Day /7: Optimization,
regularization for NN

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

26 June 2018

TOYOTA
TECHNOLOGICAL

n INSTITUTE
AT CHICAGO

Day 7: Tricks and tools
for NN training

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

26 June 2018

/

ool
/\ A~
N\ (

R4 THE UNIVERSITY OF

D CHICAGO

TOYOTA
TECHNOLOGICAL

n INSTITUTE
AT CHICAGO

/\

Topics so far

* Linear regression

* Classification
o Logistic regression
o Maximum margin classifiers, kernel trick
o Generative models

* Yesterday
o Neural networks introduction
o Backpropagation

* Today

o Common practices in NN training — optimization and
regularization

o Special architectures — CNNs, RNNs, encoder-decoder

Linear classifier

X1

X2

X3 f(x)=1(w.x +wy, = 0)

Xd

1 McCullock and Pitts 1943 — introduced the linear threshold “neuron”.
° l 1 . : W: — Outpu

B.lologlcal analogy.. | _ z H—Lci—»
single neuron — stimuli A= it
reinforce synaptic

connections

Feed-Forward Neural Networks

Vour JIE (V,E),G,W(x)

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;
 Each edge u — v has weight Wlu - v]
* Pre-activation alv] =), ,cg W[u — v]o[u]
e Outputvalue o[v] =ad(alv])
* “Output Unit” v, €V, fr(x) = alv,yy]
Figure credit: Nati Srebro

Feed forward fully connected network

X1

X2

X3 % fw@ =w®' @)
Xa f,) = s(WPf (x))

* L hidden layers with layer [havinb d; hidden units

* Parameters:
for each intermediate layer W) € R%-1 %4t where d, = d

final layer weights w(l*1) € R4z
* For 2-hidden layer fiy (x) = w® ' (W(Z)J(W(l)x)). More generally,

fw(x) = w5 (W(L_l) e (W(Z)G(W(l)x)))

Neural networks as hypothesis class

* Hypothesis class specified b
o Graph G(V,E)
o Activation function o

o Weights W, with weight W|u — v] foreachedgeu - v € E
H = {fG(V,E),a,W |W:E - R}

T» Based on architecture and fixed

* Expressive power:

{f | f computable intime T } € H¢y g)sign With |[E| = 0(T?)

o demo

* Computation: empirical risk minimization

N
W = argmin Z t(fowm,omw(x?),y?)
=1
o Highly non-convex problem, even if loss € is convex
o Hard to minimize over even tiny neural networks are hard
= |f not supervised ML will be solved

SGD

N
W = arg mwi/n z f(fw(x(")), y(i))
i=1

* Stochastic gradient descent: for random (x(i),y(i)) eES
Wt — w® _ 5»® Vg(f e (x(i)),y(i))

(Even though its not convex)

* How to calculate Vf(fw(t) (x(i)),y(i))?
Backpropagation =2 chain rule + dynamic programming

= Computing gradients as easy (or hard) as computing the
function itself

= What about memory?

= Once you define gradients over simple operations, can easily
compose to get complex gradients

o ldea behind autograd

Back-Propagation

* Efficient calculation of Vy£(fiy(x), y) using chain rule

X1 alv] = Z WOu - v]olu]
& olv] = o(alv])
X3
Z[vout] = 'el(a[vout]» y)
Xq z[u] = o'(alu)) Z WOy - v]z[v]

u—-v

* Forward propagation: calculate activations a[v] and outputs o[V|
det LW (x),y)

* Backward propagation: calculate z[v] = Sal
. . o 0(fw(x).y) _
Gradient descent update: using W Oluoy] — z|v]o|u]

(t+1) — w(t+1D) @) Fw),y)
w u-vl=w [w=>v]=n oW O [u-v]

Putting it All Together: SGD on Neural Networks

e Initialize W randomly (small, but not zero)
e Fort=1,2,....
o Sample (x(i),y(i)) (from tanning set S)
o Calculate the gradient g(t) using backpropagation

= Forward pass: traverse the graph forward (starting from input
units) and calculate activation and output values

alv] = z WOy - v]olu] and o[v] =a(alv])

uU-veE
= Backward pass: Calculate gradients with respect to activations
by scanning the graph backward starting with output note

(i)
Z[Voyt] = ag(c;[;[?t];]y) and z[u] = a'(alu]) z WOy - v]z[v]

U—->veE

= Qutput gradients with respect to weights
02 (fyyw(x©), y?)

