
Undecidability and intractability results concerning

Datalog programs and their persistency numbers

STAVROS COSMADAKIS

University of Patras

EUGENIE FOUSTOUCOS

Athens University of Economics and Business

and

ANASTASIOS SIDIROPOULOS

Massachusetts Institute of Technology

The relation between Datalog programs and homomorphism problems and, between Datalog pro-

grams and bounded treewidth structures has been recognized for some time and given much

attention recently. Additionally, the essential role of persistent variables (in program expansions)

for solving several relevant problems has also started to be observed. In [Afrati et al. 2005] the

general notion of program persistencies was refined into four notions (two syntactical ones and
two semantical ones) and the interrelationship between these four persistency numbers was stud-

ied. In the present paper (1) we prove undecidability results concerning the semantical notions
of persistency number–modulo equivalence, of persistency number and of characteristic integer,

(2) we exhibit new classes of programs for which boundedness is undecidable and (3) we prove
intractabiltity results concerning the syntactical notions of weak persistency number and of weak
characteristic integer.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;
F.1.1 [Computation by abstract devices]: Models of Computation—Automata; Bounded-
action devices; Computability theory ; F.1.3 [Computation by abstract devices]: Complexity
Measures and Classes—Reducibility; F.4.2 [Mathematical Logic and Formal Languages]:

Formal Languages—Decision Problems; H.2.3 [Database Management]: Languages—Query
Languages

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Datalog, bounded treewidth hypergraphs, Persistent vari-

ables, Persistency numbers, Boundedness, Undecidability, Intractability

Authors’ addresses: Stavros Cosmadakis, University of Patras, 26500 Rio, Patras, Greece, email:
scosmada@cti.gr.

Eugénie Foustoucos (Corresponding Author), MPLA, Department of Mathematics, National and

Capodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece, and Department of

Computer Science, Athens University of Economics and Business, 10434 Athens, Greece, email:

aflaw@otenet.gr, eugenie@aueb.gr. Research partially supported by K. Karathéodory Basic Re-
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1. INTRODUCTION

Datalog programs have been investigated extensively in the last two decades and
several authors have observed that, in order to derive stronger results, a more
thorough and fine investigation of their structure is needed [Cosmadakis et al.
1988; Cosmadakis 1989; Afrati and Cosmadakis 1989; Afrati 1997]. Specifically it
has been observed that several issues may depend on the arity of recursive predicates
and moreover on the number of occurrences of persistent variables (variables that
appear both in the head of a rule and in recursive predicates in the body of that
rule). Persistent variables (or their absence) appear to be important for decidability
results, for instance the boundedness problem is proved undecidable in the general
case [Gaifman et al. 1987] whereas when the arity of the recursive predicates is
equal to one it becomes decidable [Cosmadakis et al. 1988]; note that when the
recursive predicates have arity one, any persistent variable can be eliminated in a
relatively straightforward way [Cosmadakis et al. 1988].

Persistent variables also appear to play an important role in expressive power is-
sues: it is known that there exists a hierarchy of Datalog programs w.r.t. their arity
[Afrati and Cosmadakis 1989]; programs of larger arity are strictly more expressive.
There exists also such a hierarchy w.r.t. their “persistency number” [Afrati 1997];
the definition of this number involves semantical notions and not only syntactic
[Afrati 1997].

The persistencies (appearing in program expansions) have an impact on the kind
of models that a given program can have: the basic idea is that the more persisten-
cies we need (in an essential way) for writing a program the more constraints are
imposed on the models of the program, specifically on the structure of their local
neighbourhoods.

Indeed every model of the program is a homomorphic image of one or more
program expansion(s); through expansions, models are closely related to the syntax
of the program in the following way: if model M is the homomorphic image of
expansion e (via homomorphism h) then any two elements a and b of M are “close”
to each other if their inverse images through h are variables x and y belonging to
the same rule body; for instance when M is a path then a, b are consecutive nodes
if there exists a binary predicate symbol E such that the atom E(x, y) belongs to
some rule body, for x inverse image of a and y inverse image of b.

A typical program having paths as models is the following:
P (x, y)← E(x, z), P (z, y)
P (x, y)← E(x, y),
with y being the variable that persists in expansions of any length (thus we say
that the weak persistency number of the program is 1).

Clearly that program accepts any path, either simple or not: indeed every expan-
sion can be mapped in a straightforward way (i.e. by a 1-1 and onto homomorphism)
to a simple path, and in that way we obtain simple paths as models; furthermore,
since the program is inequality-free, every homomorphic image of any of its models
d is also a model (accepted by the same expansion as the one that accepts d, but via
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a different homomorphism which will map distinct variables to the same element):
such a model will be a non-simple path, and in that way we obtain non-simple
paths as models.

Suppose now that we add z 6= x to the first rule which becomes P (x, y) ←
E(x, z), P (z, y), z 6= x. Every inequality u 6= v present in some rule body used in
a given expansion will prevent that expansion to accept a path through a mapping
that associates the same element of the domain to both u and v. This slightly
restricts the set of models, by eliminating paths that contain self-loops (in any of
their nodes except the final one); every other kind of non-simple paths is allowed
like for instance the path (a,b,c,d,e,c); the inequality z 6= x concerns only adjacent
variables in the expansion i.e. variables that belong to the same rule body; therefore
its impact is local and this is due to the fact that none of the variables involved
(i.e. x and z) is persistent. If now, instead of adding z 6= x, we add z 6= y then
the first rule becomes P (x, y)← E(x, z), P (z, y), z 6= y. This imposes the following
restriction on the set of models: a path (x, z, z1, ..., zn, y) where y = z or y = zi

for i = 1, ..., n will not be allowed (for instance the path (a,b,c,d,e,c) is not allowed
anymore while the path (a,a,c,d,e,f) is now allowed). The restriction imposed is
more severe now since a larger subset of non-simple paths is excluded from the set
of models of the program; the reason is that the impact of the inequality z 6= y is
not local to a rule body anymore, because the variable y is persistent and thus the
inequality propagates (in expansions) to variables arbitrarily far from each other.

The important result connecting persistencies and expressibility is Theorem 4.2
in [Afrati 1997]; which states that the H-subgraph homeomorphism query cannot be
expressed by any Datalog program with inequalities which has persistency number
less that m−1, where m is the number of edges of the digraph H. It is important to
understand that, despite a very technical proof, that result is based on the simple
aforementioned idea that persistencies have an impact on the kind of models that
a program can have. We believe that it will be worth revisiting the proof of that
Theorem 4.2 which we expect to become simpler provided that we take proper
advantage of the new knowledge about persistencies given by the present paper
and also by the previous ToCL paper [Afrati et al. 2005].

Persistent variables appear to be important for query evaluation and optimiza-
tion techniques: it is well-known indeed that a Datalog program of size n with IDB
predicates of arity at most k, can be evaluated in time O(nk); a substantial im-
provement to that bound seems unlikely, on complexity-theoretic grounds. On the
other hand, there exist natural queries (among the H-subgraph homeomorphism
queries) which need persistency number at least k-1 and at the same time seem to
require Ω(nk) time [Afrati 1997].

The concept of persistencies is implicit in [Cosmadakis et al. 1988],[Vardi 1988]
and explicit in [Cosmadakis 1989]; syntactical definitions of persistency equal to
zero are given in [Gaifman et al. 1987; 1993; Cosmadakis 1989]. The notion of
persistencies is deeper studied and formalized in [Afrati et al. 2005] by means of
four distinct persistency numbers. In the present paper we prove undecidability and
intractability results concerning the persistency numbers; we believe these results
will help to further our knowledge about the role persistent variables play in issues of
expressibility, decidability and complexity of Datalog programs. Moreover we hope
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that the negative results we have obtained will help future research on persistencies
to be oriented towards more realistic directions (for instance development of ad hoc
algorithms for increasing or decreasing the number of persistent variables of specific
classes of programs).

In order to explain the various persistency numbers, we first illustrate how pro-
gram’s semantics are captured by the essential notion of expansion.

Let π1 be the following program which expresses the transitive closure query via
the intensional predicate T (it is the program that we have already considered and
which has paths as models):

r1 : T (x, y)← E(x, y)
r2 : T (x, y)← E(x, z), T (z, y)

and let e0 = E(x, y) (obtained from rule r1), e1 = ∃z(E(x, z) ∧ E(z, y)) (obtained
by unwinding rule r2 with rule r1) and e2 = ∃z∃z1(E(x, z) ∧ E(z, z1) ∧ E(z1, y))
(obtained by unwinding twice rule r2 and ending up with rule r1) be three T -
expansions of π1 for the goal T (x, y).

Consider the databaseD with domainD={a, b, c, d} and relation {(a, b), (b, c), (c, d)}.
The facts T (a, b), T (a, c) and T (a, d) are among the facts that can be deduced from
the database D using program π1; for each of these facts, we show below that
their property of been deducible from D using π1, can be formalized in terms of
the existence of homomorphisms between distinguished databases; a database D is
called distinguished whenever we mark some of its elements (for instance a1,...,an)
as distinguished, and it is then denoted by (D, a1, ..., an).

a. The aforementioned deducibility of T (a, b) (from D) using π1, is asserted by
the existence of a T -expansion e of π1 such that there exists a homomorphism
from e (viewed as a distinguished database) to the distinguished database (D, a, b).
Among the expansions of π1, only one has the previous property, it is expansion e0

formalized as the distinguished database (C0, x, y) where C0 is the database with do-
main C0 = {x, y} and relation {(x, y)}. The homomorphism h0 from the expansion
e0 = (C0, x, y) of π1 to (D, a, b) is such that h0(x) = a, h0(y) = b.

b. The deducibility of T (a, c) (from D) using π1, is asserted by the existence
of a T -expansion e of π1 such that there exists a homomorphism from e (viewed
as a distinguished database) to the distinguished database (D, a, c). Among the
expansions of π1, only one has the previous property, it is expansion e1 formalized
as the distinguished database (C1, x, y) where C1 has domain C1 = {x, y, z} and
relation {(x, z), (z, y)}. The homomorphism h1 from the expansion e1 = (C1, x, y)
of π1 to (D, a, c) is such that h1(x) = a, h1(z) = b, h1(y) = c.

c. The deducibility of T (a, d) (from D) using π1, is asserted by the existence of
a T -expansion e of π1 such that there exists a homomorphism from e to the distin-
guished database (D, a, d). Among the expansions of π1, only one has the previous
property, it is expansion e2 formalized as the distinguished database (C2, x, y) where
C2 has domain C2 = {x, y, z, z1} and relation {(x, z), (z, z1), (z1, y)}. The homomor-
phism h2 from the expansion e2 = (C2, x, y) of π1 to (D, a, d) is such that h2(x) = a,
h2(z) = b, h2(z1) = c, h2(y) = d.

