Near-optimal distortion bounds for embedding doubling spaces into L₁

Anastasios Sidiropoulos (TTIC)

Joint work with James R. Lee (U. Washington)

Metric embeddings

- Given spaces M=(X,d), M'=(X',d')
- Mapping f : X→X'
- Distortion c if:

$$d(x_1,x_2) \le d'(f(x_1),f(x_2)) \le c \cdot d(x_1,x_2)$$

• $c_{Y}(X)$ = infimum distortion to embed X into Y

Doubling spaces

- A metric (X, d) is doubling if every ball of radius r can be covered by O(1) balls of radius r/2.
- Metric notion of "bounded dimension"

Distortion of L₁ embeddings

- n-point metrics: O(log n) [Bourgain '85]
- n-vertex expanders: Ω(log n)
 [Linial, London, Rabinovich '95]
- Doubling metrics : O(log n)^{1/2}
 [Gupta,Krauthgamer,Lee '03]
- Doubling metrics : $\Omega(\log n)^{\delta}$, for some $\delta > 0$ [Cheeger, Kleiner, Naor '09]

Our result

Theorem [Lee,S '11]

There exists an infinite family of uniformly doubling spaces that require distortion

$$\Omega\left(\sqrt{\frac{\log n}{\log\log n}}\right)$$

to be embedded into L_1 .

I.e. matching the upper bound of Gupta-Krauthgamer-Lee up to a $O((\log \log n)^{1/2})$ factor.

Sparsest-Cut

Instance:

- G = (V,E)
- cap : $V \times V \rightarrow R$
- dem: V×V→R

sparsity of a cut S = (capacity in S) / (demand crossing S)

Key step for a plethora of divide & conquer algorithms:

Crossing Number, Linear Arrangement, VLSI layout, Feedback Arc Set, Balanced Cut, Directed Cuts, Multi-way Cut, Scheduling, PRAM Emulation, Routing, Interval Graph Completion, Planar Edge Deletion, Pathwidth, Markov Chains, ... [Leighton, Rao '99], ...

Approximating the Sparsest-Cut

- O(log n)-approximation [Linial, London, Rabinovich'95], [Leighton, Rao'88]
- O(log^{1/2} n loglog n)-approximation [Arora,Lee,Naor'05], [Arora,Rao,Vazirani'04]
- 1.001-hard [Ambuhl, Mastrolilli, Svensson'07]
- ω(1)-hard assuming Unique Games [Khot, Vishnoi '05],
 [Chawla, Krauthgamer, Kumar, Rabani, Sivakumar '05]

Negative type

(X,d) is in **NEG** if $c_2(X,d^{1/2}) = 1$

(X,d) is in **soft-NEG** if $c_2(X,d^{1/2}) = O(1)$

The geometry of graphs

SDP relaxation: O(log^{1/2} n loglog n)-approximation [Arora,Lee,Naor'05], [Chawla,Gupta,Racke'05], [Arora,Rao,Vazirani'04]

Theorem:

SDP integrality gap = min distortion to embed any n-point negative-type metric into L_1 .

Theorem: [Arora,Lee,Naor'05]

Every n-point negative-type metric embeds into L_1 with distortion $O(log^{1/2} n loglog n)$.

NEG vs L₁

Major open question:

What is the integrality gap of the Sparsest-Cut SDP?

Equivalently:

What is the worst-case distortion required to embed a negative-type metric into L_1 ?

The Goemans-Linial conjecture

Conjecture [Goemans, Linial'94]

Every negative-type metric embeds into L_1 with distortion O(1).

Theorem [Khot, Vishnoi'05]

There exist an n-point negative-type metric that requires distortion $\Omega(\log\log n)^c$ to embed into L₁.

(see also [Krauthgamer, Rabani], [Devanur, Khot, Saket, Vishnoi])

The Heisenberg group

Theorem [Lee, Naor'06]

The Heisenberg group H³(R), with the Carnot-Caratheodory metric is in NEG.

Theorem [Cheeger, Kleiner, Naor'09], [Cheeger, Kleiner'06] $H^3(R)$ requires distortion $\Omega((\log n)^c)$, for some c>0, to embed into L_1 .

Corollary

The integrality gap of the Sparsest-Cut SDP is $\Omega((\log n)^c)$, for some c>0.