Wi —v] z[v]o[u]
o Update weights: WD = w©) _ n(©) g(©)

gPu—v] =

History of Neural Networks

1940s-60s:

o Inspired by learning in the brain, and as a model for the brain (Pitts, Hebb, and others)
o Various models, directed and undirected, different activation and learning rules

1960-70s:

o Perceptron Rule (Rosenblatt), Multilayer perceptron (Minksy and Papert): that many properties of images
could not be determined by (single layer) perceptron. Caused a decline of activity in neural networks.

1970s-early 1980s:
o Backpropagation (Werbos 1975), practical backprop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
o Initial empirical success

1980s-2000s:

o Lost favor to implicit linear methods like SVM and boosting with convex losses and convex relaxations
o Also time when much of tools in todays deep learning is discovered —CNNs, LSTMs, etc.

2000-2010s:
o revival of interest (CIFAR groups)
o layer-wise pre-training of deep-ish nets were being trainined
o progress in speech and vision with deep neural nets

2010s:
o Computational advances (and also a few new tricks) allow training large networks
o 2012: Krizhevsky et al. win ImageNet
o Empirical success and renewed interest

History of Neural Networks

1940s-60s:
o Inspired by learning in the brain, and as a model for the brain (Pitts, Hebb, and others)

o Various models, directed and undirected, different activation and learning rules

1960-70s:

o Perceptron Rule (Rosenblatt), Multilayer perceptron (Minksy and Papert): that many properties of images could not be determined by
(single layer) perceptron. Caused a decline of activity in neural networks.

1970s-early 1980s:
o Backpropagation (Werbos 1975), practical backprop (Rumelhart, Hinton et al 1986) and SGD (Bottou)

o Initial empirical success

1980s-2000s:

o Lost favor to implicit linear methods like SVM and boosting with convex losses and convex relaxations

o Also time when much of tools in todays deep learning is discovered —CNNs, LSTMs, etc.

2000-2010s:
o revival of interest (CIFAR groups)
o layer-wise pre-training of deep-ish nets were being trainined

o progress in speech and vision with deep neural nets

2010s:

o Computational advances (and also a few new tricks) allow training large
networks

o 2012: Krizhevsky et al. win ImageNet
o Empirical success and renewed interest

11

So what changed?

e Large datasets

o Computer vision: classification datasets = CIFAR ~60K images, ImageNet
~14M images, ~1M annotations!

= similarly large datasets for other vision tasks like segmentation, detection etc.

o Game playing: Go, Chess = can simulate as much data as allowed by
compute power

o NLP and speech (ask Karl, | don’t know!)
o Other domains again data collection and storage is much cheaper

* Advances in computation
o Advancement in GPU technology,
o SGD training on GPUs for #weights ~ #samples ~ 107 ~ 10° or more
o Optimization technology: momentum, AdaGrad, normalization
o What’s constant since the 50s: training runtime is about 10-14 days!

e Other tools/tricks
o Non-saturating activation: o(z) = [z]; = ReLU(z) = max(0, z)
o Newish regularization techniques like dropout
o Pre-training leading to efficient transfer learning

Optimization

Neural network training

N
W = arg min z 2(fw(x®),y®)
i=1

* Stochastic gradient descent: for random (x(i),y(i)) ES
wt+l) w® — U(t) Vf(fw(t) (x(i)),y(i))

(Even though its not convex)
* Use backprop to calculate V{’(fw(t) (x(i)),y(i))!

* What could go wrong?
* What are the other options?

SGD common pitfalls

* For some random sample (x, y), you write a program to compute
Vwt (fw(x),y)!
* What is the first mistake that can happen?