We now describe the four persistency numbers introduced in [Afrati et al. 2005]
on some examples, starting with program π1. Let us consider the rules of π1 and
count the number of variables that persist together from the head of some rule
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to some intensional atom of the rule’s body; we see that there is only one such
variable (the variable y) in r2 and no such variable at all in r1; we say that the
syntactic persistency number of program π1 is 1. If we now consider program’s
expansions and count the variables that persist together in an unbounded number
of expansions’ rule bodies (or bubbles) we can determine the weak persistency
number of program π1; here the only way to built T -expansions of unbounded
length is by repeatedly using rule r2; the only variable which appears in every rule
body of such an expansion is the variable y; this means that the weak T -persistency

number of π1 is 1. The T -persistency number of a program is a semantical notion
and it somehow corresponds to the weak T -persistency number, but estimated not
over the whole set of program’s T -expansions, but over any set of T -expansions
which is sufficient to express the semantics of the program (and which gives the
lowest possible value for the T -persistency number). Here every T -expansion is
needed to define the semantics of (π1, T ), therefore the T -persistency number of π1

is equal to its weak T -persistency number i.e. it is 1.

We now come to a deeper semantical notion which is invariant under program
equivalence: the T -persistency number–modulo equivalence of a program π, eval-
uated over all programs that are equivalent to π w.r.t. predicate T . The T -

persistency number–modulo equivalence of π1 is the minimum of the T -persistency
numbers of all programs π expressing the transitive closure query via their common
predicate T ; it follows from our previous analysis that this number is at most equal
to 1. It is in fact equal to 0, because there is another program π0 consisting of the
following rules:

r0
1 : T (x, y)← E(x, y)

r0
2 : T (x, y)← E(x, z), E(z, y).

r0
3 : T (x, y)← E(x, z1), T (z1, z2), E(z2, y)

such that (π0, T ) expresses the transitive closure query too and π0 has no persistent
variables at all (thus the T -persistency number of π0 is 0).

It is not hard to understand that, for any program π and any IDB predicate sym-
bol P of π, the syntactic P -persistency number a, the weak P -persistency number
b, the P -persistency number c and the P -persistency number–modulo equivalence
d of π, satisfy the inequality arity(P ) ≥ a ≥ b ≥ c ≥ d.

The structure of the paper is the following. In section 2 we recall some basic pre-
liminaries about Datalog and about expansions as bounded treewidth hypergraphs
with persistencies. In section 3 we define the various persistency numbers (the most
important are the weak persistency number and the persistency number–modulo
equivalence). In section 4.1, we prove our undecidability result concerning the per-
sistency number–modulo equivalence i.e. we prove that there is no algorithm to
decide for any program whether its persistency number–modulo equivalence has a
given value (and we derive, as corollaries, undecidability results for the persistency
number and for the characteristic integer) and in section 4.2 we exhibit new classes
of programs for which boundedness is undecidable (namely the class of programs of
any fixed syntactic persistency number and the class of programs of any fixed weak
persistency number). In section 5 we give our intractability results (summarized in
Table I) concerning the weak persistency number and the weak characteristic inte-
ger. More precisely, we prove that given a program π, a predicate P of π and an

ACM Transactions on Computational Logic, Vol. x, No. x, xx 20xx.



116 · S. Cosmadakis, E. Foustoucos and A. Sidiropoulos

integer m, the problem of determining whether π has weak P -persistency number
≥ m is PSPACE-complete for linear Datalog programs, either normal or general; we
prove that the problem is PSPACE-hard for normal non-linear Datalog programs
and that it is APSPACE-complete for general non-linear Datalog programs. We
derive similar results for the problem of determining whether, given a program π,
a predicate P of π and an integer L, there exists a P -persistent set of length ≥ L

and of size m + 1 (m is the weak P -persistency number of π).

2. PRELIMINARIES: DATALOG PROGRAMS/QUERIES/EXPANSIONS

A database over domain D is a finite relational structure D = (D, r1, . . . , rn), where
D is a finite set and each ri is a relation over D [Ullman 1988; Abiteboul et al.
1995]. The sequence (α1, ..., αn) of arities of the ri’s is the type of the database.
The database D = (D, r1, . . . , rn) has signature (R1, ..., Rn) where for i = 1, ..., n
Ri is a predicate symbol of arity αi, naming relation ri. A distinguished database

is a tuple D∗ = (D, a1, ..., an) where D is a database and (a1, ..., an) is a tuple of
elements of the domain D of D. Let D∗ = ((D, r1, . . . , rm), a1, ..., an) and D

′∗ =
((D′, r′1, . . . , r

′
m), a′

1, ..., a
′
n) be two distinguished databases such that ri has the

same arity as r′i for i = 1, ...,m; a homomorphism from D∗ to D
′∗, is a total function

h : D → D′ such that (1) h(ai) = a′
i for i = 1, ..., n and (2) if (a1, . . . , ami

) ∈
ri, then (h(a1), . . . , h(ami

)) ∈ r′i. The composition of two homomorphisms is a
homomorphism.

A Datalog program is a collection of rules of the form ι0 ← ι1, . . . , ικ where ι0
is the head, and ι1, . . . , ικ form the body of the rule. Each ιi is an expression of
the form R(t1, . . . , tm), where the ti’s are terms i.e. either variables or constant
symbols (we say constants for short) and R is a predicate symbol (we say predicate
for short): R is either an extensional database (EDB) predicate naming one of the
database relations, or an intensional database (IDB) predicate which is defined by
the program; IDB predicates are exactly the ones appearing in the heads of rules
[Ullman 1988; Abiteboul et al. 1995]. If R is an EDB (resp. IDB) predicate, then
R(t1, . . . , tm) is an EDB (resp. IDB) atom. The set of EDB predicates is the
signature of the input database. A recursive rule is a rule with at least one IDB
predicate in its body; otherwise it is an initialization rule. The dependency graph

of a program π is a directed graph with vertices the IDB predicates of π such that
there exists an (unlabelled) edge from P to P ′ whenever π has a rule with head
predicate P and with an IDB atom of predicate P ′ in its body. A program π is
recursive if there exists a cycle in its dependency graph. A program is linear if each
rule has at most one IDB atom in its body. Given a Datalog program π and a goal
predicate P we may, starting with an atom over P , unwind the recursive rules of π

to some finite depth (ending up with initialization rules), to obtain a P -expansion

of π.
In the literature an expansion is viewed as a first-order formula over ∃,∧ and

precisely as a conjunction of extensional atoms with a set of distinguished variables
and with the remaining variables being existentially quantified (see examples in the
Introduction).

We introduce a new formal (inductive) definition of expansions that will be con-
venient both for defining expansions as distinguished databases (see subsection 2.1)
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and for defining them as hypergraphs (see subsection 2.2); notice that on this hy-
pergraph definition is based the definition of persistent sets of expansions, a notion
central in our work.

2.1 Expansions as distinguished databases. Queries and the notion of acceptance

We now give our new formal (inductive) definition of expansions as pairs of the
form (P (~x),D) where P (~x) is called the head part and D is called the database part:
the head part P (~x) gives the distinguished variables ~x of the expansion and tells us
that it is a P -expansion, while the database part D corresponds to the extensional
atoms of the expansion.

Definition 2.1. (Expansions) - If P (~x) ← E1(~y1), ..., Ek(~yk) is an initializa-
tion rule then (P (~x), {E1(~y1), ..., Ek(~yk)}) is an expansion.
- If (P (~x),D) is an expansion and σ is a substitution then σ((P (~x),D)) is an ex-
pansion.
- If P (~x)← E1(~y1), ..., Ek(~yk), P1(~z1), ..., Pl(~zl) is a recursive rule with EDB predi-
cates E1, ..., Ek, (P1(~z1),D1), ...,(Pl(~zl),Dl) are expansions, and V ar(Di)∩V ar(Dj)⊆
V ar(~zi)∩V ar(~zj) for each i 6= j, then (P (~x), {E1(~y1), ..., Ek(~yk)}∪D1 ∪ ...∪Dl) is
also an expansion.

A natural question that arises is whether the first-order formula represented by a
given expansion is satisfied in the structure represented by a given database: that
logical notion of satisfiability is captured by the notion of P -acceptance which is ex-
pressed in terms of homomorphisms between distinguished databases (see definition
2.2), provided that we view expansions as distinguished databases; indeed any ex-
pansion (P (t1, ..., tn),D) can be viewed as the distinguished database (D′, t1, ..., tn)
where D′ = (D, r1, . . . , rp), the domain D is equal to the set of terms occurring in D
and, for i = 1, ..., p, (s1, ..., smi

) ∈ ri if and only if Ri(s1, ..., smi
) ∈ D; by abuse of

notation we always write D instead of D′. Examples are given in the Introduction.

Definition 2.2. The distinguished databaseD∗ isP -accepted by theP -expansion
e = (P (t1, ..., tn), C) of π if and only if there exists a homomorphism h from e -
viewed as the distinguished database (C, t1, ..., tn) - to D∗, such that for every con-
stant b, h(b) = b.
D∗ is P -accepted by program π if and only if D∗ is P -accepted by some P -expansion
of π.

Definition 2.3. A query is a function Q from databases (of some fixed type)
to relations of fixed arity such that the image of a database with domain D is a
relation on D. 1

Let P be an IDB predicate of program π. The pair (π, P ) defines a query Qπ,P

as follows: for every database D, Qπ,P (D) is the set of tuples (d1, d2, . . . , dm) such
that the distinguished database (D, d1, ..., dm) is P -accepted by π.