Soft negative-type

- All known algorithms for Sparsest-Cut require only soft-NEG
- This fact is essential for some fast algorithms [Sherman'09]

Our result

Theorem [Lee,S '11]

There exists a doubling space that requires distortion

$$\Omega\left(\sqrt{\frac{\log n}{\log\log n}}\right)$$

to be embedded into L_1 .

Theorem [Assouad'83]

Every doubling space is in soft-NEG.

Corollary [Lee,S '11]

There exists a metric in soft-NEG that requires distortion

$$\Omega\left(\sqrt{\frac{\log n}{\log\log n}}\right)$$

to be embedded into L_1 .

In other words...

Corollary [Lee, S '11]

Every known upper bound analysis of the Sparsest-Cut SDP, is tight up to (loglog n)^{O(1)} factors.

Main result

Sparsest-cut SDP:

$$\min \left\{ \frac{\sum_{u,v} cap(u,v) \|x_u - x_v\|_2^2}{\sum_{u,v} dem(u,v) \|x_u - x_v\|_2^2} : (\{x_v\}_v, \|\|_2^2) \in NEG \right\}$$

Sparsest-cut weak SDP:

$$\min \left\{ \frac{\sum_{u,v} cap(u,v) \|x_u - x_v\|_2^2}{\sum_{u,v} dem(u,v) \|x_u - x_v\|_2^2} : (\{x_v\}_v, \|\|_2^2) \in soft - NEG \right\}$$

Corollary [Lee,S]

The integrality gap of the weak SDP is $\Theta((\log n)^{1/2})$, up to $(\log \log n)^{O(1)}$ factors.

Improves over the previous bound of $\Omega(\log n)^{1/4}$ [Lee, Moharrami' 10]

Key ingredients of the proof

A new topological construction of a hard space

Discrete differentiation

Discrete/approximate integral geometry in the plane

The Gupta-Newman-Rabinovich-Sinclair conjecture

Conjecture [Gupta, Newman, Rabinovich, Sinclail '99]

Every minor-free family of graph embeds into L_1 with distortion O(1).

True for:

- Trees
- Series-parallel graphs [Gupta, Newman, Rabinovich, Sinclail '99]
- O(1)-Outerplanar graphs [Chekuri, Gupta, Newman, Rabinovich, Sinclair '2003]
- O(1)-pathwidth graphs [Lee, S '2009]
- (K₅\e)-free graphs [Chakrabarti, Jaffe, Lee, Vincent '2008]

The diamond graph

Embedding the diamond graph

Theorem [Rao '99], [Newman, Rabinovich '2002]

$$c_2(\text{diamond graph}) = \Theta(\sqrt{\log n})$$

Theorem [Gupta, Newman, Rabinovich, Sinclail '99], [Chakrabarti, Jaffe, Lee, Vincent '2008]

$$c_1(\text{diamond graph}) \leq 2$$

Embedding the diamond graph

• In L₂, there is always a diagonal that incurs unbounded contraction.

[Newman, Rabinovich' 2002]

• Why not in L_1 ?

A combinatorial interpretation of L₁

An embedding into L_1 is a distribution over cuts

The cut cone

• For a finite set X, and $S \subseteq X$, let

$$d_S: X \times X \longrightarrow R,$$

 $d_S(x,y) = |\mathbf{1}_S(x) - \mathbf{1}_S(y)|$

• A mapping $d: X \times X \to R$ is in the **cut cone** if there exists a non-negative measure μ on 2^X , s.t.

$$\forall x, y \in X, d(x, y) = \int d_S(x, y) d\mu(S)$$

Fact:

A metric is isometrically embeddable into L_1 , if and only if it is in the cut cone.

L₁ and the cut cone: example

Embed the n-line into L₁

Pick random x in $\{1,...,n-1\}$, and take the cut $\{1,...,x\}$

Embed the n-cycle into L₁

Pick random angle

Embedding the diamond graph into L₁

[Gupta, Newman, Rabinovich, Sinclail '99]

Inductive invariant: $Pr[C(s) \neq C(t)] = 1$

Towards a construction

Can we inductively construct a "simple" space s.t. the random cuts in smaller copies are not independent?

k-Sums Conjecture [Lee, S '09]

O(1)-Embeddability into L₁ is closed under k-sums.

