shown that any graph 
an be
2O(log n log log n)-probabilisti
ally approximated by a distribu-tion over spanning trees.The notion of probabilisti
 embeddings was introdu
ed byBartal in [4℄, where it was shown that every metri
 
an be
O(log2 n)-probabilisti
ally approximated by a distributionover trees. The same paper gave a Ω(log n) lower bound forthe same quantity. The upper bound was later improved to
O(log n log log n) in [5℄, and subsequently to O(log n) in [12℄.For the 
ase of approximating by spanning subgraphs, itwas shown in [9℄ that every graph 
an be O(log2 n log log n)-probabilisti
ally approximated by a distribution over span-ning subtrees. When the input is a series-parallel graph, thesame bound was improved to O(log n) in [10℄.Probabilisti
 approximation by distributions over more
omplex 
lasses of graphs has also been 
onsidered. In par-ti
ular, [21℄ shows that every metri
 of 
onstant doublingdimension 
an be (1 + ǫ)-probabilisti
ally approximated bya distribution over graphs of bounded treewidth. In [7℄ itwas shown that there exist graphs of treewidth k that 
annotbe o(log n)-probabilisti
ally approximated by a distributionover graphs of treewidth k−3. In the same paper it was alsoshown that for any k, there exist planar graphs that 
annotbe o(log n)-probabilisti
ally approximated by a distributionover graphs of treewidth k.The later bound implies in parti
ular that in order toobtain a o(log n)-probabilisti
 approximation for graphs ofbounded genus, one needs to 
onsider distributions overmore 
omplex families of graphs.Moreover, the results in [7℄ imply that there exists a �xedminor H , su
h that the family of H-minor free graphs 
annotbe o(log n)-probabilisti
ally approximated by a distributionover planar graphs. Therefore, it is impossible to general-ize our positive results to arbitrary minor-free families ofgraphs.
1.5 Notation and Definitions

Topological graph theory.Let us re
all some notions from topologi
al graph theory(an in-depth exposition 
an be found in [19℄). A surfa
e is atwo-dimensional manifold. Let Sg be a 
ompa
t 
onne
tedorientable surfa
e without boundary, and of genus g. For agraph G we 
an de�ne a one-dimensional simpli
ial 
omplex
C asso
iated with G as follows: The 0-
ells of C are theverti
es of G, and for ea
h edge {u, v} of G, there is a 1-
ellin C 
onne
ting u and v. An embedding of G on a surfa
e Sis a 
ontinuous inje
tion f : C → V . The genus of a graph
G is the smallest integer g su
h that C 
an be embedded on
Sg.
Graphs and metric embeddings.Unless stated otherwise, all the graphs that we 
onsiderin this paper, are assumed to be �nite, simple, undire
ted,weighted, and without loops. For a graph G = (V, E), andfor u, v ∈ V (G), we denote by DG(u, v) the length of theshortest-path between u and v in G. By s
aling the edge



weights of G, we may assume that the minimum distan
ebetween any pair of points in G is 1.An embedding of a graph G into a graph H is a fun
tion
f : V (G) → V (H). The distortion of su
h an embedding isequal to the minimum c, su
h that there exists r > 0, su
hthat for any u, v ∈ V (G),

r · DG(u, v) ≤ DH(u, v) ≤ c · r · DH(u, v).The embedding f is 
alled an isometry if for any u, v ∈
V (G), DH(u, v) = DG(u, v), and it is 
alled non-
ontra
tingif for any u, v ∈ V (G), DH(u, v) ≥ DG(u, v).We use the notion of probabilisti
 approximation intro-du
ed in [4℄. We say that a graph H dominates a graph
G, if V (G) ⊆ V (H), and for any u, v ∈ V (G), DG(u, v) ≤
DH(u, v). For a graph G, a parameter α ≥ 1, and a prob-ability distribution F over graphs H that dominate G, wesay that F , α-probabilisti
ally approximates G, if for any
u, v ∈ V (G),

