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Metric embeddings
Given spaces M=(X,d), M’=(X",d")
Mapping f : X—X’
Distortion c if:
d(xy,x,) < d’(f(x,),f(x,)) < c-d(x,,x,)
cy(X) = infimum distortion to embed X into Y




Doubling spaces

A metric (X, d) is doubling if
every ball of radius r can be

covered by O(1) balls of
radius r/2.

e Metric notion of “bounded
dimension”




Distortion of L, embeddings

* n-point metrics: O(log n) [Bourgain '85]

* n-vertex expanders: Q(log n)
[Linial,London,Rabinovich "95]

e Doubling metrics : O(log n)1/2

‘Gupta,Krauthgamer,Lee '03]

* Doubling metrics : Q(log n)®, for some >0
Cheeger,Kleiner,Naor '09]




Our result

Theorem [Lee,S “11]

There exists an infinite family of uniformly
doubling spaces that require distortion

O logn
log logn

to be embedded into L,.

l.e. matching the upper bound of Gupta-
Krauthgamer-Lee up to a O((loglog n)1/2)
factor.



Sparsest-Cut

Instance:

e G=(V,E)

* cap:VxV—R
e dem :VxV—R

sparsity of a cut S = (capacity in S) / (demand crossing S)

Key step for a plethora of divide & conquer algorithms:

Crossing Number, Linear Arrangement, VLS| layout, Feedback Arc
Set, Balanced Cut, Directed Cuts, Multi-way Cut, Scheduling, PRAM
Emulation, Routing, Interval Graph Completion, Planar Edge

Deletion, Pathwidth, Markov Chains, ... [Leighton, Rao ‘99], ...
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Approximating the Sparsest-Cut

O(log n)-approximation [Linial,London,Rabinovich’95],
[Leighton,Rao’88]

O(log¥? n loglog n)-approximation [Arora,Lee,Naor’05],
[Arora,Rao,Vazirani’04]
1.001-hard [Ambuhl,Mastrolilli,Svensson’07]

w(1)-hard assuming Unique Games [Khot, Vishnoi ‘05],
[Chawla,Krauthgamer,Kumar,Rabani,Sivakumar ‘05]



Negative type

(X,d) is in NEG if c,(X,d¥?) = 1

(X,d) is in soft-NEG if c,(X,d'/2) = O(1)



The geometry of graphs

SDP relaxation: O(log/2 n loglog n)-approximation
[Arora,Lee,Naor’05], [Chawla,Gupta,Racke’05],
[Arora,Rao,Vazirani’04]

Theorem:

SDP integrality gap = min distortion to embed any n-point
hegative-type metric into L,.

Theorem: [Arora,Lee,Naor’05]

Every n-point negative-type metric embeds into L, with
distortion O(log'/? n loglog n).



NEG vs L,

Major open question:

What is the integrality gap of the Sparsest-Cut
SDP?

Equivalently:

What is the worst-case distortion required to
embed a negative-type metric into L,?



The Goemans-Linial conjecture

Conjecture [Goemans,Linial’'94]

Every negative-type metric embeds into L, with
distortion O(1).

Theorem [Khot,Vishnoi’O5]

There exist an n-point negative-type metric that
requires distortion Q(loglog n)¢ to embed into L,.

(see also [Krauthgamer,Rabani], [Devanur,Khot,Saket,Vishnoi])



The Heisenberg group

Theorem [Lee,Naor’06]

The Heisenberg group H3(R), with the Carnot-
Caratheodory metric is in NEG.

Theorem [Cheeger,Kleiner,Naor’09],[Cheeger,Kleiner’06]

H3(R) requires distortion Q((log n)¢), for some ¢>0, to
embed into L,.

Corollary

The integrality gap of the Sparsest-Cut SDP is Q((log n)°),
for some c>0.



Soft negative-type
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* All known algorithms for Sparsest-
Cut require only soft-NEG

* This fact is essential for some fast
algorithms [Sherman’09]



Our result

Theorem [Lee,S ‘11]
There exists a doubling space that requires distortion

O logn
log logn

to be embedded into L;.

Theorem [Assouad’83]
Every doubling space is in soft-NEG.

Corollary [Lee,S “11]
There exists a metric in soft-NEG that requires distortion

0 logn
log logn

to be embedded into L,.




In other words...

Corollary [Lee, S ‘11]

Every known upper bound analysis of the
Sparsest-Cut SDP, is tight up to (loglog n)°)
factors.



Main result

Sparsest-cut SDP:

Ecap(u,v)‘ X, - xv‘ ,

5 ({x, 3, L) ENEG
Edem(u,v) ‘xu - X, ‘2

Sparsest-cut weak SDP:

Ecap(u,v)‘ X, — xv‘ ,

= (x| E soft - NEG
Edem(u,v) ‘xu - X, ‘2

Corollary [Lee,S]

The integrality gap of the weak SDP is O((log n)*/?),
up to (loglog n)°) factors.

mins;

Y

min;

Improves over the previous bound of Q(log n)¥/4
[Lee,Moharrami’10]



Key ingredients of the proof

* A new topological construction of a hard space

 Discrete differentiation

* Discrete/approximate integral geometry in the
plane



The Gupta-Newman-Rabinovich-Sinclair

conjecture

Conjecture [Gupta,Newman,Rabinovich,Sinclail ‘99]

Every minor-free family of graph embeds into L, with
distortion O(1).