1A query Q has to be generic, i.e. invariant under renamings of the domain; this means that,

for every database D = (D, r1, . . . , rm) and for every domain D′ such that there exists a one-

to-one correspondence i : D −→ D′, Q(i(D)) = i(Q(D)) where i(D) denotes the database

(i(D), i(r1), . . . , i(rm)): if r is a relation on D then i(r) is the relation on D′ = i(D) such that

(b1, ..., bt) ∈ r if and only if (i(b1), ..., i(bt)) ∈ i(r).
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Definition 2.4. 1. A recursive program π is bounded w.r.t. its IDB predicate

P if there exists an integer K such that every distinguished database accepted by
some P -expansion of π is accepted by some P -expansion (of π) of depth < K; this
property is called predicate boundedness.
2. A recursive program π is bounded if it is bounded w.r.t. all its IDB predicates;
this property is called program boundedness.
3. Programs π1 and π2 are P -equivalent iff every P -expansion of program π1 is
P -accepted by π2 and vice-versa (P occurs in both π1 and π2).

Obviously a non recursive program is bounded. Suppose now that program π is
recursive and that, in the dependency graph of π, there is no path starting from
P and reaching some cycle; then obviously, π is bounded w.r.t. P . It has been
proved that (1) a program is bounded w.r.t. P if and only if it is P -equivalent to
a non recursive program and that (2) a program π is bounded w.r.t. all its IDB
predicates P if and only if, for each IDB predicate P in π, program π is P -equivalent
to a non recursive program. Notice that the decidability of predicate boundedness
implies the decidability of program boundedness; but the converse does not hold
[Marcinkowski 1999].

2.2 Skeleton trees and tree-decompositions of expansions viewed as hypergraphs. The
central notion of persistent set.

Definition 2.5. (Skeleton Tree) A tree T is a skeleton tree associated to
program π if T satisfies the following: 1) its nodes are labeled with rules of π and
2) a node N with label r has exactly n sons N1,..., Nn with respective labels r1,...,rn

if and only if rule r has exactly n occurrences P1(~x1),...,Pn(~xn) of IDB atoms in its
body and, for i = 1, ..., n, Pi is the head predicate of ri.

The depth of a skeleton tree is the maximal depth of its nodes (where the root
has depth 0 and a node N has depth n + 1 if its father has depth n).

With each expansion e of π, we can associate (in a straightforward way) a skeleton
tree of π. Such skeleton trees have all their leaves labelled with initialization rules.
The depth of an expansion is the depth of its associated skeleton tree, if that tree
is unique; the skeleton tree associated to an expansion is unique in most cases.
However, there are some “pathological” cases where the skeleton tree associated
with an expansion is not unique: consider for instance the program consisting of
the following two rules P (x, y)← P (y, x) and P (x, y)← E(x, y), and consider the
expansion (P (x, y), E(x, y)) which has infinitely many associated skeleton trees; in
such cases we associate to the expansion e the (unique) skeleton tree of minimal
depth. The skeleton tree associated to an expansion e is called the skeleton tree of

e.
Every expansion e = (P (~x),D) can be viewed as a hypergraph H = (V,HE)

such that the vertices in V are the terms (variables or constants) that appear in e

and each hyperedge (t1, ..., tn) with label E in HE is defined from the EDB atom
E(t1, ...tn) in D; every element of ~x is a distinguished vertex of the hypergraph H.

Any Datalog expansion e, viewed as a hypergraph H, has a tree-like structure
given by the tree-decomposition ofH; we give below the definition of a hypergraph’s
tree-decomposition, which is analogous to the - well-known from graph theory -
notion of a graph’s tree-decomposition. Another notion, also important to our work,
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is that of bounded tree-width hypergraphs which we define below, still by analogy
to the notion of bounded tree-width graphs. As stated in [Diestel 2006] (notes
at the end of chapter 12), the graph-theoretical notions of tree-decomposition and
tree-width were first introduced (under different names) by R. Halin [Halin 1976].
Robertson and Seymour reintroduced these two concepts, fundamental in their
work on Graph Minors, which has been appearing in the Journal of Combinatorial
Theory, Series B, since 1983. Since then, these concepts have been elaborated on
and used in many research papers ([Courcelle 1990; Gottlob et al. 2001] etc.).

Definition 2.6. Let H = (V,HE) be a hypergraph (with set of vertices V and
set of hyperedges HE). A tree-decomposition of H is a pair (T , f), where T is a
tree (with set of nodes N ) and f : N → P(V) maps every node i of T to a set f(i)
- called bubble - of vertices of H such that
(1) V =

⋃
{f(i) | i ∈ N},

(2) every hyperedge of H has its vertices in some set f(i),
(3) if v ∈ f(i) ∩ f(j), then v ∈ f(k) for every k belonging to the unique path in T
linking i to j.

Definition 2.7. The width of a tree-decomposition (T , f) of a hypergraph H
is the maximal cardinality of its bubbles minus one, i.e. max{|f(i)| | i ∈ N} − 1.
The tree-width of H is the minimum width of a tree-decomposition of H. A family
F of hypergraphs is of bounded tree-width if there exists a constant k such that
every hypergraph H ∈ F has tree-width at most k 2.

The skeleton trees associated to a program π provide natural tree-decompositions
of the expansions of π (this fact, implicit in [Kolaitis and Vardi 1998], has been
proved in [Afrati et al. 2005]); each of these tree-decompositions has width at most
equal to m-1 where m is the maximum number of distinct terms occurring in a rule
of π; the family of expansions of π is therefore a family of hypergraphs of bounded
treewidth.

We come now to the central notion of persistent set of an expansion; this notion
comes from the structure of expansions as hypergraphs as explained in the following
definition.

Definition 2.8. (Persistent Set) Let H be a hypergraph and (T , f) be a tree-
decomposition of H. For every subtree L of T with l > 1 bubbles (i.e. nodes of T )
b1, b2,..., bl such that A = b1 ∩ b2 ∩ ... ∩ bl 6= ∅, the set A is called persistent set of

length l; the cardinality of A is called size of A. The elements of a persistent set
are called persistencies. If H has a persistent set A of size n and length l, we say
that H has n persistencies of length l. If the subtree L is reduced to a branch b

with l bubbles b1, b2,..., bl (where bi is the father of bi+1) then the corresponding
persistent set of length l is called linear persistent set on branch (b1, b2,..., bl).

3. PERSISTENCY NUMBERS OF A DATALOG PROGRAM

Four persistency numbers, concerning various “levels” of presence of persistent
terms, have been defined in [Afrati et al. 2005] (see examples in the Introduction):

2When a hypergraph H belongs to a family of hypergraphs of bounded tree-width, we say that H

is a hypergraph of bounded tree-width.
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two of these numbers are syntactical, the simpler one is the syntactical persistency

number defined in a straightforward manner from the syntactical form of the pro-
gram, while the weak persistency number is a more elaborate notion since it concerns
the presence of persistent 3 terms in the set of all expansions of the program. The
other two numbers correspond to semantical notions: the persistency number con-
cerns programs while the persistency number–modulo equivalence concerns queries
and is therefore connected to deeper issues (indeed, among the four numbers, it is
the only persistency number which is invariant up to program equivalence). We
also remind that it has been proved in [Afrati et al. 2005] that any program of per-
sistency number m is equivalent to some program of weak persistency number m. It
follows that the weak persistency number and the persistency number–modulo equiv-

alence are the two most interesting of these numbers: the present paper essentially
deals with them.

Definition 3.1. Let π be a program and let P be an IDB predicate of π.
1. Program π has weak P-persistency number m if m is the minimum integer
satisfying the following: there exists an integer k such that for every P -expansion
e of π having > m persistencies of length l, it is true that l < k.
Program π has weak persistency number m if m is the maximum among those
integers n satisfying the following: there exists an IDB predicate P of π such that
n is the weak P -persistency number of π.
2. The P -persistency number–modulo equivalence of a program π is the minimum
integer m such that π is P -equivalent to a program of weak P -persistency number
m.
We also say that the persistency number–modulo equivalence of a query Q is the
P -persistency number–modulo equivalence of any pair (π, P ) defining Q.

We define below the notions of persistency number and of characteristic integer,
needed at the end of section 4.1. and also the notion of weak characteristic integer,
needed in section 5.2.

Definition 3.2. 1. Program π has P -persistency number m if m is the mini-
mum integer satisfying the following: there exists an integer k such that for every
database D which is P -accepted by π, there exists a P -expansion e that accepts D

such that if e has > m persistencies of length l then l < k.
Program π has persistency number m if m is the maximum among those integers
n satisfying the following: there exists an IDB predicate P of π such that n is the
P -persistency number of π.
2. We call P -characteristic integer (resp. weak P -characteristic integer) of π the
minimum integer satisfying the requirements of the integer k in the definition of
the P -persistency number (resp. weak P -persistency number) of π.
We call characteristic integer (resp. weak characteristic integer) of π the maximum
among those integers l satisfying the following: there exists an IDB predicate P of
π such that l is the P -characteristic integer (resp. weak P -characteristic integer)
of π.4

3See definition 2.8.
4The characteristic integer is introduced in the present paper while the weak characteristic in-
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All previous definitions are related to persistent sets of expansions and refer to
their natural (via skeleton trees) tree-decompositions of bounded tree-width. One
might use other tree-decompositions of expansions for defining persistency numbers
and these numbers would be the same, as long as the tree- decompositions used
are of bounded tree-width. Notice however that the specific choice of the tree-
decomposition (of bounded tree-width) may affect the characteristic integer.

