
Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor:	Suriya	Gunasekar,	TTI	Chicago

26	June	2018

Day	7:	Optimization,	
regularization	for	NN

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor:	Suriya	Gunasekar,	TTI	Chicago

26	June	2018

Day	7:	Optimization,	
regularization	for	NN
Day	7:	Tricks	and	tools	

for	NN	training

Topics	so	far

• Linear	regression
• Classification

o Logistic	regression
o Maximum	margin	classifiers,	kernel	trick
o Generative	models

• Yesterday
o Neural	networks	introduction
o Backpropagation

• Today
o Common	practices	in	NN	training	– optimization	and	
regularization

o Special	architectures	– CNNs,	RNNs,	encoder-decoder

2

Linear	classifier

• Biological	analogy:	
single	neuron	– stimuli		
reinforce	synaptic	
connections

𝑥"

𝑥#

𝑥$

𝑥%

1

𝑓 𝒙 = 𝟏 𝒘. 𝒙 + 𝑤/ ≥ 0
⋯

3

Feed-Forward	Neural	Networks

𝑣"

𝑣#

𝑣$

𝑣%
𝑢

𝑣

𝑣567

Architecture:

• Directed	Acyclic	Graph	G(V,E).	Units	(neurons)	indexed	by	vertices	in	V.
• “Input	Units”	𝑣" …𝑣% ∈ 𝑉	:	no	incoming	edges	have	value	𝑜 𝑣= = 𝑥=
• Each	edge	𝑢 → 𝑣	has	weight	𝑾[𝑢 → 𝑣]

• Pre-activation	 𝑎[𝑣] = ∑ 𝑾[𝑢 → 𝑣]�
6→E∈F 𝑜[𝑢]

• Output	value	 𝑜 𝑣 = 𝜎(𝑎 𝑣)
• “Output	Unit”	𝑣567 ∈ 𝑉,	𝑓J 𝒙 = 𝑎 𝑣567

𝑥"

𝑥#

𝑥$

𝑥%

⋯

𝑓K L,F ,N,𝑾 𝒙

4Figure	credit:	Nati Srebro

Feed	forward	fully	connected	network

5

• 𝐿	hidden	layers	with	layer	𝑙 havinb	𝑑R hidden	units
• Parameters:

• for	each	intermediate	layer	𝑾 𝒍 ∈ ℝ%UVW	×%U	where	𝑑/ = 𝑑
• final	layer	weights	𝒘(𝑳Z𝟏) ∈ ℝ%[

• For	2-hidden	layer	𝑓𝑾 𝒙 = 𝒘(𝟑)]𝜎 𝑾 𝟐 𝜎 𝑾 𝟏 𝒙 .	More	generally,	

𝑓𝑾 𝒙 = 𝒘(𝑳Z𝟏)]𝜎 𝑾 𝑳_𝟏 …𝜎 𝑾 𝟐 𝜎 𝑾 𝟏 𝒙

!"
!#
!$

!%
&

!

!'()

*"
*#
*$

*%
⋯

,- . = 0 1 2,#(.)

," . = 5 - 6 .

,# . = 5 - 7 ,"(.)

Neural	networks as	hypothesis	class

• Hypothesis	class	specified	by:
o Graph	G(V,E)
o Activation	function	𝜎
o Weights	𝐖,	with	weight	W[𝑢 → 𝑣] for	each	edge	𝑢 → 𝑣 ∈ 𝐸

ℋ = 	𝑓K L,F ,N,𝐖	|	𝑾: 𝐸 → ℝ	
• Expressive	power:	

	𝑓	 	𝑓	𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑡𝑖𝑚𝑒	𝑇	} ⊆ ℋK L,F ,p=qr	 with	 𝐸 = 𝑂 𝑇#
o demo

• Computation:	empirical	risk	minimization

𝐖t = argmin
J

{ℓ 𝑓K L,F ,N,𝑾 𝒙 𝒊 , 𝑦 =
�

=�"
o Highly	non-convex	problem,	even	if	𝑙𝑜𝑠𝑠 ℓ	is	convex
o Hard	to	minimize	over	even	tiny	neural	networks	are	hard

§ If	not	supervised	ML	will	be	solved

Based	on	architecture	and	fixed

6

SGD

𝑾� = argmin
J

{ℓ 𝑓	𝑾 𝒙 𝒊 , 𝑦 =
�

=�"

• Stochastic	gradient	descent:	for	random	 𝒙 𝒊 , 𝑦 = ∈ 𝑆
𝑾(7Z") ← 𝑾 7 − 𝜂(7)𝛻ℓ 𝑓	𝑾 𝒕 𝒙 𝒊 , 𝑦 =

