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ABSTRACT

A probabilistic C-embedding of a (guest) metric M into
a collection of (host) metrics M7,..., M;, is a randomized
mapping F of M into one of the M1, ..., M], such that, for
any two points p, ¢ in the guest metric:

1. The distance between F(p) and F(q) in any M, is not
smaller than the original distance between p and gq.

2. The expected distance between F(p) and F(q) in (ran-
dom) M is not greater than some constant C times
the original distance, for C' > 1.

The constant C' is called the distortion of the embedding.
Low-distortion probabilistic embeddings enable reducing al-
gorithmic problems over "hard" guest metrics into "easy"
host metrics.

We show that every metric induced by a graph of bounded
genus can be probabilistically embedded into planar graphs,
with constant distortion. The embedding can be computed
efficiently, given a drawing of the graph on a genus-g sur-
face.

Categories and Subject Descriptors

F.2 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Algorithms Theory
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1. INTRODUCTION

Planar graphs constitute an important class of combina-
torial structures, since they can often be used to model a
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wide variety of natural objects. At the same time, they
have properties that give rise to improved algorithmic solu-
tions for numerous graph problems, if one restricts the set
of possible inputs to planar graphs (see e.g. [3]).

A natural generalization of planarity can be obtained us-
ing the notion of the genus of a graph. Informally, a graph
has genus g, for some g > 0, if it can be drawn without any
crossings on the surface of a sphere with g additional han-
dles (see later in this section for a formal definition). For
example, a planar graph has genus 0, and a graph that can
be drawn on a torus has genus 1.

The genus of a graph can be interpreted as a quantity
expressing how far a graph is from being planar. To that
extend, graphs of small genus usually exhibit nice algorith-
mic properties, mainly due to their inherent similarities with
planar graphs. More precisely, algorithms for planar graphs
can usually be extended to graphs of bounded genus, with
a small loss in efficiency, or in the quality of the solution.
However, such extensions can in some cases be complicated,
and based on ad-hoc techniques.

In this paper we give a general method for solving prob-
lems on graphs of bounded genus, by reducing them to cor-
responding problems on planar graphs. Our approach is
inspired by Bartal’s probabilistic approximation of general
metrics by trees [4]. We show that for any graph G of
bounded genus, there exists a distribution F over planar
graphs, such that for any pair of vertices u,v € V(G), if we
pick a graph H from F, then the expected distance between
uw and v in H is distorted by at most a constant factor (see
later in this section for a precise definition). This in turn im-
plies that a general class of problems on graphs of bounded
genus involving optimizing a combination of distances, can
be reduced to corresponding problems on planar graphs.

1.1 Ourresults

We show that every graph of genus g can be O(1)-proba-
bilistically approximated by a distribution over graphs of
genus g — 1. By repeatedly applying this procedure g times,
we obtain that every graph of genus g can be 20909 _probabi-
listically approximated by a distribution over planar graphs.
In particular, this implies that for graphs of bounded genus,
the expected stretch in the above approximation is O(1).

We complement this result by two lower bounds. First,
we show that for any n > 0, there exist an n-vertex graph
that cannot be o(logn/loglog n)-probabilistically approxi-
mated by planar graphs. Since the genus of a graph is at
most polynomial in n, this implies that for any g > 0, we
cannot always have a probabilistic approximation of a graph



of genus g by a distribution over planar graphs, with ex-
pected expansion o(log g/ loglog g).

Furthermore, we show that for any g > 1, and for any no >
0, there exists n > no, and an n-vertex graph of genus g, for
which any (deterministic) embedding into a graph of genus
g — 1, has distortion (n/g). This lower bound motivates
our use of probabilistic approximations, since in the worst
case, any single embedding cannot have small distortion.

1.2 Our techniques

Prior work on probabilistic approximation (see later in
this section for details), is based on constructing a proba-
bility distribution over partitions of the input metric space.
The partitions are chosen so that they can later be combined
into a simple graph structure.

Our approach deviates from this general framework, since
our arguments are inherently topological. Informally, our al-
gorithm for constructing a probabilistic approximation works
as follows. We pick a small non-separating cycle C' of the
input graph G, and compute a randomly shifted version of
C. Intuitively, this can be seen as shifting C' randomly along
a handle. We then remove C from G, obtaining a graph of
smaller genus. By choosing an appropriate C, we can show
that the expected expansion of the distance between any
pair of vertices is bounded by some constant.