We need a *qualitatively* different inductive construction.

The new construction

The diamond-fold

The Laakso-fold

Differentiation of L₁-valued maps

 [Cheeger, Kleiner'06] develop a weak differentiation theory for maps into L₁.

• [Cheeger, Kleiner'09], [Lee, Raghaventra'07] Main idea: At a sufficiently small scale, almost all cuts are "well-structured".

Coarse differentiation

[Matousek'99], [Eskin, Fisher, Whyte'06]

Let (Y,d) be any metric space, ε >0

f:P_n \rightarrow Y, is ϵ -efficient if

$$\sum_{i=1}^{n-1} d(f(x_i), f(x_{i+1})) \le (1+\varepsilon)d(x_1, x_n)$$

Coarse differentiation (toy version)

Theorem [Matousek'99], [Eskin, Fisher, Whyte'06] Let (Y,d) be any metric space, D>0. For any ε >0 (arbitrarily small), there exists n>0, such that for any $f:P_n \longrightarrow Y$ with distortion D, we can find an ε -efficient copy of P_3 in $f(P_n)$.

Coarse differentiation

Proof idea:

Suppose *no* scale is ε -efficient.

Differentiation in L₁

[Lee, Raghaventra'07], [Cheeger, Kleiner'09]

f : $P_n \rightarrow L_1$ is 0-efficient if and only if all cuts are half-lines.

Differentiation for maps $[0,1]^2 \rightarrow L_1$

Locally, the distribution of cuts consists mostly of (near-)half-planes.

Differentiation and the diamond-fold

Main idea:

- Let f: $[0,1]^2 \to L_1$
- Then, at a sufficiently small square X, for every line h intersecting X, almost all cuts restricted on h, are half-lines.
- Suppose that all cuts restricted to every line are half-lines.
 Then, all cuts are half-planes.

Differentiation and the diamond-fold (cont.)

- It follows that there exists a copy of D_1 , such that in both copies of $[0,1]^2$, all cuts are half-planes.
- But then the half-planes must be identical in both sheets.
- Thus, the two sheets are collapsed.

Differentiation and the diamond-fold

A map is 0-efficient if and only if every cut is a halfplane

Obstacle: An ε-efficient map might have **no** halfplane cuts

The quantitative bound

- We define efficiency w.r.t. **random** lines in the unit square.
- Avoid periodicities: define efficiency w.r.to a random subset of points in every line.

Taming ε-efficient maps

- Pick random line h
- Pick random set P of $k=1/\epsilon^{O(1)}$ points in h
- p_0 , p_k are on the boundary
- "Complexity" of a set:

$$C^*(S) = \int \mathbb{E}_P \sum_j |\mathbf{1}_S(p_j) - \mathbf{1}_S(p_{j+1})| d\mu(h)$$

$$C(S) = \int \mathbb{E}_P |\mathbf{1}_S(p_0) - \mathbf{1}_S(p_k)| d\mu(h)$$

Fact: $C^*(S) = C(S)$ iff S is a half-plane

Taming ε-efficient maps (cont.)

Lemma: [Lee,S]

If
$$|C^*(S) - C(S)| = O(\varepsilon^2)$$
,

then there exists half-plane H, such that

$$|S \triangle (H \cap [0,1]^2)| = O(\varepsilon)$$

If $|C^*(S) - C(S)| = O(\epsilon^2)$, and |S| < 1/16, then there exists half-plane H, such that

$$\left| (S \triangle H) \cap \left[\frac{1}{3}, \frac{3}{4} \right]^2 \right| = O(\varepsilon^2)$$

Tightness of the analysis

$$|(S \triangle H) \cap [0,1]^2| = O(\varepsilon)$$

$$|C(S) - C^*(S)| = O(\varepsilon^2)$$

Obtaining the distortion bound

Consider two parallel "sheets"
Since the boundaries are identified,
both S and S' are close to the
same half-plane.

Thus, S and S' are close to each other.

Obtaining the distortion bound (cont.)

If S and S' are close to each other, then the distance between most antipodals that are close to the center of [0,1]², is too small!

Further directions

- NEG vs L₁?
- Can these techniques be used to obtain computational hardness?
- Gupta-Newman-Rabinovich-Sinclair conjecture: Minor-free graphs into L₁? The diamondfold contains arbitrarily large clique minors.