4. UNDECIDABILITY RESULTS

4.1 Undecidability of the persistency number–modulo equivalence and related results

In this subsection, we mainly study the decision problem “does a given program
have persistency number–modulo equivalence equal to m, for any fixed m > 0”;
we prove that this problem is undecidable by reducing to it some undecidable
problem concerning context-free grammars (CFG), namely the problem of deciding
whether the language produced from a CFG G is equal to the set of all strings of
terminal symbols of G [Hopcroft and Ullman 1979]. At the end of the subsection
we prove (using essentially the same reduction) two more undecidability results,
one concerning the persistency number and the other concerning the characteristic
integer. The proof is based on three lemmas stated below. The first lemma gives
the construction, for any integer n > 0, of a program πn of persistency number–
modulo equivalence equal to n, which defines a query subsuming the transitive
closure query.

Lemma 4.1. Let n > 0 and consider the program πn consisting of the following
rules (where E and A are EDB predicates):
r1 : Tn(x, y, z1, ..., zn)← E(x, x′), Tn(x′, y′, z1, ..., zn), E(y′, y), A(x, x′, z1, ..., zn)
r2 : Tn(x, y, z1, ..., zn)← E(x, y), A(x, y, z1, ..., zn).
r3 : Gn(x, y)← Tn(x, y, z1, ..., zn).
The Tn-persistency number–modulo equivalence and the Gn-persistency number–
modulo equivalence of πn are both equal to n.

Proof 4.2. First consider the predicate Tn of arity n+2. Clearly the weak Tn-
persistency number of πn is equal to n because the distinguished variables z1, ..., zn

form a persistent set of maximal size and of length that grows - in an unbounded way
- as the length of (skeleton trees of) expansions grows. Consider now any program
π which is Tn-equivalent to πn. If there is a homomorphism from a Tn-expansion en

of πn to a Tn-expansion e of π, then the E-paths in e and en must have same length
(this also holds when there is a homomorphism from e to en); therefore the length
of Tn-expansions in π grows as grows the length of their respective homomorphic
inverse images which are Tn-expansions of πn. Any homomorphism from some Tn-
expansion e of π to some Tn-expansion en of πn maps the distinguished variables
u1, ..., un of the predicate Tn of π on the distinguished variables z1, ..., zn of the
predicate Tn of πn (and conversely, any homomorphism from en to e maps z1, ..., zn

to u1, ..., un). Therefore the set {u1, ..., un} of distinguished variables is necessarily
persistent (of unbounded length) in Tn-expansions of π, which means that π (which

teger was introduced in [Afrati et al. 2005] under the name of characteristic integer w.r.t.-weak-

persistency-number.
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is an arbitrary program Tn-equivalent to πn) has weak Tn-persistency number at
least n. Since πn has weak Tn-persistency number exactly equal to n, we have
proved that the Tn-persistency number–modulo equivalence of πn is equal to n.

Consider now the predicate Gn of arity 2. Obviously there is no difference be-
tween predicates Tn and Gn as far as the weak persistency number is concerned,
thus the weak Gn-persistency number of πn is n. When considering programs
that are Gn-equivalent to πn we must be carefull since {z1, ..., zn} is not a set of
distinguished variables anymore; now it is the atoms A(x(i), x(i+1), z1, ..., zn) and
A(y(i), y(i+1), z1, ..., zn) that force the image {u1, ..., un} of {z1, ..., zn} to be persis-
tent for unbounded length. Thus the Gn-persistency number–modulo equivalence
of πn is equal to n. 2

The second lemma constructs from every CFG G, a Datalog program πG with set
of IDB predicates containing predicates P and Q such that (i) (πG, P ) ⊆ (πG, Q)
(i.e. every distinguished database accepted by a P -expansion of πG is also accepted
by a Q-expansion of πG) and (ii) it is undecidable, for given G, if (πG, P ) = (πG, Q)
(i.e. (πG, P ) ⊆ (πG, Q) and (πG, Q) ⊆ (πG, P )).

Lemma 4.3. Let G be a context-free grammar (CFG) with set of terminal (resp.
nonterminal) symbols T (resp. N) and let L(G) be the language produced by G.
From G we can construct a Datalog program πG of persistency number 1 containing
among its IDB predicates, the predicates P and Q and such that:
(1) (πG, P ) ⊆ (πG, Q) and
(2) L(G) = T ∗ iff (πG, P ) = (πG, Q).

Proof 4.4. For every terminal symbol t ∈ T of G, we create an EDB pred-
icate Et. For each nonterminal symbol u ∈ N of G we create an IDB pred-
icate Pu. For each production a → a1a2...an of G we create rule Pa(x, y) ←
Ta1

(x, z1), Ta2
(z1, z2), ..., Tan

(zn−1, y) where Tai
denotes the IDB Pai

if ai is a non-
terminal symbol of G and Tai

denotes the EDB Eai
if ai is a terminal symbol of G.

The IDB predicate Q is defined by rules Q(x, y) ← Et(x, y), t ∈ T and Q(x, y) ←
Et(x, z), Q(z, y), t ∈ T .
The IDB predicate P is defined by rule P (x, y)← PS(x, y) if S is the initial symbol
of G.
It is easy to see that there exists a one-to-one correspondence between (a) the set
T ∗ of all strings formed by terminal symbols and (b) the set of Q-expansions of
πG; and that there exists a one-to-one correspondence between (a) the language
L(G) produced by G and (b) the set of P -expansions of πG. This proves that (1)
(πG, P ) ⊆ (πG, Q) (since L(G) ⊆ T ∗) and (2) (πG, P ) = (πG, Q) if and only if
L(G) = T ∗. Without loss of generality we can assume that G does not contain
productions of the form a→ b where a, b ∈ N , therefore πG does not contain rules
of the form Ta(x, y)← Tb(x, y) and its persistency number is equal to 1. 2

The third lemma gives the reduction which proves the undecidability of the per-
sistency number–modulo equivalence.

Lemma 4.5. Let G be a context-free grammar as in lemma 4.3. From G and for
every integer m > 0 we can construct a Datalog program πG,m with goal predicate
K such that the following conditions are equivalent:
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(i) L(G) = T ∗

(ii) πG,m has K-persistency number–modulo equivalence equal to m.

Proof 4.6. Program πG,m consists of two strata. The first stratum is program
πG defined in lemma 4.3. The second stratum is a program (with goal predicate K)
that uses three new EDB predicates E, A, B, and uses also as EDB predicates, the
IDB predicates P and Q of the first stratum in order to compute “(P,E)-paths”
and “(Q,E)-paths”.

The rules that compute (P,E)-paths are essentially the rules of program πn of
lemma 4.1 for n = m, with two slight modifications (1. the use of both E-atoms
and P-atoms and 2. the adjunction of the EDB atom B(zm, u)), that do not affect
the persistency number–modulo equivalence which is equal to m :
K(x, y)← KP (x, y)
KP (x, y)← Tm(x, y, z1, ..., zm)
Tm(x, y,z1,...,zm)←E(x, x′), Tm(x′, y′, z1,..., zm), E(y′, y), A(x, x′, z1,..., zm), B(zm,u)
Tm(x, y, z1, ..., zm)← P (x, y), A(x, y, z1, ..., zm), B(zm, u).

The rules that compute (Q,E)-paths are essentially the rules of program πn of
lemma 4.1 for n = m + 1, with two slight modifications (1. both E-atoms and
P-atoms are used, 2. the EDB atom A(x, y, z1, ..., zm+1) is replaced by the IDB
atom S(x, y, z1, ..., zm+1) defined by a unique rule which is an initialization rule)
that do not affect the persistency number–modulo equivalence, which is equal to
m + 1:
K(x, y)← KQ(x, y)
KQ(x, y)← Tm+1(x, y, z1, ..., zm+1)
Tm+1(x, y,z1,...,zm+1)←E(x, x′), Tm+1(x

′, y′,z1,...,zm+1), E(y′, y), S(x, x′,z1,...,zm+1)
Tm+1(x, y, z1,...,zm+1)← Q(x, y), S(x, y, z1, ..., zm+1)
S(x, y, z1, ..., zm+1)← A(x, y, z1, ...zm), B(zm, zm+1)

We can notice that the persistency number–modulo equivalence of πG,m is given
by its second stratum which has weak persistency number equal to m + 1 (because
its weak KP -persistency number is equal to m and its weak KQ-persistency number
is equal to m+1), while the first stratum (i.e. program πG of lemma 4.3) has weak
persistency number equal to 1 and does not contribute to the weak persistency
number of πG,m and it doesn’t contribute either to its persistency number–modulo
equivalence. We can therefore focus our attention on the second stratum.

Considering P as an EDB predicate, we see that KP -expansions have either the
form(KP (x, y), {P (x, y),A(x, y, z1,...,zm),B(zm, u)}) or the form(KP (x, y), {E(x, x1),
..., E(xn−1, xn), P (xn, yn), E(yn, yn−1),..., E(y1, y), A(x, x1, z1,...,zm),...,A(xn−1, xn,

z1,...,zm), A(xn, yn, z1,...,zm), B(zm, u1), ...,B(zm, un+1)}) for n≥1. KQ-expansions
have exactly the same form as KP -expansions, provided that we replace P by Q and
we replace the atoms B(zm, u1), ..., B(zm, un+1) by the unique atom B(zm, zm+1).
It is not hard to see that the following equivalence holds: every KQ-expansion
is accepted by a KP -expansion (of πG,m) iff every Q-expansion is accepted by a
P -expansion (of πG) that is L(G) = T ∗, according to lemma 4.3.

We come now to the proof of the equivalence of the following conditions:
(i) L(G) = T ∗

(ii) πG,m has K-persistency number–modulo equivalence equal to m.
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First we show that (i) =⇒ (ii).
Suppose that L(G) = T ∗, this means that every KQ-expansion is accepted by a
KP -expansion, i.e. every (Q,E)-path can be obtained as a (P,E)-path. Thus the
KQ-expansions are unnecessary for computing the query (πG,m,K) which means
that the K-persistency number–modulo equivalence of πG,m is equal to its KP -
persistency number–modulo equivalence, thus equal to m.