1.3 Applications

Graph optimization.

As in the case of probabilistically approximating metrics
by distributions over tree metrics [4], we obtain a general
reduction from a class of graph optimization problems over
bounded genus graphs, to a restriction over planar graphs.
More precisely, we show the following.

COROLLARY 1. Let II be a graph optimization problem in
which the objective function depends linearly on the distances
of the input graph. If there exists an a-approzimation al-
gorithm for I on planar graphs, then there ezxists a O(a)-
approzimation algorithm for graphs of bounded genus.

Embedding into ¢;.

Gupta et. al. [14] conjectured that planar graphs em-
bed into ¢; with distortion O(1). The conjecture has been
proven for the special case of series-parallel [14], and O(1)-
outerplanar graphs [8]. Our result implies a strengthening
of this conjecture for graphs of bounded genus that was sug-
gested by Thilikos [22]. This strengthening is obtained as
follows. Assume that every planar graph embeds into ¢;
with distortion c. Then, given a graph G of bounded genus,
we can first O(1)-probabilistically approximate G by a dis-
tribution F over planar graphs. For each H € F there exists
an embedding into ¢; with distortion ¢, and so by concate-
nating all the embeddings (weighted by their corresponding
probabilities), we obtain an embedding of G into #¢; with
distortion O(c). We thus show the following result.

COROLLARY 2. If every planar graph embeds into £1 with
distortion c, then every graph of bounded genus embeds into
£y with distortion O(c).

1.4 Related Work

Probabilistic embeddings were first considered by Karp
[16], where it was shown that the n-cycle can be O(1)-
probabilistically approximated by a distribution over span-
ning subtrees. The first result for general graphs was ob-
tained in [2], where it was shown that any graph can be
90 (g nloglogn) rohabilistically approximated by a distribu-
tion over spanning trees.

The notion of probabilistic embeddings was introduced by
Bartal in [4], where it was shown that every metric can be
O(log? n)-probabilistically approximated by a distribution
over trees. The same paper gave a Q(logn) lower bound for
the same quantity. The upper bound was later improved to
O(log nloglog n) in [5], and subsequently to O(logn) in [12].
For the case of approximating by spanning subgraphs; it
was shown in 9] that every graph can be O(log? n loglog n)-
probabilistically approximated by a distribution over span-
ning subtrees. When the input is a series-parallel graph, the
same bound was improved to O(logn) in [10].

Probabilistic approximation by distributions over more
complex classes of graphs has also been considered. In par-
ticular, [21] shows that every metric of constant doubling
dimension can be (1 + €)-probabilistically approximated by
a distribution over graphs of bounded treewidth. In [7] it
was shown that there exist graphs of treewidth k that cannot
be o(log n)-probabilistically approximated by a distribution
over graphs of treewidth £ —3. In the same paper it was also
shown that for any k, there exist planar graphs that cannot
be o(log n)-probabilistically approximated by a distribution
over graphs of treewidth k.

The later bound implies in particular that in order to
obtain a o(logn)-probabilistic approximation for graphs of
bounded genus, one needs to consider distributions over
more complex families of graphs.

Moreover, the results in [7] imply that there exists a fixed
minor H, such that the family of H-minor free graphs cannot
be o(log n)-probabilistically approximated by a distribution
over planar graphs. Therefore, it is impossible to general-
ize our positive results to arbitrary minor-free families of
graphs.

1.5 Notation and Definitions

Topological graph theory.

Let us recall some notions from topological graph theory
(an in-depth exposition can be found in [19]). A surface is a
two-dimensional manifold. Let Sy be a compact connected
orientable surface without boundary, and of genus g. For a
graph G we can define a one-dimensional simplicial complex
C associated with G as follows: The 0-cells of C' are the
vertices of G, and for each edge {u, v} of G, there is a 1-cell
in C connecting v and v. An embedding of G on a surface S
is a continuous injection f : C' — V. The genus of a graph
G is the smallest integer g such that C' can be embedded on
Sg.

Graphs and metric embeddings.

Unless stated otherwise, all the graphs that we consider
in this paper, are assumed to be finite, simple, undirected,
weighted, and without loops. For a graph G = (V, E), and
for u,v € V(G), we denote by Dg(u,v) the length of the
shortest-path between u and v in G. By scaling the edge



weights of GG, we may assume that the minimum distance
between any pair of points in G is 1.