EH∈F [DH(u, v)] ≤ α · DG(u, v).A detailed exposition of 
ombinatorial and algorithmi
 re-sults 
on
erning metri
 embeddings, 
an be found in [18℄,and [15℄.
2. PRELIMINARIESLet G be a graph embedded on Sg, and let C be a 
y
leof G. Then, C is 
alled non-separating, if the 
orresponding
y
le in Sg does not separate Sg.Given a graph embedded on a surfa
e of bounded genus, itis essential for our algorithm to be able to 
ompute the short-est non-separating 
y
le of the graph. The �rst polynomial-time algorithm for this problem was given by Thomassen in[23℄. The next lemma states the best 
urrently known timebound, obtained by Cabello and Chambers [6℄.Lemma 1. [[6℄℄ Let G be an n-vertex graph of genus g.Given an embedding of G on Sg, we 
an 
ompute the shortestnon-separating 
y
le of G, in time O(g3n log n).We will now introdu
e a basi
 operation that redu
es thegenus of a graph. Let G be a graph of genus g, embedded on
Sg. Let C be a non-separating 
y
le of G. We say that the
ut along C in G indu
es a graph G′, if G′ 
an be obtainedfrom G by 
utting Sg along C, and by atta
hing two 
opiesof C on the boundary of ea
h resulting disk. The followingis a standard fa
t from 
ombibatorian topology (
f. lemma4.2.4, page 106 of [19℄).Lemma 2. Let G be a graph of genus g, embedded on Sg,and let C be a non-separating 
y
le of G. If a 
ut along Cindu
es a graph G′, then the genus of G′ is less than g.
3. CONSTRUCTING THE DISTRIBUTIONLet G be a graph of genus g, embedded on Sg. We willdes
ribe an algorithm that 
omputes a distribution F overgraphs of genus at most g − 1, whi
h O(1)-probabilisti
allyapproximates G.By triangulating ea
h fa
e of G, we 
an assume w.l.o.g.that G is a triangulation of Sg . Note that when triangulating
G, for ea
h new edge that we add, we 
an set its length to beequal to the shortest-path distan
e between its end-points.This way, the shortest-path metri
 of the resulting graphremains the same.

We begin by 
omputing a shortest non-separating 
y
le
C of G, using the algorithm from lemma 1. Let k be thelength of C. Let G′ be the graph indu
ed by the 
ut along
C in G. Let also C1, and C2 be the two 
opies of C in G′.Claim 1. DG′ (C1, C2) ≥ k/2.Proof. Assume that the assertion is not true. Pi
k apath p from v1 ∈ C1 to v2 ∈ C2, with length less than k/2.Let v′

2 be the 
opy of v2 in C1. Observe that either the
lo
k-wise ar
 of C1 from v1 to v′
2, of the 
lo
k-wise ar
 of

C1 from v′
2 to v1 has length at most k/2. Let A be thisar
. The 
on
atenation of p and A gives a non-separating
y
le in G of length stri
tly less than k, 
ontradi
ting theminimality of C.Let L = DG′(C1, C2). For ea
h α ≥ 0, let Vα be the setof verti
es of G′ that are at distan
e α from C1. Formally,

Vα = {v ∈ V (G′)|DG′ (C1, v) ≤ α}.Let I = [0, L/2). For ea
h α ∈ I , let Eα be the set of edgesof G′ that are between the sets Vα, and V (G′) \ Vα. Thatis, Eα = {{u, v} ∈ E(G′)|u ∈ Vα, v /∈ Vα}. By removing Eαfrom G′ we obtain a set of 
onne
ted 
omponents. Moreover,there exists a 
onne
ted 
omponent Hα, su
h that C2 ⊆ Hα.De�ne E′
α to be the set of edges between Hα and the restof G′. Formally, E′

α = {{u, v} ∈ E(G′)|u /∈ Hα, v ∈ Hα}.Note that E′
α is also a subset of the edge set of G. Forea
h α ∈ I , let Gα be the graph obtained from G as follows.Fix a shortest path P of length L between C1 and C2 in G′.First, we remove E′

α from G. Starting from C1, let zα bethe �rst vertex of V (G) \ Vα, visited by P . For ea
h edge
e ∈ E′

α, let u be the end-point of e in V (G) \ Vα. We addan edge {u, zα}, with length DG(u, zα).We will use the following result from [1℄.Lemma 3 ([1℄). Let U ⊆ V (G′) be su
h that the re-moval of U from G′, dis
onne
ts C1 from C2. Then, thereexists Z ⊆ U , whi
h indu
es a non-separating 
y
le in G.The des
ribed 
onstru
tion is depi
ted in Figure 1. Wede�ne F to be the uniform distribution over {Gα}α∈I . Thisis the �nal distribution that we 
onstru
t, so it remains toshow that it has the 
laimed properties. First, we need toshow that for ea
h α ∈ I , Gα is indeed a 
onne
ted graphof genus less than g.Lemma 4. For ea
h α ∈ I, Gα is a 
onne
ted graph ofgenus at most g − 1.Proof. We �rst argue that Gα is 
onne
ted. Observethat for ea
h v ∈ V (G), there exists a path from v either to
C1, or to C2 in Gα. It follows that there exists a path from
v to C in Gα, and sin
e C is a 
onne
ted subgraph, Gα is
onne
ted.Next, we show that the genus of Gα is stri
tly less thanthat of G. Let U be the set of verti
es of Vα that are end-points of edges in E′

α. Clearly, U separates C1 from C2 in
G′. Thus, by lemma 3 there exists Z ∈ U that indu
es anon-separating 
y
le in G. By lemma 2, it follows that Gαhas genus at most g − 1.Next, we need to show that every graph in the support of
F dominates the input graph G.Lemma 5. For ea
h u, v ∈ V (G), for ea
h α ∈ I,

DGα (u, v) ≥ DG(u, v).