Gradient computation

* For some random sample (x, y), you write a program to compute
Vwt (fw (%), y)!
* What is the first mistake that can happen?
o Wrong gradient program!
o How to fix/avoid?

o Write a numerical gradient checker (hopefully without bugs).
q_0fw) _ .. fwtde)—f(w) _ . fw+ey)—-f(w-be;)
Recall 7, f (w)]i] = oy = (lsl_r)r(l) = = g_r)% 5

o GradCheck(f, grady, W):
" Jgrady = gradf(W)

Good idea to add

" fori =1,2,.. whenever you program

4 _ fw+8e)—f(w-be)) gradient computation
Q gnumeric[l] — >8 manually

o if la.norm (ggradf[i] — Jnumeric [i]) > €:error

16

SGD common pitfalls

* For some random sample (x, y), you write a program to compute
Vwt (fw(x),y)!
 What is the first mistake that can happen?
o Wrong gradient program! = Write a numerical gradient checker

* Less obvious mistake! What is the order of samples we get in SGD?
o Does it matter? Can’t we just cycle through the data?
= What happens if all the cats are stored first and then all the dogs?
o Ideally: Use fresh sample at each iteration (x,y) ~ D
" |n practice, we have to reuse samples from training set

17

SGD common pitfalls

* For some random sample (x, y), you write a program to compute
Vwt (fw(x),y)!
 What is the first mistake that can happen?
o Wrong gradient program! = Write a numerical gradient checker

* Less obvious mistake! What is the order of samples we get in SGD?
o Does it matter? Can’t we just cycle through the data?
= What happens if all the cats are stored first and then all the dogs?
o Ideally: Use fresh sample at each iteration (x,y) ~ D
" |n practice, we have to reuse samples from training set

o Ok! Can we just sample independently at each iteration (with
replacement)?

= Better: sample without replacements, but remember to randomly
permute then cycle

= Best: for each pass over data (“epoch”), use different random order

18

Optimization

e Common problems arising from models
o Gradient clipping
o Gradient explosion

e SGD “knobs” in NN training

o Initialization
o Step-size
o SGD variants

= Momentum for SGD
= Adaptive variants of SGD

o Mini-batch SGD
o Batch normalization

19

Back-Propagation

alv] = Z WOu - v]olu]
u-vekE

olv] = a(alv])

Figure credit: Nati Srebro

Activation functions

. M 1
* Sigmoid 0(z) = 1+exp(—z)
. _ 1-exp(-2)
Tanh O-(Z) o 1+exp(—2z)
o The good:

= squash outputs to a fixed range
= no gradient explosion from
repeatedly multiplying w®
o The bad

= gradient ¢'(2) is nearly zero
for most values of z

* RelU o0(z) = max(0, z)

o Avoids gradient saturation (in part),
but can lead to gradient explosion
in some architectures (e.g., RNNs)

= Gradient clipping - g = max(g®, Gyax)

1.0

0.5

—— Tanh
——— Sigmoid

10

N
B 0.0
-0.5
-1.0
-10 -5 0 5
1.0 —— Tanh
08 —— Sigmoid
EO.G
©
04
0.2
0.0
-10 -5 0 5
10
8
N 6
)
D 4
14
2
0

21

10

Activation functions

* If during SGD updates, a ReLU unit gets to a state where
for all data points, the activations is O, then the unit
never recovers from 0 gradient

e Some variants of ReLU
o Leaky RelLU: 0(z) = max(az,z) wherea > 1
Z if z>=0

o Exponential ReLU 0(z) = {a(exp(z) —-1) ifz<0

22

Optimization

 Common problems arising from models
o Gradient clipping
o Gradient explosion

* SGD “knobs” in NN training

o Initialization
o Step size/learning rate

o SGD variants
= Momentum for SGD
= Adaptive variants of SGD

o Mini-batch SGD
o Batch normalization

Knob 1: Initialization

Non-convex objective: initialization plays a crucial role
e Can we initialize all weights to 0?
* Random initialization: Initialize all weights with small random real numbers,
e.g., Gaussian with mean zero, V'(0,0.01)
o Consider a node v with n incoming weights w;

o Assume parent nodes are also mean zero.
What is variance of activation a[v] at node v
with incoming weights w; ~ N (0,0.01)?

@ W3 var(alv]) = var(Q; w; u;) =

#parents.var(u;)var(w;)

24

Knob 1: Initialization

e Xavier initialization: scale the std-dev to normalize the variance in each
node

o if node v has n incoming weights, 1
each incoming weight gets W2
random initialization of N'(0, 0% /n) ;e Ws

o This assumes parent nodes are zero mean W

o What values can parent nodes take after activation?
olu] = a(afu])
= was proposed for zero mean activations:
not satisfied by RelLUs

* Kaiming initialization: specifically for ReLUs.