An embedding of a graph G into a graph H is a function
f:V(G) — V(H). The distortion of such an embedding is
equal to the minimum ¢, such that there exists r > 0, such
that for any u,v € V(QG),

r- Da(u,v) < Du(u,v) <c-r-Du(u,v).

The embedding f is called an isometry if for any w,v €
V(Q), Du(u,v) = Dg(u,v), and it is called non-contracting
if for any u,v € V(G), Du(u,v) > Dg(u,v).

We use the notion of probabilistic approximation intro-
duced in [4]. We say that a graph H dominates a graph
G, it V(G) C V(H), and for any u,v € V(G), Da(u,v) <
Dpy(u,v). For a graph G, a parameter o > 1, and a prob-
ability distribution F over graphs H that dominate G, we
say that F, a-probabilistically approzimates G, if for any
u,v € V(Q),

Encr[Du(u,v)] < a- Da(u,v).

A detailed exposition of combinatorial and algorithmic re-
sults concerning metric embeddings, can be found in [18],
and [15].

2. PRELIMINARIES

Let G be a graph embedded on S, and let C' be a cycle
of G. Then, C is called non-separating, if the corresponding
cycle in Sy does not separate Sg.

Given a graph embedded on a surface of bounded genus, it
is essential for our algorithm to be able to compute the short-
est non-separating cycle of the graph. The first polynomial-
time algorithm for this problem was given by Thomassen in
[23]. The next lemma states the best currently known time
bound, obtained by Cabello and Chambers [6].

LeMmMmA 1. [[6]] Let G be an n-vertex graph of genus g.
Given an embedding of G on Sy, we can compute the shortest
non-separating cycle of G, in time O(g°nlogn).

We will now introduce a basic operation that reduces the
genus of a graph. Let G be a graph of genus g, embedded on
Sg. Let C be a non-separating cycle of G. We say that the
cut along C in G induces a graph G', if G’ can be obtained
from G by cutting Sy along C, and by attaching two copies
of C on the boundary of each resulting disk. The following
is a standard fact from combibatorian topology (cf. lemma
4.2.4, page 106 of [19]).

LEMMA 2. Let G be a graph of genus g, embedded on Sy,
and let C be a non-separating cycle of G. If a cut along C
induces a graph G', then the genus of G’ is less than g.

3. CONSTRUCTING THE DISTRIBUTION

Let G be a graph of genus g, embedded on S,;. We will
describe an algorithm that computes a distribution F over
graphs of genus at most g — 1, which O(1)-probabilistically
approximates G.

By triangulating each face of G, we can assume w.l.o.g.
that G is a triangulation of S;. Note that when triangulating
G, for each new edge that we add, we can set its length to be
equal to the shortest-path distance between its end-points.
This way, the shortest-path metric of the resulting graph
remains the same.

We begin by computing a shortest non-separating cycle
C of G, using the algorithm from lemma 1. Let k be the
length of C. Let G’ be the graph induced by the cut along
C in G. Let also C1, and O3 be the two copies of C in G’.

Cram 1. Dg/ (Ch,C2) > k/2.

PrRoOOF. Assume that the assertion is not true. Pick a
path p from v1 € C1 to v2 € O3, with length less than k/2.
Let v5 be the copy of vy in C;. Observe that either the
clock-wise arc of C; from v1 to v5, of the clock-wise arc of
C; from vy to v1 has length at most k/2. Let A be this
arc. The concatenation of p and A gives a non-separating
cycle in G of length strictly less than k, contradicting the
minimality of C. [

Let L = Dg/(C1,C2). For each a > 0, let V,, be the set
of vertices of G’ that are at distance o from C4. Formally,
Vo ={v € V(G)|Dg (C1,v) < a}.

Let I =[0,L/2). For each o € I, let E, be the set of edges
of G’ that are between the sets Vo, and V(G') \ V,,. That
is, Eo = {{u,v} € E(G")|u € V4,v ¢ Vo}. By removing E,
from G’ we obtain a set of connected components. Moreover,
there exists a connected component H,, such that Cy C H,.
Define E., to be the set of edges between H, and the rest
of G'. Formally, E/, = {{u,v} € E(G')|u ¢ Ha,v € Ho}.