(Even	though	its	not	convex)

• How	to	calculate		𝛻ℓ 𝑓𝑾 𝒕 𝒙 𝒊 , 𝑦 = ?
Backpropagation	à chain	rule	+	dynamic	programming

§ Computing	gradients	as	easy	(or	hard)	as	computing	the	
function	itself

§ What	about	memory?
§ Once	you	define	gradients	over	simple	operations,	can	easily	
compose	to	get	complex	gradients

q Idea	behind	autograd

Back-Propagation
• Efficient	calculation	of	𝛻𝑾ℓ(𝑓𝑾 𝒙 , 𝑦)	using	chain	rule

• Forward	propagation: calculate	activations	𝑎[𝑣] and	outputs	𝑜[𝑣]
• Backward	propagation:	calculate	𝑧[𝑣] ≝ �ℓ �𝑾 𝒙 ,�

�𝒂[E]

• Gradient	descent	update:	using	�ℓ �𝑾 𝒙 ,�
�J � 6→E

= 𝑧 𝑣 𝑜 𝑢

𝑾 7Z" 𝑢 → 𝑣 = 𝑾 7Z" 𝑢 → 𝑣 − 𝜂 7 �ℓ �𝑾 𝒙 ,�
�J � 6→E

𝑎[𝑣] = { 𝑾(7)[𝑢 → 𝑣]
�

6→E∈F

𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝑧 𝑣567 = ℓ′(𝑎 𝑣567 , 𝑦)

𝑧 𝑢 = 𝜎′(𝑎 𝑢){𝑾 𝒕 𝑢 → 𝑣 𝑧[𝑣]	
�

6→E

!"
!#
!$

!%
&

!

!'()

*"
*#
*$

*%

⋯

,- .,0 ,1,2 3

Putting	it	All	Together:	SGD	on	Neural	Networks
• Initialize	𝑾(/) randomly	(small,	but	not	zero)
• For	𝑡 = 1,2, …:

o Sample	 𝒙 𝒊 , 𝑦 = (from	tanning	set	S)

o Calculate	the	gradient	𝒈 𝒕 using	backpropagation	
§ Forward	pass:	traverse	the	graph	forward	(starting	from	input	

units)	and	calculate	activation	and	output	values

𝑎 𝑣 = { 𝑾 7 𝑢 → 𝑣
�

6→E∈F

𝑜 𝑢 							and								𝑜 𝑣 = 𝜎 	𝑎 𝑣 	

§ Backward	pass:	Calculate	gradients	with	respect	to	activations	
by	scanning	the	graph	backward starting	with	output	note

𝑧 𝑣567 =
𝜕ℓ 𝑎[𝑣567], 𝑦 =

𝜕𝑎 𝑣567
	and		𝑧 𝑢 = 𝜎′(𝑎 𝑢) { 𝑾 𝒕 𝑢 → 𝑣 𝑧[𝑣]	

�

6→E∈F

§ Output	gradients	with	respect	to	weights

𝒈 𝒕 𝑢 → 𝑣 =
𝜕ℓ 𝑓𝑾 𝒕 𝒙 𝒊 , 𝑦 =

𝜕𝑾 𝑢 → 𝑣
= 𝑧 𝑣 𝑜 𝑢

o Update	weights: 𝑾(7Z") = 𝑾(7) − 𝜂 7 𝒈 𝒕

History	of	Neural	Networks
• 1940s-60s:

o Inspired	by	learning	in	the	brain,	and	as	a	model	for	the	brain	(Pitts,	Hebb,	and	others)
o Various	models,	directed	and	undirected,	different	activation	and	learning	rules

• 1960-70s:	
o Perceptron	Rule	(Rosenblatt),	Multilayer	perceptron	(Minksy and	Papert):	that	many	properties	of	images	

could	not	be	determined	by	(single	layer)	perceptron.	Caused	a	decline	of	activity	in	neural	networks.

• 1970s-early	1980s:
o Backpropagation	(Werbos 1975),	practical	backprop (Rumelhart,	Hinton	et	al	1986)	and	SGD	(Bottou)
o Initial	empirical	success

• 1980s-2000s:
o Lost	favor	to	implicit	linear	methods	like	SVM	and	boosting	with	convex	losses	and	convex	relaxations
o Also	time	when	much	of	tools	in	todays	deep	learning	is	discovered	–CNNs,	LSTMs,	etc.	