We now show that (ii) =⇒ (i) i.e we show that if L(G) 6= T ∗ then πG,m has
K-persistency number–modulo equivalence different from m and therefore equal to
m + 1.
We suppose that L(G) 6= T ∗, this means that T ∗ 6⊂ L(G) (since L(G) ⊂ T ∗);
therefore there exists at least one element of T ∗ which is not in L(G), i.e. there
exists a Q-path which is not a P -path. Combining that Q-path with E-paths of
arbitrary length we obtain an infinite set S of KQ-expansions, each of which is not
accepted by any KP -expansion. Let em+1 be an expansion in the set S. Consider
any program π which is Q-equivalent to πG,m. If there is a homomorphism from
the expansion em+1 of πG,m to a KQ-expansion e of π, then the E-paths in e and
em + 1 must have the same length. Therefore there is a set R of KQ-expansions in
π (the homomorphic images of the expansions of πG,m in S) whose length grows
with the length of their respective homomorphic inverse images in the (infinite)
set S. Arguing as in the proof of lemma 4.1, we can show that the image of the
elements {z1, ..., zm+1} of the expansions in S must be persistent for unbounded
length in the expansions of π that belong to the set R. It follows that the weak
K-persistency number of π is at least m+1. Therefore the K-persistency number–
modulo equivalence of πG,m is equal to m + 1. 2

Theorem 4.7. The decision problem: “does a given program have P -persistency
number–modulo equivalence equal to m?” is undecidable, for any fixed m > 0.

Proof 4.8. Suppose that for each fixed m > 0, there is an algorithm which
decides, for every query (π, P ), if π has P -persistency number–modulo equivalence
equal to m. Then we would be able to decide whether the persistency number–
modulo equivalence of the query (πG,m,K) of lemma 4.5 is equal to m or not, thus
we would be able to decide, for every CFG G, whether L(G) = T ∗ which is known
to be undecidable [Hopcroft and Ullman 1979]. 2

¿From the undecidability of the P -persistency number–modulo equivalence we
can derive analogous undecidability results for the P -persistency number and for
the P -characteristic integer, both defined in definition 3.2; these results are given
in the following corollary.

Corollary 4.9. 1. The decision problem: “does a given program have P -
persistency number equal to m?” is undecidable, for any fixed m > 0.
2. The decision problem: “does a given program have P -characteristic integer equal
to m?” is undecidable, for any fixed m ≥ 3.

Proof 4.10. 1. Same reduction as for theorem 4.7, noticing that program πG,m,
m > 0, of lemma 4.5 has K-persistency number equal to m iff L(G) = T ∗. Clearly if
πG,m has K-persistency number equal to m then the KQ-expansions are not needed
for defining the query (πG,m,K), which means that the Q-paths can be obtained
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as P -paths i.e. (πG, P ) = (πG, Q) which is equivalent to L(G) = T ∗, according to
lemma 4.3. Now in order to prove the converse, it is sufficient - according to lemma
4.5 - to prove that if program πG,m has K-persistency number–modulo equivalence
equal to m then it has K-persistency number equal to m; the latter (i.e. the fact
that πG,m has K-persistency number equal to m) is true since on the one hand the
K-persistency number of πG,m is at least equal to m (it has been proved in [Afrati
et al. 2005] that for any query (π, P ), the P -persistency number–modulo equivalence
of π is the minimum of the P -persistency numbers of programs P -equivalent to π)
and on the other hand it is - by definition of the various persistency numbers - at
most equal to its weak K-persistency number which is - by construction of πG,m -
equal to m.
2. The proof is based on a stronger version of lemma 4.3: we construct a Datalog
program π′′

G by adding a new goal predicate and some “dummy” rules to program
πG of lemma 4.3 (after we have renamed its predicate P into P ′); more precisely:
(a) we replace rule P (x, y)← PS(x, y) of πG with rules:
P ′(x, y)← P1(x, y)
P1(x, y)← P2(x, y)
...
Pm−4(x, y)← Pm−3(x, y)
Pm−3(x, y)← PS(x, y),
(b) we replace rules Q(x, y) ← Et(x, y) and Q(x, y) ← Et(x, z), Q(z, y) (t ∈ T ) of
πG with rules:
Q(x, y)← Q1(x, y)
Q1(x, y)← Q2(x, y)
...
Qm−2(x, y)← Qm−1(x, y)
Qm−1(x, y)← Et(x, y), t ∈ T

Qm−1(x, y)← Et(x, z), Qm−1(z, y), t ∈ T .
Rules of πG corresponding to productions of the CFG G, remain unchanged in π′′

G.
(c) The new goal predicate P is defined by the new rules P (x, y) ← P ′(x, y) and
P (x, y) ← Q(x, y). It is not hard to see that the claims of lemma 4.3 not only
remain true for program π′′

G but are also enriched: (1) (π′′
G, P ′) ⊆ (π′′

G, Q) and (2)
the three following conditions are equivalent:
(i) L(G) = T ∗

(ii) (π′′
G, P ′) = (π′′

G, Q)
(iii) the P -characteristic integer of π′′

G is equal to m.
The proof of the equivalence (i) ⇔ (iii) is based on the following remarks: (a)
the adjunction of the above “dummy” rules has as effect that every persistent set
which consists in strictly more than one (one is the persistency number of πG and
of πG′′) persistent variable, persists in m − 1 bubbles when the expansion is a
P ′-expansion and it persists in m bubbles when the expansion is a Q-expansion
(m ≥ 3 because, according to definition 2.8, any persistent set persists in at least
2 bubbles); therefore, if L(G) is a strict subset of T ∗ (i.e. (π′′

G, P ′) 6= (π′′
G, Q)) then

the P ′-characteristic integer of program π′′
G is equal to m while the Q-characteristic

integer of π′′
G is equal to m + 1; in that case the P -characteristic integer of π′′

G is
equal to m + 1, since both P ′-expansions and Q-expansions are needed in order
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to define the program semantics i.e. the query (π′′
G, P ). However, when L(G) =

T ∗ i.e. (π′′
G, P ′) = (π′′

G, Q), the program semantics can be defined by using P ′-
expansions only; therefore the P -characteristic integer of π′′

G becomes equal to its
P ′-characteristic integer which is equal to m, as we saw before.
Based on the above equivalence (i) ⇔ (iii), and knowing that it is undecidable
whether L(G) = T ∗, we conclude that the decision problem: “does a given program
have P -characteristic integer equal to m?” is undecidable, for any fixed m ≥ 3. 2

As far as theorems 4.7 and 4.9(1) are concerned, it is possible to prove the case
m = 0 by a different technique using a (more involved technically) reduction based
on directly encoding Turing machine computations.

4.2 New classes of programs for which boundedness is undecidable

Lemma 4.11. For every integer M ≥ 1, there exists an algorithm BM which on
every input program π produces an output program π′

M such that the following
holds:
1. π is bounded if and only if π′

M is bounded,
2. π has weak persistency number m ≥ 0 if and only if π′

M has weak persistency
number m + M .

Proof 4.12. 1. Fix the integer M ≥ 1. For every input program π, algorithm
BM produces an output program π′

M : π′
M is obtained (1) by replacing every n-ary

IDB predicate Q occurring in π with a new n + M -ary IDB predicate Q′, (2) by
adding a new M -ary EDB predicate A and (3) by choosing M new distinct variables
x1, ..., xM such that every recursive rule r : Q0(~x0)← Q1(~y1), ..., Qn(~yn), e1, ..., es of
π is replaced with the new recursive rule r′ : Q′

0(x1, ..., xM , ~x0)← Q′
1(x1, ..., xM , ~y1),

..., Q′
n(x1, ..., xM , ~yn), e1, ..., es, A(x1, ..., xM ) and every initialization rule r : Q′

0(~x0)
← e1, ..., es of π is replaced with the new initialization rule r′ : Q′

0(x1, ..., xM , ~x0)←
e1, ..., es, A(x1, ..., xM ).
For every database D (of domain dom) and for every vector (a1, ..., aM ) of distinct
constants, we denote byD{A,a1,...,aM} (of domain dom{a1,...,aM}=dom

⋃
{a1, ..., aM})

the database obtained by enriching D with a new M -ary relation A which is true
only on the M -tuple (a1, ..., aM ). It is not hard to see that, for any tuple (b1, ..., bn)
of dom, the distinguished database D∗ = (D, b1, ..., bn) is accepted by π iff the
distinguished database D∗

{A,a1,...,aM} = (D{A,a1,...,aM}, a1, ..., aM , b1, ..., bn) is ac-

cepted by π′
M . Also e viewed as the distinguished database (C, bx1

, ..., bxn
) is a

P -expansion of π if and only if e{A,a1,...,aM} viewed as the distinguished database
(C{A,a1,...,aM}, a1, ..., aM , bx1

, ..., bxn
) is a P -expansion of π′

M . Moreover it is not
hard to see that if e1 and e2 are expansions of π and e1

{A,a1,...,aM} and e2
{A,a1,...,aM}

are the corresponding expansions of π′ then there is a homomorphism from e1 to
e2 (viewed as distinguished databases) if and only if there is a homomorphism
from e1

{A,a1,...,aM} to e2
{A,a1,...,aM} (viewed as distinguished databases): the “only

if” direction is clear. To prove the “if” direction, let ha1,...,aM
be a homomorphism

from e1
{A,a1,...,aM} to e2

{A,a1,...,aM} such that, for i = 1, ...,M , ha1,...,aM
(ai) = ai

and let h be the restriction of ha1,...,aM
on e1. Consider any constant b of e1

(b 6= ai, i = 1, ...,M) which is mapped by h on some constant ai, i = 1, ...,M , of
e2
{A,a1,...,aM}; since h is a homomorphism, every such constant b is not connected
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- via some extensional predicate E - to any other constant c 6= ai, i = 1, ...,M , of
e1
{A,a1,...,aM} (i.e b and c do not belong to a same tuple of the relation defined by

E). Therefore we can map b on any constant of e2 and construct, in such a way, a
homomorphism h∗ from e1 to e2; and this ends up the proof of the “if” direction.
2. Immediate from the construction of π′

M given at the beginning of the proof. 2

Theorem 4.13. For every fixed M ≥ 1, boundedness is undecidable for pro-
grams that have weak persistency number M .