Note that E., is also a subset of the edge set of G. For
each a € I, let G, be the graph obtained from G as follows.
Fix a shortest path P of length L between C; and Cs in G'.
First, we remove E,, from G. Starting from Ci, let z, be
the first vertex of V(G) \ V4, visited by P. For each edge
e € E, let u be the end-point of e in V(G) \ V.. We add
an edge {u, z }, with length D¢g(u, za).

We will use the following result from [1].

LemMA 3 ([1]). Let U C V(G') be such that the re-
mowal of U from G', disconnects Cy from Ca. Then, there
exists Z C U, which induces a non-separating cycle in G.

The described construction is depicted in Figure 1. We
define F to be the uniform distribution over {Gq }aer. This
is the final distribution that we construct, so it remains to
show that it has the claimed properties. First, we need to
show that for each a € I, G, is indeed a connected graph
of genus less than g.

LEMMA 4. For each a € I, Go is a connected graph of
genus at most g — 1.

Proor. We first argue that G, is connected. Observe
that for each v € V(G), there exists a path from v either to
Ch, or to C2 in G4. It follows that there exists a path from
v to C' in G4, and since C is a connected subgraph, G, is
connected.

Next, we show that the genus of G, is strictly less than
that of G. Let U be the set of vertices of V,, that are end-
points of edges in E/,. Clearly, U separates C1 from Cs in
G'. Thus, by lemma 3 there exists Z € U that induces a
non-separating cycle in G. By lemma 2, it follows that G
has genus at most g — 1. [

Next, we need to show that every graph in the support of
F dominates the input graph G.

LEMMA 5. For each u,v € V(G), for each o € I,
De, (u;v) > Da(u,v).



Figure 1: Obtaining the graph G, from G.

ProoF. Observe that G if obtained from G be removing
the edges in E,, and by adding some new edges. Clearly, by
removing the edges in E/, we do not decrease any distances.
Moreover, for each edge that we add, we set its length to be
equal to the shortest-path distance between its end-points
in G. Therefore, the distance between any two vertices in
G, is at least their distance in G. [

Finally, we need to bound the expected expansion of F.

LEMMA 6. For each {u,v} € E(G), Ercr[Dr(u,v)] <
8- Dg(u,v).

Proor. Let {u,v} € E(G), and assume w.lo.g. that
D¢/ (C1,u) < Dgr(Ci,v). Observe that an edge e is in the
set E,, only if a € [Dg/(C1,u), Dgr(C1,v)). Thus,

o

Prrerle ¢ E(T)] (D (Cr,v) — Der (Ch, u))

2 - Dg(u,v)/L

Consider now « € I, such that e ¢ E(Go). We will show
that the distance between u and v in G, is not too large.
Since e ¢ E(Ga), it follows that e is one of the edges that
are removed from G while constructing G,,. That is, e € EJ,.
We have that u € Vi, and v ¢ V.

Observe that the shortest path between C7 and u does
not pass through V(G) \ Vi, and thus it is contained in Gq.
Thus, D¢, (u,C) = Dg(u,C1) = a < L/2.

IN A

Moreover,
D¢, (v,C2) < Dg,(v,2a) + Da, (2a,C2)
< Dg(v,za)+ L
< Dg(v,u) + Dg(u,C) + diamg(C)
-‘,—DG(C7 Za) + L
< Dg(w,u)+a+k/24+L+L
< Dg(v,u)+7L/2

Putting everything together, we obtain that for any {u, v} €
E(G),
Ercr[Dr(u,v)] < Dg(u,v)-Prrerle € E(T)]
+(Da(v,u) + TL/2) - Preesle ¢ B(D)
8- D¢ (u,v)

IN

O

Combining lemmata 5, and 6, we can show the main result
of this section.

THEOREM 1. Every graph of genus g can be O(1)-pro-
babilistically approrimated by a distribution over graphs of
genus at most g — 1.

Proor. Consider the distribution F over graphs of genus
at most g — 1 described above. Let u,v € V(G). Since by
lemma 5 the distances in (G; are non-contracting, it suffices
to show that Ercz[Dr(u,v)] = O(D¢(u,v)). Consider a
shortest path ¢ = z1,z2,...,7+ between u and v in G. By
the linearity of expectation, and by lemma 6,

t—1
Erc#[Dr(u,v)] < ZEFE}'[DF(xj:xj+1)]
i=1
t—1
< 8-> Dg(wj,xj+1)
=1
= 8- Dg(u,v)

O

COROLLARY 3. Every graph of genus g can be 2°9) _pro-
babilistically approrimated by a distribution over planar graphs.