• 2000-2010s:
o revival	of	interest	(CIFAR	groups)
o layer-wise	pre-training	of	deep-ish nets	were	being	trainined
o progress	in	speech	and	vision	with	deep	neural	nets

• 2010s:
o Computational	advances	(and	also	a	few	new	tricks)	allow	training	large	networks
o 2012:	Krizhevsky et	al.	win	ImageNet
o Empirical	success	and	renewed	interest

10

History	of	Neural	Networks
• 1940s-60s:

o Inspired	by	learning	in	the	brain,	and	as	a	model	for	the	brain	(Pitts,	Hebb,	and	others)
o Various	models,	directed	and	undirected,	different	activation	and	learning	rules

• 1960-70s:	
o Perceptron	Rule	(Rosenblatt),	Multilayer	perceptron	(Minksy and	Papert):	that	many	properties	of	images	could	not	be	determined	by	

(single	layer)	perceptron.	Caused	a	decline	of	activity	in	neural	networks.

• 1970s-early	1980s:
o Backpropagation	(Werbos 1975),	practical	backprop (Rumelhart,	Hinton	et	al	1986)	and	SGD	(Bottou)
o Initial	empirical	success

• 1980s-2000s:
o Lost	favor	to	implicit	linear	methods	like	SVM	and	boosting	with	convex	losses	and	convex	relaxations
o Also	time	when	much	of	tools	in	todays	deep	learning	is	discovered	–CNNs,	LSTMs,	etc.	

• 2000-2010s:
o revival	of	interest	(CIFAR	groups)
o layer-wise	pre-training	of	deep-ish nets	were	being	trainined
o progress	in	speech	and	vision	with	deep	neural	nets

• 2010s:
o Computational	advances	(and	also	a	few	new	tricks)	allow	training	large	
networks

o 2012:	Krizhevsky et	al.	win	ImageNet
o Empirical	success	and	renewed	interest

11

So	what	changed?
• Large	datasets

o Computer	vision:	classification	datasets	àCIFAR	~60K	images,	ImageNet	
~14M	images,	~1M	annotations!

§ similarly	large	datasets	for	other	vision	tasks	like	segmentation,	detection	etc.	
o Game	playing:	Go,	Chess	à can	simulate	as	much	data	as	allowed	by	
compute	power

o NLP	and	speech	(ask	Karl,	I	don’t	know!)
o Other	domains	again	data	collection	and	storage	is	much	cheaper

• Advances	in	computation
o Advancement	in	GPU	technology,	
o SGD	training	on	GPUs	for	#weights	≈ #samples	≈ 10�	~	10� or	more
o Optimization	technology:	momentum,		AdaGrad,	normalization
o What’s	constant	since	the	50s:	training	runtime	is	about	10-14	days!

• Other	tools/tricks
o Non-saturating	activation:	𝜎 𝑧 = 𝑧 Z = 𝑅𝑒𝐿𝑈 𝑧 = max 0, 𝑧
o Newish	regularization	techniques like	dropout
o Pre-training	leading	to	efficient	transfer	learning

12

Optimization

13

Neural	network	training

𝑾� = argmin
J

{ℓ 𝑓	𝑾 𝒙 𝒊 , 𝑦 =
�

=�"

• Stochastic	gradient	descent:	for	random	 𝒙 𝒊 , 𝑦 = ∈ 𝑆
𝑾(7Z") ← 𝑾 7 − 𝜂(7)𝛻ℓ 𝑓𝑾 𝒕 𝒙 𝒊 , 𝑦 =

(Even	though	its	not	convex)

• Use	backprop to	calculate	𝛻ℓ 𝑓𝑾 𝒕 𝒙 𝒊 , 𝑦 = !

• What	could	go	wrong?
• What	are	the	other	options?

15

SGD	common	pitfalls

• For	some	random	sample	 𝒙, 𝑦 ,	you	write	a	program	to	compute	
𝛻𝑾ℓ 𝑓𝑾 𝒙 , 𝑦 !

• What	is	the	first	mistake	that	can	happen?
o Wrong	gradient	program!
o How	to	fix/avoid?
o Write	a	numerical	gradient	checker	(hopefully	without	bugs).	

o Recall	𝛻�𝑓 𝑤 𝑖 = �� �
���

= lim
�→/

� �Z� � _� �
�

= lim
�→/

� �Z� � _� �_� �
#�

o GradCheck 𝑓, grad�, 𝑤 :
§ 𝑔¨©ª«¬ = grad� 𝑤
§ for	𝑖 = 1,2, …

q 𝑔r6­ ®=¯[𝑖] =
� �Z� � _� �_� �

#�

q if		𝑙𝑎. 𝑛𝑜𝑟𝑚 𝑔¨©ª«¬[𝑖] − 𝑔r6­ ®=¯[i] > 𝜖: 𝐞𝐫𝐫𝐨𝐫

16

Gradient	computation

• For	some	random	sample	 𝒙, 𝑦 ,	you	write	a	program	to	compute	
𝛻𝑾ℓ 𝑓𝑾 𝒙 , 𝑦 !