Proof 4.14. The proof is based on the result that “program boundedness is
undecidable for binary linear Datalog programs with a single IDB predicate” (the-
orem 2.3 in [Hillebrand et al. 1995] which is the journal version of [Hillebrand et al.
1991] and also in [Vardi 1988]). The undecidability reduction in [Hillebrand et al.
1995] constructs a program π0 which has weak persistency number equal to 0 (this
proves the theorem for M = 0 and has been proved in [Afrati et al. 2005]); on input
π0 and for every M > 0, algorithm BM of lemma 4.11 produces a program π′ of
weak persistency number M . If we could decide if π′ is bounded or not then we
could decide if π0 is bounded or not; but this is impossible (because π0 is a binary
linear Datalog program with a single IDB predicate and we know that program
boundedness is undecidable for such programs). 2

We recall the definition of the syntactic P-persistency number of a program, no-
tion used in the following theorem. Program π has syntactic P-persistency number

m if m is the maximum integer among those integers n satisfying the following:
there exists in π a rule ρ defining predicate P such that n variables of head(ρ)
occur in some IDB atom of body(ρ); program π has syntactic persistency number m

if m is the maximum among those integers n satisfying the following: there exists
an IDB predicate P of π such that n is the syntactic P -persistency number of π.

Theorem 4.15. For every fixed M ≥ 1, boundedness is undecidable for pro-
grams that have syntactic persistency number M .

Proof 4.16. In [Afrati et al. 2005] (lemma 7.2) it has been proved that for
every program π of weak persistency number M we can effectively construct a
program π′ equivalent to π and having syntactic persistency number M . Therefore,
since boundedness is invariant under program equivalence, the following holds: if
boundedness were decidable for programs of syntactic persistency number M then
it would be decidable for programs of weak persistency number M . The result
stated in theorem 4.13 completes the proof. 2

The statements in theorems 4.13 and 4.15 are not only true for M ≥ 1 but also
for M = 0. The particular cases M = 0, M = 2 and M = 3 have been proved in
[Afrati et al. 2005].

5. INTRACTABILITY RESULTS

Definition of the two problems (each of which has been proved to be decidable in
[Afrati et al. 2005]):

Problem Datalog Program Weak Persistency Number

Instance: Datalog program π, predicate P , integer m.
Question: Does π have weak P -persistency number at least m?
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Datalog Program Weak Persistency Number

Normal Linear PSPACE-complete

Normal Non-Linear PSPACE-hard

General Linear PSPACE-complete

General Non-Linear APSPACE-complete

Datalog Program Weak Characteristic Integer

Normal Linear PSPACE-complete

Normal Non-Linear PSPACE-hard

General Linear PSPACE-complete

General Non-Linear APSPACE-complete

Table I. Summary of results.

Problem Datalog Program Weak Characteristic Integer

Instance: Datalog program π, predicate P , integer L.
Question: Does there exist a persistent set of size m + 1, having length at

least L, where m is the weak P -persistency number of π?

We consider two interesting cases for each one of these problems: (1) Datalog
programs in normal form i.e., for every atom Q(~t) occurring in the program, if
Q is an IDB predicate then ~t is a vector of distinct terms (either variables or
constants) and (2) general, i.e. non normal, Datalog programs. The notion of
normal programs extends the notion of normal programs that has been defined in
[Afrati et al. 2005] for programs with no constants. For each one of these two cases,
we consider the following two sub-cases: linear Datalog programs, and non-linear

Datalog programs. All the presented results are summarized in Table I. [Hopcroft
and Ullman 1979] and [Garey and Johnson 1979] are classical references for the
concepts related to intractability, reductions, completeness and so on.

It is worth noticing that the complexity results of that section are related to
complexity results for Datalog derivability (see lemma 5.9 and theorem 5.15). This
is not surprising since it can be proved that the problem of deciding the weak
persistency number is at least as hard as deciding, for a program P and a ground
atom A, if A is derivable from P .

5.1 The problem DATALOG PROGRAM WEAK PERSISTENCY NUMBER

Theorem 5.1. The problem Normal Linear Datalog Program Weak

Persistency Number is PSPACE-hard.

Proof 5.2. We reduce the problem Finite State Automata Intersection

which is known to be PSPACE-hard to the problem Normal Linear Datalog

Program Weak Persistency Number. That is, for every integer n ≥ 3 and for
every set of n non-deterministic automata A = {A0, ..., An−1} over the same input
alphabet Σ 5, we construct a linear program πn,A in normal form and with goal

5Each automaton Ai has ε-transitions which allows us to assume that its final state is unique.

W.l.o.g. we can assume that automata A0,...,An−1 have the same number of states; for 0 ≤ i < n

we denote by Ki = {q0
i
, q1

i
, . . . , q

|K|−1

i
} the set of states of Ai where q0

i
is the initial state and q1

i

is the single accepting state.
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predicate P , such that πn,A has weak P -persistency number n if and only if there
exists a string of Σ∗ which is accepted by every automaton Ai of A.

The IDB predicates of program πn,A are the goal predicate P of arity n and
predicates Pi, Qi, Pa,i and Qa,i of arity n|K| (0 ≤ i < n and a ∈ Σ). Program πn,A

uses n constant symbols c0, c1, . . . , cn−1 and has several kinds of rules for a, b ∈ Σ:

(1) Rules ra : P (c0, c1, ..., cn−1)← Pa,0(~y0, ~y1, ..., ~yn−1) where ~yi = (ci, y
1
i , ..., y

|K|−1
i ).

(2) Rules r
PQ

a,i,q
j

i
,ql

i

and r
PQ

i,q
j

i
,ql

i

(0 ≤ i ≤ n− 1) created for j = l or for each sequence

of empty transitions of Ai starting from q
j
i and terminating to ql

i; rules r
QP

a,i,q
j

i
,ql

i

(0 ≤ i < n − 1) created for each transition q
j
i

a
−→ ql

i of automaton Ai (0 ≤ j, l <

|K|):

r
PQ

a,i,q
j

i
,ql

i

: Pa,i(~y0, ~y1, . . . , ~yi, . . . , ~yn−1)← Qa,i(~y0, ~y1, . . . , ~ui, . . . , ~yn−1)

r
PQ

i,q
j

i
,ql

i

: Pi(~y0, ~y1, . . . , ~yi, . . . , ~yn−1)← Qi(~y0, ~y1, . . . , ~ui, . . . , ~yn−1)

r
QP

a,i,q
j

i
,ql

i

: Qa,i(~y0, ~y1, . . . , ~yi, . . . , ~yn−1)← Pa,i+1(~y0, ~y1, . . . , ~ui, . . . , ~yn−1)

where ~yi =(y0
i , y1

i , ..., yl−1
i , yl

i, y
l+1
i ,..., y

|K|−1
i ), ~ui =(y

′0
i , y

′1
i , ..., y

′l−1
i , y

j
i , y

′l+1
i ,..., y

′|K|−1
i )

(if yk
i is a variable then y

′k
i is a new variable, and if yk

i is a constant then y
′k
i = yk

i ).

(3) Rules r
QP
a,b : Qa,n−1(~y0, ~y1, . . . , ~yn−1)← Pb,0(~y0, ~y1, . . . , ~yn−1)

(4) Rules r′a : Qa,n−1(~y0, ~y1, . . . , ~yn−1)← P0(~y0, ~y1, . . . , ~yn−1)

(5) Rules r
QP
i : Qi(~y0, ~y1, . . . , ~yn−1)← Pi+1(~y0, ~y1, . . . , ~yn−1)

(6) Rules r
QP
n−1 : Qn−1(~y0, ~y1, . . . , ~yi, . . . , ~yn−1)← P (y1

0 , y1
1 , . . . , y1

n−1)

Rules r
QE
n−1 : Qn−1(~y0, ~y1, . . . , ~yi, . . . , ~yn−1)← E(y1

0 , y1
1 , . . . , y1

n−1)
It is important to notice that in most of the above linear rules, the n|K| arguments

of the head are changed into the n|K| arguments of the body according to the
following pattern: (1) the n|K| arguments are partitioned into n “blocks”, each
block representing an automaton and having K arguments, one argument per state,
where in particular, the first (resp. second) position of an i-block denotes the initial
(resp. final) state of Ai, (2) only one of the blocks is modified, (3) the modification
of the block consists in renaming all its arguments, except one which (possibly)
changes position: precisely a term moves from the (j +1)th position to the (l+1)th

position of an i-block if and only if q
j
i

a
−→ ql

i is a transition of automaton Ai.
We prove the theorem by showing the equivalence of the following two proposi-

tions:
(i) {c0, c1, ..., cn−1} is the persistent set (of maximum size) occurring in P -expansions
of arbitrary length (which means that the weak P -persistency number of the pro-
gram is n)
(ii) there is a string of Σ∗ which is accepted by every automaton Ai of A.
(i) =⇒ (ii) Any P -expansion has the form (P (c0, ..., cn−1), C) and a close look
at rules’ arguments shows that if there exists a persistent set A of maximal size
then necessarily A is equal to the set of constants {c0, c1, ..., cn−1}. The expan-
sion necessarily starts with some rule ra of group (1) which puts each constant
ci in the first position of the i-block; now {c0, c1, ..., cn−1} is persistent for arbi-

trary length iff rule r
QP
n−1 of group (6) can be used an arbitrary number of times,

producing - each time it is used - the atom P (c0, ..., cn−1) with which the ex-

pansion started; it is sufficient to show that r
QP
n−1 is used once and it produces
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P (c0, ..., cn−1): this is possible only if - at the time we choose to use r
QP
n−1 - each

constant ci is in the second position of the i-block (in the head of the rule); to
achieve that, the expansion must start (after rule ra) with an a-sequence i.e. a

sequence r
PQ
a,0,..., r

QP
a,0,..., r

PQ
a,1,..., r

QP
a,1,..., ..., r

PQ
a,j,..., r

QP
a,j,..., ..., r

PQ
a,n−1,... of rules of group

(2), at the end of which either (α) the constants are put in the second position of
blocks attesting that symbol a has been accepted by the n automata or (β) rule

r
QP
a,b is used, followed by a b-sequence describing n transitions reading symbol b, one

transition per automaton. At that point we repeat the same reasoning; eventually
each constant ci is in the second position of the i-block iff the string a1a2...am has
been accepted by the n automata, where the sequences of rules used in the expan-
sion are first an a1-sequence, then an a2-sequence,...,eventually an am-sequence.
(ii) =⇒ (i): the proof is analogous to the proof of (i) =⇒ (ii) stated above. 2

Theorem 5.3. The following two problems are in NLINEARSPACE:
(1) The problem Normal Linear Datalog Program Weak Persistency

Number

(2) The problem General Linear Datalog Program Weak Persistency

Number.