* On avg. we will have half of the units active, so initialize incoming
weights of node v with V(0,202 /n)

25

Knob 2: Step size/learning rate

Learning rate/step n; size is the most important parameter to tune

* Theory from convex optimization: for SGD decay the learning rate with

1
tas = it — Use only as heuristic — does not extent for non-convex function

loss

a) o, b) ®rn low learning rate

Z(m) E{w)
. b n>2nopt ,

high learning rate

good learning rate

(8] Ll U
m w
c) mn d , mn

Figure credit: Lecun et al. (1996), Andrej Karpathy, Greg Shaknarovich

Knob 2: Step size/learning rate

Learning rate/step size 1; is the most important parameter to tune

* In practice: some degree of babysitting o

o start with a reasonable step size, b
N '

o monitor validation/training loss

o drop n; (typically 1/10) when
learning appears stuck

* Tips

Tralning Loss

107 3

o wait a bit before dropping;
o If monitoring training loss,

= calculating loss on full dataset can be expensive

" instead use moving average from SGD iterations
o Crashes due to NaNs etc. often due to n;

Figure credit: Larson et al.

Knob 3: Variants of SGD

N
W = arg mwi/nz 2(fw(xD),y®)
i=1

 Stochastic gradient descent: for random (x(i),y(i)) ES
W(t+1) — W(t) — n(t) V'B(fw(t) (x(l))’y(l))

e optim.SGD(model.parameters(), Ir = 0.01)

e Two variants of SGD are commonly used:
o Momentum
" optim.SGD(model.parameters(), Ir = 0.01, momentum=0.9)
o Adaptive step sizes
= Adagrad: optim.Adagrad(model.parameters(), Ir = 0.01)
= Adam: optim.Adam(params, Ir=0.001, betas=(0.9, 0.999))

28

Knob 3a: Momentum for SGD

* S(GD) have trouble navigating areas where the curvature is steeper in
one dimension than the other
o ends up oscillating around the slopes and makes slow progress

* Fix: Momentum term

WD — WO O7e(hy(x),y)
+yOw® —wt)

o reduces updates along directions
that change gradients frequently

o increases updates along directions
where the gradients are consistent

o dampens oscillations Goodfellow et al]

Figure credit: Andrej Karpathy, Greg Shaknarovich 29

Knob 3b: Adaptive step sizes

WED[u > v] = WOu > v] — 0,90 u > v]
* All weights have same learning rate

AdaGrad: Reduce learning rate proportional to updates.

Nt

WDy - y] = WO — gOu - v]

e Rarely used, reduces learning rate too aggressively

RMSprop: Adagrad + forgetting

5 (1-29)

Nt

WDy - p] = w® — gOu - v]

Knob 3b: Adaptive step sizes

WD - v] = WO —5,gOu - v]
Adam: RMSprop with momentum
m®Ou - v] = gmEVu - v] + (1 - B)g®Pu - v]
2

sOlu - v] = BsEVu > v] + (1 - 8)(gPu - v])

Nt
Js®Ou - v]+ ¢

* Most commonly used adaptive method.
o optim.Adam(params, [r=0.001, betas=(0.9, 0.999))

WDy - p] = wd — mu - v]

e Good first step:
o Pick one of (SGD+momentum) or (Adam)

Knob 4: Mini-batches

* Instead of using a single example to obtain gradient estimate, use
multiple examples:

e Pick m examples B(t) = { f), Lét), i,(q?} randomly

1 . .
g\ =— 2 Tl (fyo (29),y W)

m
ieB(®)

© At each iteration: better gradient estimate, better (more
accurate) update step

@ But at the cost of m backprops per update

Allows parallelization, pipelining, efficient memory access

Knob 5: (Mini)Batch Normalization

. (a[v] — E[alv]])

o|lv] = 0(v — + bv)
JVartalul

minibatch

 Different parametrization of same function class
* SGD (or AdaGrad or ADAM) on {W, {c,}, {bv}}

* Greatly helps with optimization in practice

Slide credit: Nati Srebro

Bonus knob: warm start/pre-training

e Suppose we want to continue training for more epochs
o save snapshots of weights and resume again
o need to carefully initialize learning rate now

* Also, can use weights pre-trained from another task as
initialization for fine tuning a new task

o e.g, take features from network trained for imagenet image
classification and just change the last layer for new task

34

Bonus knob: warm start/pre-training

e Suppose we want to continue training for more epochs
o save snapshots of weights and resume again
o need to carefully initialize learning rate now