Proor. We repeatedly apply theorem 1, g times. [

4. LOWER BOUND FOR PROBABILISTIC
APPROXIMATION BY PLANAR GRAPHS

It has been shown by Erdds and Sachs [11] that there exist
dense graphs of high girth.

LEMMA 7. For every v > 3, and every n > 3, there exists
a connected graph on n vertices, with at least %nl“/"’ edges,
and girth greater than ~y.

THEOREM 2. For any n > 0, there ezxists an n-vertec
graph G, such that any probabilistic approrimation of G by
a distribution over planar graphs, has ezpected erpansion
Q(logn/loglogn).

ProoF. Let n > 0, and assume that any graph on n
vertices can be a-probabilistically approximated by a distri-
bution over planar graphs.

Let H be a graph of girth v as given by lemma 7, for some
v > 0 to be defined later. Fix a spanning tree T of H. For
each subset of edges Y C E(H)\ E(T), let Gy be the graph
of V(G), with edge set YU E(T'). Let A be the family of all
possible subgraph of H that contain 7'. That is,

A={Gy|Y C B(H)}

For each Gy € A, there exists a distribution Fy over pla-
nar graphs that a-probabilistically approximates Gy. Fix
u,v € V(Gy). By the Markov inequality, we have

Praicr, [De (u,v) > 2aDay (u,v)] < 1/2

Thus, if we pick k = 2logn planar graphs Gv-,...,G% ¢
Fy, then the minimum distance between u, and v in all of



these graphs, is in the range [Dg, (u,v), 2aDgay (u,v)], with
probability at least 1 —n~2. By the union bound, this holds
for all pairs u,v € V(Gy), with positive probability.

We next show that we can obtain a succint representation
of an approximation of Gy, using Gv,...,G%. Note that
this is not immediate, since each G% might contain steiner
nodes. For each i € [k], pick a collection P{ of shortest-
paths of G%, satisfying the following properties:

e For each u,v € V(H), there exists a unique shortest-
path between v and v in Py-.

e For each shortest-path p € Py, and for each vy, v2 € p,
the subpath ¢ of p between v1 and wvo, is also in Py.

Let Ji be the graph obtained by taking the union of all the
paths in P¢, and by replacing induced subpaths, by single
edges. Observe that the number of vertices of Ji with degree
greater than 2 is at most 2((2)) < n*. This is because by
the choise of P}, each pair of paths in P& can contribute
at most 2 such vertices. Since J¥ does not contain induced
paths of length greater than 1, it follows that it has at most
n+n* < 2n* vertices.

Since each Ji is planar, it follows by a result of [17] that
there exist constants Cy,C2 > 0, such that J¥ can be em-
bedded into C'logn-dimensional ¢, with distortion Cb.
Observe that the distance between any pair of vertices in
H is an integer between 1 and n. It follows that when em-
bedding Ji into £, after appropriate scaling, we can round
each coordinate to the closest integer in {0,1,...,n?}, and
incure distortion at most 2. Thus, the restriction of the em-
bedding on V(Gy) can be represented by at most Cinlog®n
bits. Since we use k = 2logn distinct samples G, we ob-
tain that we can represent the distances in Gy up to a factor
of 4aCs, using at most C’;mlog3 n bits.

Thus, the total number of distinct representations of graphs
Gy is at most 201"l°g3". On the other hand, for each
Gy,Gz € A, with Gy 74— Gz, there exist wi, w2 € V(H),
such that either {w1, w2} € E(Gy), and {w1,w2} ¢ E(Gz),
or {wi,w2} ¢ E(Gy), and {wi,w2} € E(Gz). Assume
w.lo.g. that {w1,w2} € E(Gy), and {wi,w2} ¢ E(Gz).
Since H has girth more than -y, we have that Da, (w1, w2) =
1, and Dg, (w1, w2) > 7. If we pick v > 4aCs, it follows
that each Gy # Gz should have distinct representations.
Thus, the number of distinct representations is at least the
size of the family A. That is