Figure 1: Obtaining the graph Gα from G.Proof. Observe that Gα if obtained from G be removingthe edges in E′
α, and by adding some new edges. Clearly, byremoving the edges in E′

α we do not de
rease any distan
es.Moreover, for ea
h edge that we add, we set its length to beequal to the shortest-path distan
e between its end-pointsin G. Therefore, the distan
e between any two verti
es in
Gα is at least their distan
e in G.Finally, we need to bound the expe
ted expansion of F .Lemma 6. For ea
h {u, v} ∈ E(G), EΓ∈F [DΓ(u, v)] ≤
8 · DG(u, v).Proof. Let {u, v} ∈ E(G), and assume w.l.o.g. that
DG′ (C1, u) ≤ DG′ (C1, v). Observe that an edge e is in theset E′

α, only if α ∈ [DG′ (C1, u), DG′ (C1, v)). Thus,
PrΓ∈F [e /∈ E(Γ)] ≤ (DG′ (C1, v) − DG′(C1, u))

2

L
≤ 2 · DG(u, v)/LConsider now α ∈ I , su
h that e /∈ E(Gα). We will showthat the distan
e between u and v in Gα is not too large.Sin
e e /∈ E(Gα), it follows that e is one of the edges thatare removed from G while 
onstru
ting Gα. That is, e ∈ E′

α.We have that u ∈ Vα, and v /∈ Vα.Observe that the shortest path between C1 and u doesnot pass through V (G) \ Vα, and thus it is 
ontained in Gα.Thus, DGα (u, C) = DG(u, C1) = α ≤ L/2.Moreover,
DGα (v, C2) ≤ DGα (v, zα) + DGα (zα, C2)

≤ DG(v, zα) + L

≤ DG(v, u) + DG(u, C) + diamG(C)

+DG(C, zα) + L

≤ DG(v, u) + α + k/2 + L + L

≤ DG(v, u) + 7L/2Putting everything together, we obtain that for any {u, v} ∈
E(G),
EΓ∈F [DΓ(u, v)] ≤ DG(u, v) · PrΓ∈F [e ∈ E(Γ)]

+(DG(v, u) + 7L/2) · PrΓ∈F [e /∈ E(Γ)]

≤ 8 · DG(u, v)Combining lemmata 5, and 6, we 
an show the main resultof this se
tion.Theorem 1. Every graph of genus g 
an be O(1)-pro-babilisti
ally approximated by a distribution over graphs ofgenus at most g − 1.

Proof. Consider the distribution F over graphs of genusat most g − 1 des
ribed above. Let u, v ∈ V (G). Sin
e bylemma 5 the distan
es in Gi are non-
ontra
ting, it su�
esto show that EΓ∈F [DΓ(u, v)] = O(DG(u, v)). Consider ashortest path q = x1, x2, . . . , xt between u and v in G. Bythe linearity of expe
tation, and by lemma 6,
EΓ∈F [DΓ(u, v)] ≤

t−1
X

j=1

EΓ∈F [DΓ(xj , xj+1)]

≤ 8 ·
t−1
X

j=1

DG(xj , xj+1)

= 8 · DG(u, v)Corollary 3. Every graph of genus g 
an be 2O(g)-pro-babilisti
ally approximated by a distribution over planar graphs.Proof. We repeatedly apply theorem 1, g times.
4. LOWER BOUND FOR PROBABILISTIC

APPROXIMATION BY PLANAR GRAPHSIt has been shown by Erd®s and Sa
hs [11℄ that there existdense graphs of high girth.Lemma 7. For every γ ≥ 3, and every n ≥ 3, there existsa 
onne
ted graph on n verti
es, with at least 1
4
n1+1/γ edges,and girth greater than γ.Theorem 2. For any n > 0, there exists an n-vertexgraph G, su
h that any probabilisti
 approximation of G bya distribution over planar graphs, has expe
ted expansion