Proof 5.4. We can give a necessary and sufficient condition for the existence
of a persistent set that occurs in an unbounded number of bubbles, by properly
enriching the usual notion of dependency graph of a program π, as follows: for each
tuple (P, P ′, r) such that there exists a rule r : P (~u) ← ..P ′(~v), ... of π, we create

an edge P
r
−→ P ′ and for each pair (P, r) such that r is an initialization rule with

head over P we create an edge P
r
−→ ◦ where ◦ is a new symbol. If π has weak

P0-persistency number at least m, then there is a persistent set A of size m such
that, for every integer l, there exists a P0-expansion where A persists in l bubbles.
Such a persistent set A = {x1, ..., xm} exists if and only if (1) there is a cycle

T
r1−→ ...

rn−→ T in the enriched dependency graph of π where T is reachable from
P0, (2) there exist a partial T -expansion e = (T (~x), C, T (~y)) 6 of π, and a sequence
of indices u1,...,um such that, for i = 1, ...,m, the element xi of the persistent set
A is the uth

i term of both ~x and ~y (if we call ~p the subvector (xu1
, ..., xum

) of ~x

and we call ~p′ the subvector (yu1
, ..., yum

) of ~y then the condition (2) above says
that ~p = ~p′ and thus A = {xu1

, ..., xum
} = {yu1

, ..., yum
}) and (3) from predicate T

we can reach a predicate T ′ which appears in the head of some initialization rule
(condition (3) assures the existence of T -expansions).

Therefore a non deterministic algorithm that can solve the problem Normal

Linear Datalog Program Weak Persistency Number guesses (1) an IDB

predicate T of π, (2) a cycle T
r1−→ ...

rn−→ T in the enriched dependency graph of
π and (3) a set of m distinct terms, m ≤ arity(T ). Such an algorithm needs to
write down T , ~p and ~p′ in order to test whether ~p = ~p′ (i.e. whether the m distinct
terms constitute a persistent set); it therefore needs space linear w.r.t. the size of
the program. 2

6Expansions are defined from skeleton trees (recall definition 2.5) having all their leaves labelled

with initialization rules while partial expansions are defined in an analogous way but from skeletons
trees that have at least one leaf labelled with a recursive rule. (Partial) expansions of a linear

program have their skeleton trees reduced to a branch.
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Theorem 5.5. The problem Normal Linear Datalog Program Weak

Persistency Number is PSPACE-complete.

Proof 5.6. According to theorem 5.3 (1) the problem is in PSPACE (since
NLINEARSPACE ⊂ NPSPACE and NPSPACE=PSPACE); and according to the-
orem 5.1 it is PSPACE-hard. 2

Theorem 5.7. The problem Normal Non-linear Datalog Program Weak

Persistency Number is PSPACE-hard.

Proof 5.8. The class of linear programs is a subclass of the class of non-linear
programs. Therefore the problem is at least as hard as the problem Normal

Linear Datalog Program Weak Persistency Number which is PSPACE-
hard according to theorem 5.1. 2

Lemma 5.9. Given a Datalog program π and given an atom P (~u) over the IDB
predicate P of π, we can decide in alternating linear space whether there exists a
P (~u)-expansion of π.

Proof 5.10. Consider the following non deterministic algorithm which takes as
inputs a program π and an atom P (~u) over the IDB predicate P of π:
1. Find an instance r of some initialization rule of π such that P (~u) is head of r;
2. if such r exists then stop and say “there exists P (~u)-expansion”,
3. otherwise find an instance r of some recursive rule of π such that P (~u) is head
of r, and for every IDB atom Q(~t) of the body of r, check recursively whether there
exists a Q(~t)-expansion of π.

Recall that a computation, expressed by a tree, needs alternating linear space
[Chandra et al. 1981] if and only if the computation of every branch of the tree needs
deterministic linear space. The computation performed by the above algorithm can
be represented as a tree; the computation on every branch of that tree consists in
a sequence of atoms, starting with the atom P (~u).

To perform the computation along any branch, the algorithm has only to write
down P (~u) as well as each pair of successive rule instances encountered; the algo-
rithm does not need to write down rule instances, but it can codify them in the
following way: if r′ is an instance of program’s rule r, the algorithm writes down (a)
which terms of r have become equal in r′ to a term of ~u (and to which one) and (b)
among the remaning terms of r, which terms have been equated in r′. Therefore,
in order to perform the computation along any branch of the tree, the algorithm
uses space which is linear w.r.t. the size of the program. 2

Theorem 5.11. (1) The problem General Non-Linear Datalog Program

Weak Persistency Number is in ALINEARSPACE.
(2) The problem General Non-Linear Datalog Program Weak Persis-

tency Number is in EXPTIME.

Proof 5.12. (1) The proof is based on the proof of theorem 5.3, but it also
uses lemma 5.9. More precisely, there exists a persistent set A = {x1, ..., xm} if
and only if four conditions are satisfied: the three conditions (1), (2) 7, (3) in the

7Since programs are non-linear, condition (2) is now stated as “there exists a partial T -expansion
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proof of theorem 5.3, plus a fourth condition: (4) there exist expansions (I1(~y1), C1)
...,(In( ~yn), Cn).

Thus a non deterministic algorithm that can solve the problem must do - in space
linear w.r.t. the size of the program - the three guesses corresponding to the three
aforementioned conditions (according to the proof of theorem 5.3), but moreover it
has to decide whether there exist an I1(~y1)-expansion of π,..., an In( ~yn)-expansion
of π, and this can be done in alternating linear space according to lemma 5.9. The
algorithm therefore needs space alternating linear w.r.t. the size of the program.
(2) Follows from(1) since ALINEARSPACE⊆APSPACE and APSPACE=EXPTIME.
2

Theorem 5.13.The problemGeneral Non-Linear Datalog Program Weak

Persistency Number is APSPACE-complete, even for fixed weak persistency
number, as long as it is at least 2.

Proof 5.14. By theorem 5.11 the problem is in APSPACE; to show that it is
APSPACE-hard, we will reduce to it the APSPACE-hard problem Alternating

Polynomial Space Turing Machine Acceptance. Let M = (K,Σ, δ, s,H)
be a alternating Turing machine [Chandra et al. 1981], where K is a finite set of
states, Σ = {0, 1,t, .} is the alphabet (where t denotes the blank and . denotes
the beginning of any string), s ∈ K is the initial state, H = {qaccept, qreject} ⊆ K

is the set of halting states, and δ : (K − H) × Σ → P(K × Σ × {←,→}) is the
transition relation. Let p be a polynomial such that M on an input of length n,
uses at most p(n) cells of its tape. Let also x = x0, x1, . . . x|x|−1 be a string, with
x1 = ., and xi ∈ {0, 1}, 0 ≤ i < n. We will construct a non-linear Datalog program
πx, with a predicate P , and we will compute an integer m, such that πx has weak
persistency number at least m, iff M accepts input x, using at most p(|x|) cells of
its tape.

Let N = |Σ|+ p(|x|). We begin with a program πx, having a single predicate P ,
of arity |Σ|. For each q ∈ K, and for each i, 0 ≤ i < p(|x|), we add the predicate
Pq,i, of arity N . Next, for each q ∈ K −H, we add the following rules:

—If q is an existential state, then for each q′ ∈ K, for each a, a′ ∈ Σ, with (q, a) `M

(q′, a′, s), for some s ∈ {←,→}, let l = −1, if s =←, and l = 1 otherwise. For
each i, 0 ≤ i < p(|x|), we add the following rule:

Pq,i(y0, y1, yt, y., z1, . . . , zi−1, ya, zi+1, . . . , zp(|x|))←

Pq′,i+l(y0, y1, yt, y., z1, . . . , zi−1, ya′ , zi+1, . . . , zp(|x|))

—If q is a universal state, then for each a ∈ Σ, we construct the set Qq,a =
{(q1, a1), . . . , (qnq,a

,
anq,a

)}, containing all the tuples (qj , aj), such that (q, a) `M (qj , aj , sj) for some
sj ∈ {←, →}. For each j, 1 ≤ j ≤ nq,a, let lj = −1, if sj =←, and lj = 1
otherwise. For each i, 0 ≤ i < p(|x|), we add the following rule:

Pq,i(y0, y1, yt, y., z1, . . . , zi−1, ya, zi+1, . . . , zp(|x|))←

e = (T (~x), C, {T (~y), I1( ~y1), ..., In( ~yn}) ...”. T (~y), I1( ~y1),...,In( ~yn) are the respective heads of the

recursive rules labelling leaves in the skeleton tree of e.
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Pq1,i+l1(y0, y1, yt, y., z1, . . . , zi−1, ya1
, zi+1, . . . , zp(|x|)),

Pq2,i+l2(y0, y1, yt, y., z1, . . . , zi−1, ya2
, zi+1, . . . , zp(|x|)), . . . ,

Pqnq,a ,i+lnq,a
(y0, y1, yt, y., z1, . . . , zi−1, yanq,a

, zi+1, . . . , zp(|x|))

—Furthermore, for each i, 0 ≤ i < p(|x|), we add the rules

Pqaccept,i(y0, y1, yt, y., z1, . . . , zp(|x|))← P (y0, y1, yt, y.)

Pqaccept,i(y0, y1, yt, y., z1, . . . , zp(|x|))← E(y0, y1, yt, y.)

P (y0, y1, yt, y.)← Ps,0(y0, y1, yt, y., yx0
, yx1

, . . . , yx|x|−1
, yt, . . . , yt).