3
2Clnlog noos |A|
QI B(H)|—n+1
Qin1+1/'yfn+1

2§n1+1/(4aC2)
Thus, o = Q(logn/loglogn). O

5. LOWER BOUND FOR EMBEDDING
GRAPHS OF GENUS ¢ INTO GRAPHS
OF GENUSG -1

In [20] (see also [13]), it is shown that any embedding of
the n-cycle into a tree has distortion (n). This fact moti-
vates the use of probabilistic approximation by distributions
over trees. Similarly, we can motivate the use of probabilis-
tic approximation of bounded genus graphs, by showing that

any fixed embedding of a graph of genus g into a graph of
genus g — 1, cannot always result in small distortion.

THEOREM 3. For any g > 1, and for any n > 0, there
ezrist an n-verter unweighted graph G of genus g, such that
any embedding of G into a graph of genus g—1 has distortion

Q(n/g).

Proor. The complete graph K; on t vertices has genus
g > t2/20. Let G be the graph obtained from K; by re-
placing every edge by a path of length n/ (;) Note that G
has n vertices. Let g’ be the genus of G. Observe that K;
is a minor of G, thus g’ > g. Moreover, every drawing of
G induces a drawing of K;: for each u,v € V(K), the arc
connecting {u,v} is the image of the path connecting u and
vin G. Thus, ¢’ = g.

Consider now an embedding f of G into a graph H of
genus g — 1, with distortion ¢. We need to show a lower
bound for c¢. After scaling the edge lengths of H, we can
assume that f is non-contracting. For a graph A, and for
a pair of vertices u,v of A, let me denote a shortest path
between u and v in A. For any u,v € K, with u # v, define
H,,, to be the edge-induced subgraph of H containing all
the edges in the shortest paths between the edges in va.
Formally, the edge set of H, , is defined to be

soma= U U

{z,y}eB(PS,) {z,w}cE(PH,)

{{z w}}

Consider now an non-crossing embedding o of H into
Sg¢—1. We can construct a (crossing) embedding o’ of K into
Sg—1 as follows. For each u,v € V(Ky), 0(Hu,v) is a con-
nected one-dimensional simplicial complex, which is a sub-
space of Sg_1. Pick a path py . in 0(Huy ) between o(u), and
o(v). Then, the union of the paths py,., for u,v € V(K)
induce an embedding o’ of K; into Sg_1.

Since the genus of K, is g, there exist wui,vi,u2,v2 €
V(K:) such that pu, v, N Pus,u, # 0. We first show that
we can pick ui,v1,u2,v2, so that their end-points are dis-
tinct. Assume otherwise, and let u; = u2. We can further
assume w.l.o.g. that py, ., and pu, ., intersect at a single
point. Otherwise, we can find two consecutive intersection
points p1, p2 that can be removed by replacing the sub-path
of pu,,v, between p; and p by a slightly translated copy of
the sub-path of pu, ., between p; and pa.

Let now p be the distinct intersection point of py, ., and
Pus,vg- By exchanging the parts of the two paths that appear
between v1 and p, and by slightly perturbing the two arcs,
we can reduce the number of crossings of a1 and a2 by one.
By repeating the above process, we obtain a drawing with
no crossings, contradicting the fact that the genus of K; is
g-

‘We have thus shown that we can pick distinct w1, v1, ug, ve,
80 that puy vy NpPus,ve # 0. It follows that Hy, v, N Hug vy #
0. That is, there exists an edge {u},v{} in P , , and
and edge {ub,v5} in PS ., such that the paths sz“i and
Pf/;y , intersect. It follows that there exists ¢ € V(Pj{’v/l) N
V(PH ), such that for any i € {1,2},

V3
u2 ,’UQ

Dy (uj, v;) = D (ui, q) + Du(q,v;).



Since the embedding is non-contracting, we have

D (uy, ub) Dy (uy, q) + Du(us, q)
D (uy,v1) + Di(us, v)
cDe (uy,v1) + cDa(us, vp)

2c

IN N IA

On the other hand, since the end-points of the edges {u1, v1},
and {u2,v2} are distinct in Ky, we obtain D¢ (uj,us) >
n/(3). By non-contraction, 2¢c = Dp (u},us) > Da(uy, ub) >
n/(}). Thus, c = Q(n/g). O
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