Ω(log n/ log log n).Proof. Let n > 0, and assume that any graph on nverti
es 
an be α-probabilisti
ally approximated by a distri-bution over planar graphs.Let H be a graph of girth γ as given by lemma 7, for some
γ > 0 to be de�ned later. Fix a spanning tree T of H . Forea
h subset of edges Y ⊆ E(H)\E(T ), let GY be the graphof V (G), with edge set Y ∪E(T ). Let A be the family of allpossible subgraph of H that 
ontain T . That is,

A = {GY |Y ⊆ E(H)}For ea
h GY ∈ A, there exists a distribution FY over pla-nar graphs that α-probabilisti
ally approximates GY . Fix
u, v ∈ V (GY ). By the Markov inequality, we have

PrG′∈FY
[DG′ (u, v) > 2αDGY (u, v)] < 1/2Thus, if we pi
k k = 2 log n planar graphs G1

Y , . . . , Gk
Y ∈

FY , then the minimum distan
e between u, and v in all of



these graphs, is in the range [DGY (u, v), 2αDGY (u, v)], withprobability at least 1−n−2. By the union bound, this holdsfor all pairs u, v ∈ V (GY ), with positive probability.We next show that we 
an obtain a su

int representationof an approximation of GY , using G1
Y , . . . , Gk

Y . Note thatthis is not immediate, sin
e ea
h Gi
Y might 
ontain steinernodes. For ea
h i ∈ [k], pi
k a 
olle
tion P i

Y of shortest-paths of Gi
Y , satisfying the following properties:

• For ea
h u, v ∈ V (H), there exists a unique shortest-path between u and v in P i
Y .

• For ea
h shortest-path p ∈ PY , and for ea
h v1, v2 ∈ p,the subpath q of p between v1 and v2, is also in PY .Let J i
Y be the graph obtained by taking the union of all thepaths in P i

Y , and by repla
ing indu
ed subpaths, by singleedges. Observe that the number of verti
es of J i
Y with degreegreater than 2 is at most 2

`(n
2)
2

´

< n4. This is be
ause bythe 
hoise of P i
Y , ea
h pair of paths in P i

Y 
an 
ontributeat most 2 su
h verti
es. Sin
e J i
Y does not 
ontain indu
edpaths of length greater than 1, it follows that it has at most

n + n4 < 2n4 verti
es.Sin
e ea
h J i
Y is planar, it follows by a result of [17℄ thatthere exist 
onstants C1, C2 > 0, su
h that J i

Y 
an be em-bedded into C1 log n-dimensional ℓ∞, with distortion C2.Observe that the distan
e between any pair of verti
es in
H is an integer between 1 and n. It follows that when em-bedding J i

Y into ℓ∞, after appropriate s
aling, we 
an roundea
h 
oordinate to the 
losest integer in {0, 1, . . . , n2}, andin
ure distortion at most 2. Thus, the restri
tion of the em-bedding on V (GY ) 
an be represented by at most C1n log2 nbits. Sin
e we use k = 2 log n distin
t samples Gi
Y , we ob-tain that we 
an represent the distan
es in GY up to a fa
torof 4αC2, using at most C1n log3 n bits.Thus, the total number of distin
t representations of graphs

GY is at most 2C1n log3 n. On the other hand, for ea
h
GY , GZ ∈ A, with GY 6= GZ , there exist w1, w2 ∈ V (H),su
h that either {w1, w2} ∈ E(GY ), and {w1, w2} /∈ E(GZ),or {w1, w2} /∈ E(GY ), and {w1, w2} ∈ E(GZ). Assumew.l.o.g. that {w1, w2} ∈ E(GY ), and {w1, w2} /∈ E(GZ).Sin
e H has girth more than γ, we have that DGY (w1, w2) =
1, and DGZ (w1, w2) > γ. If we pi
k γ > 4αC2, it followsthat ea
h GY 6= GZ should have distin
t representations.Thus, the number of distin
t representations is at least thesize of the family A. That is

2C1n log3 n ≥ |A|

= 2|E(H)|−n+1

> 2
1
4

n1+1/γ−n+1

> 2
1
8

n1+1/(4αC2)Thus, α = Ω(log n/ log log n).
5. LOWER BOUND FOR EMBEDDING

GRAPHS OF GENUS G INTO GRAPHS
OF GENUS G − 1In [20℄ (see also [13℄), it is shown that any embedding ofthe n-
y
le into a tree has distortion Ω(n). This fa
t moti-vates the use of probabilisti
 approximation by distributionsover trees. Similarly, we 
an motivate the use of probabilis-ti
 approximation of bounded genus graphs, by showing that

any �xed embedding of a graph of genus g into a graph ofgenus g − 1, 
annot always result in small distortion.Theorem 3. For any g ≥ 1, and for any n > 0, thereexist an n-vertex unweighted graph G of genus g, su
h thatany embedding of G into a graph of genus g−1 has distortion
Ω(n/g).Proof. The 
omplete graph Kt on t verti
es has genus
g > t2/20. Let G be the graph obtained from Kt by re-pla
ing every edge by a path of length n/