* Also, can use weights pre-trained from another task as
initialization for fine tuning a new task
o e.g, take features from network trained for imagenet image
classification and just change the last layer for new task

Be careful with step
size/learning rate

35

Neural Network Optimization

* Main technique: Stochastic Gradient Descent

* Back propagation: allows calculating gradients
efficiently

* No guarantees: not convex, can take a long time, but:
o Often still works fine, finds a good local minimum

e Over parameterization: it seems that using LARGE
network (sometimes with #weights>#sameples)
helps optimization

o Remember lecture 2, where doing this was a bad idea!!

o Not well understood

Optimization

* Check
o Add gradCheck()

O

Randomly permute data for SGD sequence

 Choose activations to avoid

O

o

Gradient clipping
Gradient explosion

e SGD “knobs” in NN training

O

(@]

Initialization = Kaiming/Xavier, or warm start initialization
Step size/learning rate = very important to tune based on training/validation loss
SGD variants

= Momentum for SGD = usually added with SGD (default parameter
momentum=0.9 often works well)

= Adaptive variants of SGD > common alternative to SGD+momentum is
Adam with 5, > p4,e.g.,0, = 0.999,5, = 0.9

Mini-batch SGD =2 ~128 common

Batch normalization = use batch normalization

37

Regularization

38

Using “Too Large” Networks

* |t seems that using LARGE network helps optimization.
* Typically, #weight == sample size
o Good generalization even without regularization
o Not well understood

—Training i
—Test (at convergence)

?

4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units
Figure credit: Behnam Neyshabur and Nati Srebro

Using “Too Large” Networks

* |t seems that using LARGE network helps optimization.
* Typically, #weight == sample size
o Good generalization even without regularization
o Not well understood

0.06¢ —Training i
—Test (at convergence)

4 8 1‘6 3|2 64 1é8 256 51I2 1k 2‘K 4k
Hidden Units
Figures from Neyshabur et al. 2015

Regularization

* |t seems that using LARGE networks helps optimization.
* Typically, #weight == sample size
o Good generalization even without regularization
o Not well understood
e Still some regularization techniques are commonly used
o Weight decay
o Dropout
o Data augmentation

Regularization - £, (weight decay)

* Minimize Regularized ERM
A
: ~ 2
arg min Ls(fw) + - W]

* Backpropagation is the same
o objective:

1 ey A
NZ (f(fw(x(l))'y(l)) +3 ||W||2)
o gradient estimate:
2(f o (x®),y®) + WO = g® 4+ W ®

o updates:
wt+D) — @ _ N - (g(t) + AW(t)) =(1- ntﬂ)W(t) _ Utg(t)

Dropouts

X
¢ Learn robust
representations

* At each step of SGD:
o Randomly (temporarily) remove p fraction of the units

o Keep weights between remaining units

o Update weights between remaining units using backprop
(as if removed units don’t exist)

* For prediction:
o Use all units and weights

Slide credit: Nati Srebro

Data augmentation

* Augment training data with invariances we know exists
for task

o €.g., image classification
= translation invariance
= horizontal invariance

= rotation invariance (some cases)
= scale invariance

 Augment training data to
have noise/other artifacts in feature space
o e.g., color jitter, random noise

e Super effective in many
computer vision tasks

Figures credit: Andrej Karpathy

44

Summary

45

Optimization

* Check
o Add gradCheck()

O

Randomly permute data for SGD sequence

 Choose activations to avoid

O

o

Gradient clipping
Gradient explosion

e SGD “knobs” in NN training

O

(@]

Initialization = Kaiming/Xavier, or warm start initialization
Step size/learning rate = very important to tune based on training/validation loss
SGD variants

= Momentum for SGD = usually added with SGD (default parameter
momentum=0.9 often works well)

= Adaptive variants of SGD > common alternative to SGD+momentum is
Adam with 5, > p4,e.g.,0, = 0.999,5, = 0.9

Mini-batch SGD =2 ~128 common

Batch normalization = use batch normalization

46

Regularization

Data augmentation — very effective
o Think of what is the right data augmentation for your problem

Weight decay — tune step sizes/ A parameter
Dropout — usually very useful

Choice of architecture affects validation
performance/generalization!
o why?

Many optimization choices affect validation performance—unlike
convex optimization problems with a unique global minimum,
where optimization algorithm only changes the
speed/computation of training and not generalization = Not well
understood

o Keep in mind while making choices in previous slides

47