True for:

Trees

Series-parallel graphs [Gupta,Newman,Rabinovich,Sinclail ‘99]

O(1)-Outerplanar graphs
[Chekuri,Gupta,Newman,Rabinovich,Sinclair 2003]

O(1)-pathwidth graphs [Lee, S 2009]
(K:\e)-free graphs [Chakrabarti, Jaffe, Lee, Vincent 2008]



The diamond graph




Embedding the diamond graph

Theorem [Rao ‘99], [Newman, Rabinovich ‘2002]

co(diamond graph) = ©(y/log n)

Theorem [Gupta,Newman,Rabinovich,Sinclail ‘99],
[Chakrabarti, Jaffe, Lee, Vincent 2008]

c1(diamond graph) < 2



Embedding the diamond graph

* InL,, there is always a diagonal that
incurs unbounded contraction.
[Newman,Rabinovich’2002]

* Why notin L,?



A combinatorial interpretation of L,

An embedding into L, is a distribution over cuts



The cut cone s

 Forafiniteset X, and S C X, let
de : Xx X —R,

ds(x,y) = [14(x) — 1s(y)]|
e Amappingd: XxX— Risin the cut cone if there
exists a non-negative measure p on 2%, s.t.

Va.y € X.d(w.y) = [ dso.)du(s)
Fact:

A metric is isometrically embeddable into L, if and
only if it is in the cut cone.



L, and the cut cone: example

* Embed the n-line into L,
Pick random x in {1,...,n-1}, and take the cut {1,...,x}

O o 1 O O O o

* Embed the n-cycle into L,

/

Pick random angle




Embedding the diamond graph into L,
[Gupta,Newman,Rabinovich,Sinclail ‘99]
Inductive invariant: Pr[C(s) # C(t)] = 1

N \ series

ot composﬂon Se

parallel Key property:
Composition >+ The top and bottom

copies are independent.




Towards a construction

Can we inductively construct a “simple” space s.t. the
random cuts in smaller copies are not
independent?

k-Sums Conjecture [Lee, S ‘09]
O(1)-Embeddability into L, is closed under k-sums.

We need a qualitatively different inductive
construction.



The new construction

The diamond-fold

[0,1]°

The Laakso-fold

[0,1]°

D,




Differentiation of L,-valued maps

* [Cheeger,Kleiner’06] develop a weak
differentiation theory for maps into L.

* [CheegerKleiner’09], [Lee,Raghaventra’07]
Main idea: At a sufficiently small scale, almost
all cuts are “well-structured”.



Coarse differentiation

[Matousek’99],[Eskin,Fisher,Whyte’06]
Let (Y,d) be any metric space, €>0
f:P,—Y, |s €- ef'ﬁuent if

Z d(f(z;), f(xiz1)) < (1 +e)d(z1,zn)

0.1-efficient

‘/‘\./0/‘\./‘\./0

Weﬁcient



Coarse differentiation (toy version)

Theorem [Matousek’99],[Eskin,Fisher,Whyte'06]
Let (Y,d) be any metric space, D>O0.

For any €>0 (arbitrarily small),

there exists n>0, such that

for any f:P_—Y with distortion D,

we can find an e-efficient copy of P, in f(P,).



Coarse differentiation

Proof idea:
Suppose no scale is e-efficient.




Differentiation in L,

[Lee,Raghaventra’07], [Cheeger,Kleiner’09]

f: P, —L, is O-efficient if and only if all cuts are
half-lines.

monotone cut

/\non-monotone cut




Differentiation for maps [0,1]2 — L,

Locally, the distribution of cuts consists mostly of
(near-)half-planes.




Differentiation and the diamond-fold

Main idea:
e Letf:[0,1]° —> L,
* Then, at a sufficiently small

square X, for every line h
intersecting X, almost all cuts

restricted on h, are half-lines.

e Suppose that all cuts restricted
to every line are half-lines.
Then, all cuts are half-planes.




Differentiation and the diamond-fold (cont.)

* |t follows that there exists a copy //
of D,, such that in both copies of \Y
[0,1]%, all cuts are half-planes.

* But then the half-planes must be

v
identical in both sheets.
 Thus, the two sheets are / \ /

collapsed.




Differentiation and the diamond-fold

[0,1]? / A map is O-efficient if
and only if every cut is
a halfplane
/ S
[0,1]2 / Obstacle: An e-efficient

map might have no
halfplane cuts




The quantitative bound

 We define efficiency w.r.t. random lines in the

unit square.

* Avoid periodicities: define efficiency w.r.to a
random subset of points in every line.

[0,1]°

/




Taming e-efficient maps

Pick random line h

Pick random set P of k=1/£°() points in h

Po, P, are on the boundary

“Complexity” of a set:

/EPZ‘]-S pg

Po
Ls(pj+1)|du(h)

0(8) = / Ep|Ls(po) — Ls(p)|du(h)

Fact: C*(S)

= C(S) iff S is a half-plane

Py




Taming e-efficient maps (cont.)

Lemma: [Lee,S]

If |C*(S) = C(S)| = O(e?), \ p I

then there exists half-plane H, such that /
5 S A

ISA(HNJ0,1]%)| = O(e)

Lemma: [Lee,S]
If |C*(S)—C(S)| = O(g?), and |S|<1/16,

then there exists half-plane H, such that
1 3} ?

(SAH)N {571 — O(£2)




Tightness of the analysis

I(SAH)N0,1]%] = O(e)




Obtaining the distortion bound

Consider two parallel “sheets”

Since the boundaries are identified,
both S and S’ are close to the

same half-plane.

Thus, Sand S’ are close to \
each other. N




Obtaining the distortion bound (cont.)

If Sand S’ are close to each other,
then the distance between most
antipodals that are close to the
center of [0,1]?, is too small!




Further directions

* NEGvsL,?

e Can these techniques be used to obtain
computational hardness?

* Gupta-Newman-Rabinovich-Sinclair
conjecture: Minor-free graphs into L,? The
diamondfold contains arbitrarily large clique

minors.