For the constructed program πx, it is easy to see that πx has weak P -persistency
number |Σ| = 4 if and only if M accepts x; indeed this is based on the following
facts: (1) if A is a persistent set such that, for every n there exists a P -expansion
in which A appears and has length at least n, then A has size at most 4, (2) M

accepts x if and only if there exist P (y0, y1, yt, y.)-expansions (i.e. if and only if
rules with head over predicate Pqaccept,i are reachable for some i) and (3) M does

not accept x if and only if the weak P -persistency number is less than 4 = |Σ| (in
that case it is equal to 0).

For every m > 4, we can slightly modify the previous reduction, by increasing
the size of the alphabet Σ of the Turing machine in order to make |Σ| equal to
m; the arity of the constructed program πx increases accordingly and πx has weak
P -persistency number m = |Σ| if and only if M accepts x. To prove the theorem
for m = 2 (resp. m = 3), it suffices to encode the 4 letters-alphabet Σ into a two
(resp. three) letters alphabet Σ′. 2

Theorem 5.15. Given a general Datalog program π and an atom P (~x) over
an IDB predicate of π, the problem of determining whether there exists a P (~x)-
expansion is APSPACE-complete.

Proof 5.16. According to lemma 5.9 the problem is in ALINEARSPACE ⊂
APSPACE. To show that it is APSPACE-hard, we reduce to it the APSPACE-hard
problem Alternating Polynomial Space Turing Machine Acceptance, us-
ing the same reduction as that in the proof of Theorem 5.13. 2

Theorem 5.17. The problem General Linear Datalog Program Weak

Persistency Number is PSPACE-complete, even for fixed weak persistency num-
ber, as long as it is at least 2.

Proof 5.18. By Theorem 5.3 (2), the problem is in PSPACE; to show that it
is PSPACE-hard, we will reduce to it the PSPACE-hard problem Polynomial

Space Turing Machine Acceptance.
The proof is essentially the same as the proof of theorem 5.13 but now M =

(K,Σ, δ, s,H) is a deterministic polynomial space Turing machine with transition
function δ : (K −H) × Σ → K × Σ × {←,→}. The new program πx is similar to
the program in the proof of 5.13 but it is linear since it does not contain the rules
corresponding to universal states (while it conserves every other type of rule and
especially the rules that were produced for existential states). 2
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5.2 The problem DATALOG PROGRAM WEAK CHARACTERISTIC INTEGER

The intractability results given here have proofs that are similar to the proofs in
section 5.1.

Theorem 5.19. (1) The problem Normal Linear Datalog Program Weak

Characteristic Integer is PSPACE-complete.
(2) The problem Normal Non-Linear Datalog Program Weak Charac-

teristic Integer is PSPACE-hard.

Proof 5.20. (1) The problem is PSPACE-hard, even for fixed L: the proof is
based on the reduction described in the proof of Theorem 5.1 (we have to add L+1
dummy rules similar to the dummy rules in the proof of corollary 4.9(2)). The
problem is in PSPACE since we can prove that it is NLINEARSPACE: the proof is
similar to the proof of theorem 5.3; a non deterministic algorithm that can solve the
problem (i.e. check, for any normal linear program π of weak P -persistency number
equal to m, whether there exists a persistent set A = {x1, ..., xm+1} occurring on
at least L bubbles of a P -expansion of π) guesses (1) an IDB predicate T of π,

reachable from P (2) a path T
r1−→ ...

rL−→ T ′ (of length L) and (3) a set of m + 1
distinct terms. Also the algorithm verifies in NLINEARSPACE that m is the weak
P -persistency number of program π.
(2) The problem is at least as hard as the (PSPACE-hard) problem Normal Lin-

ear Datalog Program Weak Characteristic Integer. 2

Theorem 5.21. (1)The problemGeneral Linear Datalog Program Weak

Characteristic Integer is PSPACE-complete, even for fixed L, and fixed weak
persistency number, as long as it is at least 2.
(2) The problem General Non-Linear Datalog Program Weak Charac-

teristic Integer is APSPACE-complete, even for fixed L, and fixed weak persis-
tency number, as long as it is at least 2.

Proof 5.22. The proof for the hardness proof of (1) is based on the reduction
described in the proof of Theorem 5.17, while the proof for the hardness proof
of (2) is based on the reduction described in the proof of theorem 5.13; in both
cases, we must add L + 1 dummy rules as we did in the proof of theorem 5.19(1).
The membership part of (1) is shown as in the proof of theorem 5.19(1). The
membership part of (2) is shown similarly, using the proof of theorem 5.11 to
compute the weak-P -persistency number of the program in ALINEARSPACE. 2

6. DISCUSSION AND OPEN PROBLEMS

Persistent sets come up in the well-known “Magic Sets” transformation. In this
context it seems relevant to maximize persistent variables before applying Magic
Sets transformation: if the number of persistent variables is maximal then the sub-
sequent application of the Magic Sets transformation gives more efficient programs.

The Magic Sets transformation is used to optimize the evaluation of Datalog
programs in the particular case where variables of the goal predicate are bound to
constants. Consider again the transitive closure query program
P (x, y)← E(x, z), P (z, y)
P (x, y)← E(x, y)
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and consider as input database D the directed graph described by the facts E(a, b),
E(b, c), E(c, d), E(a, e), E(f, a); we can ask for several kind of queries, by binding
or not certain variables: for instance the query P (x, y) asks for all paths in D, while
the query P (a, y) asks for all paths in D starting from a and the query P (x, d) asks
for all paths in D ending up to d.

The query P (a, y) is of type bf which means that the first argument is bound and
the second is free, while the query P (x, d) is of (different) type fb which means
that the second argument is bound and the first is free. For answering such queries,
where some variables in the goal predicate are bound to constants, not all rule
instantiations (produced during bottom-up evaluation of the program) are necessary
but only those instantiations “relevant” to the query i.e. those corresponding to
a top-down processing of the rules starting from the goal; during that top-down
processing of rules the initial bindings of the goal propagate from rule heads towards
rule bodies, generating new bindings: the Magic Sets transformation uses the type
of the query (i.e. the type of bindings in the goal predicate) for producing a new
program, which mimics the propagation of bindings and which is more efficient
because the rule instantiations it produces during bottom-up evaluation are those
which are relevant to the query.

Persistent variables have an important impact on the Magic Sets transformation:
indeed the program produced by the Magic Sets transformation is much simpler
when the bound variables are the persistent ones; we explain the reason on the
examples below.

First suppose that the bound variable is not a persistent one: consider for in-
stance the query P (a, y) where the non persistent variable x was bound to the
value a; that binding is denoted by the fact magicbf (a) over a new predicate sym-
bol magicbf . When evaluating top-down the rule P (a, y) ← E(a, z), P (z, y) the
fact E(a, b) gives the value b for the first argument z of P (z, y): that binding is de-
noted by the fact magicbf (b); this propagation of bindings is expressed by the new
rule magicbf (z) ← E(x, z),magicbf (x), more precisely it is expressed by the rule
instantiation magicbf (b) ← E(a, b),magicbf (a) which produces magicbf (b) from
magicbf (a). The propagation of bindings continues in a top-down way as long as
the recursive rule of the initial program is used; each time, the first argument z of
P (z, y) will satisfy magicbf (z). The resulting program is the following, where the
first rule just expresses the query P (a, y):
qf (y)← P bf (a, y):
magicbf (a)←
magicbf (z)← E(x, z),magicbf (x)
P bf (x, y)← E(x, z), P bf (z, y),magicbf (x)
P bf (x, y)← E(x, y),magicbf (x)

Suppose now that the bound variable is the persistent variable y and consider for
instance the query P (x, d) where y is bound to the value d; that binding is denoted
by the fact magicfb(d) over a new predicate symbol magicfb. When evaluating
top-down the rule P (x, d)← E(x, z), P (z, d) the second argument y of P (z, y) im-
mediately gets bound to the same value d because y persists from the head: that
binding is denoted by the same fact magicfb(d); but y also persists during any
number of unfoldings of the recursive rule i.e. y is a persistent variable and thus
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y will always receive the same (initial) value d: the propagation of bindings is de-
generated here and the Magic Sets transformation would produce a degenerate rule
magicfb(y)← magicfb(y) with unique instantiation magicfb(d)← magicfb(d); af-
ter simplifications, the resulting program is the following, where the first rule just
expresses the query P (x, d):
qf (x)← P fb(x, d)
P fb(x, d)← E(x, d)

That new program (produced for the query P (x, d)) is simpler than the one
produced from the query P (a, y): the reason is that the propagation of bindings on
a persistent variable degenerates to the “propagation” of the same value, therefore
there is no need to create a magic rule for describing it; instead of that, the specific
value, d here, can be directly incorporated in the rules of the initial program.

The persistency number seems to be one reason contributing to high number of
variables and a fortiori to a high space complexity. On the other hand, persistency
number doesn’t seem to be a refined enough notion to study computational com-
plexity questions. It will be interesting to see whether combining the notion of
persistent set with the more delicate notion of hypertree decomposition [Gottlob
et al. 1999; 2001] might give some new perspectives on query evaluation.

Another point which is worth mentioning is the unbounded arities problem that
comes up while proving the undecidability of the persistency number–modulo equiv-
alence (in proof 4.5, the maximum arity of program πG,m depends on the persistency
number). It would be interesting to find a proof using only bounded arities pro-
grams, but the existing literature on bounded versus unbounded arities has shown
that such proofs are usually much more involved.

A different line of future research concerns inapproximability questions, and more
precisely the following open problems:
(i) Is there some efficient transformation (in the spirit of Lemma 4.11) proving that
for any M > 0, it is hard to distinguish between persistency number at most m
and at least m + M .
(ii) Is there some efficient transformation proving that for any L > 0, it is hard to
distinguish between weak characteristic integer at most l and at least l + L.

Finally, classes of Datalog programs with restricted persistency number should be
investigated with respect to expressibility, decidability and complexity questions. A
self-evident open problem is to extend the results of [Cosmadakis et al. 1988] on the
decidability of boundedness for monadic Datalog programs, to classes of Datalog
programs of persistency number 0.
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