`

t
2

´. Note that Ghas n verti
es. Let g′ be the genus of G. Observe that Ktis a minor of G, thus g′ ≥ g. Moreover, every drawing of
G indu
es a drawing of Kt: for ea
h u, v ∈ V (Kt), the ar

onne
ting {u, v} is the image of the path 
onne
ting u and
v in G. Thus, g′ = g.Consider now an embedding f of G into a graph H ofgenus g − 1, with distortion c. We need to show a lowerbound for c. After s
aling the edge lengths of H , we 
anassume that f is non-
ontra
ting. For a graph A, and fora pair of verti
es u, v of A, let P A

u,v denote a shortest pathbetween u and v in A. For any u, v ∈ Kt, with u 6= v, de�ne
Hu,v to be the edge-indu
ed subgraph of H 
ontaining allthe edges in the shortest paths between the edges in P G

u,v.Formally, the edge set of Hu,v is de�ned to be
E(Hu,v) =

[

{x,y}∈E(P G
u,v)

[

{z,w}∈E(P H
x,y)

{{z, w}}Consider now an non-
rossing embedding σ of H into
Sg−1. We 
an 
onstru
t a (
rossing) embedding σ′ of Kt into
Sg−1 as follows. For ea
h u, v ∈ V (Kt), σ(Hu,v) is a 
on-ne
ted one-dimensional simpli
ial 
omplex, whi
h is a sub-spa
e of Sg−1. Pi
k a path ρu,v in σ(Hu,v) between σ(u), and
σ(v). Then, the union of the paths ρu,v, for u, v ∈ V (Kt)indu
e an embedding σ′ of Kt into Sg−1.Sin
e the genus of Kt is g, there exist u1, v1, u2, v2 ∈
V (Kt) su
h that ρu1,v1 ∩ ρu2,v2 6= ∅. We �rst show thatwe 
an pi
k u1, v1, u2, v2, so that their end-points are dis-tin
t. Assume otherwise, and let u1 = u2. We 
an furtherassume w.l.o.g. that ρu1,v1 and ρu2,v2 interse
t at a singlepoint. Otherwise, we 
an �nd two 
onse
utive interse
tionpoints p1, p2 that 
an be removed by repla
ing the sub-pathof ρu1,v1 between p1 and p2 by a slightly translated 
opy ofthe sub-path of ρu1,v2 between p1 and p2.Let now p be the distin
t interse
tion point of ρu1,v1 and
ρu2,v2 . By ex
hanging the parts of the two paths that appearbetween v1 and p, and by slightly perturbing the two ar
s,we 
an redu
e the number of 
rossings of a1 and a2 by one.By repeating the above pro
ess, we obtain a drawing withno 
rossings, 
ontradi
ting the fa
t that the genus of Kt is
g.We have thus shown that we 
an pi
k distin
t u1, v1, u2, v2,so that ρu1,v1 ∩ρu2,v2 6= ∅. It follows that Hu1,v1 ∩Hu2,v2 6=
∅. That is, there exists an edge {u′

1, v
′
1} in P G

u1,v1
, andand edge {u′

2, v
′
2} in P G

u2,v2
, su
h that the paths P H

u′

1,v′

1
and

P H
u′

2,v′

2
interse
t. It follows that there exists q ∈ V (P H

u′

1,v′

1
)∩

V (P H
u′

2,v′

2
), su
h that for any i ∈ {1, 2},

DH(u′
i, v

′
i) = DH(u′

i, q) + DH(q, v′
i).



Sin
e the embedding is non-
ontra
ting, we have
DH(u′

1, u
′
2) ≤ DH(u′

1, q) + DH(u′
2, q)

≤ DH(u′
1, v

′
1) + DH(u′

2, v
′
2)

≤ cDG(u′
1, v

′
1) + cDG(u′

2, v
′
2)

= 2cOn the other hand, sin
e the end-points of the edges {u1, v1},and {u2, v2} are distin
t in Kt, we obtain DG(u′
1, u

′
2) ≥

n/
`

t
2

´. By non-
ontra
tion, 2c = DH(u′
1, u

′
2) ≥ DG(u′

1, u
′
2) ≥

n/
`

t
2

´. Thus, c = Ω(n/g).
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