• What	is	the	first	mistake	that	can	happen?
o Wrong	gradient	program!
o How	to	fix/avoid?
o Write	a	numerical	gradient	checker	(hopefully	without	bugs).	
Recall	𝛻�𝑓 𝑤 𝑖 = �� �

���
= lim

�→/
� �Z� � _� �

�
= lim

�→/
� �Z� � _� �_� �

#�

o GradCheck 𝑓, grad�, 𝑤 :
§ 𝑔¨©ª«¬ = grad� 𝑤
§ for	𝑖 = 1,2, …

q 𝑔r6­ ®=¯[𝑖] =
� �Z� � _� �_� �

#�

q if		𝑙𝑎. 𝑛𝑜𝑟𝑚 𝑔¨©ª«¬[𝑖] − 𝑔r6­ ®=¯[i] > 𝜖: 𝐞𝐫𝐫𝐨𝐫

Good	idea	to	add	
whenever	you	program	
gradient	computation	

manually

17

SGD	common	pitfalls
• For	some	random	sample	 𝒙, 𝑦 ,	you	write	a	program	to	compute	
𝛻𝑾ℓ 𝑓𝑾 𝒙 , 𝑦 !

• What	is	the	first	mistake	that	can	happen?
o Wrong	gradient	program!	àWrite	a	numerical	gradient	checker

• Less	obvious	mistake!	What	is	the	order	of	samples	we	get	in	SGD?
o Does	it	matter?	Can’t	we	just	cycle	through	the	data?

§ What	happens	if	all	the	cats	are	stored	first	and	then	all	the	dogs?
o Ideally:	Use	fresh	sample	at	each	iteration 𝑥, 𝑦 ∼ 𝒟

§ In	practice,	we	have	to	reuse	samples	from	training	set
o Ok!	Can	we	just	sample	independently	at	each	iteration	(with	
replacement)?
§ Better:	sample	without	replacements,	but	remember	to	
randomly	permute	then	cycle

§ Best:	For	each	pass	over	data	(“epoch”),
use	different	random	order

18

SGD	common	pitfalls
• For	some	random	sample	 𝒙, 𝑦 ,	you	write	a	program	to	compute	
𝛻𝑾ℓ 𝑓𝑾 𝒙 , 𝑦 !

• What	is	the	first	mistake	that	can	happen?
o Wrong	gradient	program!	àWrite	a	numerical	gradient	checker

• Less	obvious	mistake!	What	is	the	order	of	samples	we	get	in	SGD?
o Does	it	matter?	Can’t	we	just	cycle	through	the	data?

§ What	happens	if	all	the	cats	are	stored	first	and	then	all	the	dogs?
o Ideally:	Use	fresh	sample	at	each	iteration 𝑥, 𝑦 ∼ 𝒟

§ In	practice,	we	have	to	reuse	samples	from	training	set
o Ok!	Can	we	just	sample	independently	at	each	iteration	(with	
replacement)?
§ Better:	sample	without	replacements,	but	remember	to	randomly	
permute	then	cycle

§ Best:	for	each	pass	over	data	(“epoch”),	use	different	random order

Optimization

• Common	problems	arising	from	models
o Gradient	clipping	
o Gradient	explosion

• SGD	“knobs”	in	NN	training	
o Initialization
o Step-size	
o SGD	variants

§ Momentum	for	SGD
§ Adaptive	variants	of	SGD

o Mini-batch	SGD
o Batch	normalization

19

Back-Propagation

• Efficient	calculation	of	𝛻𝑾ℓ(𝑓𝑾 𝒙 , 𝑦)	using	chain	
rule

𝑎[𝑣] = { 𝑾(7)[𝑢 → 𝑣]
�

6→E∈F

𝑜[𝑢]

𝑜 𝑣 = 𝜎(𝑎 𝑣)

𝛿 𝑣567 = ℓ′(𝑎 𝑣567 , 𝑦)

𝛿 𝑢 = 𝜎′(𝑎 𝑢){𝑾 𝒕 𝑢 → 𝑣 𝛿[𝑣]	
�

6→E

!"
!#
!$

!%
&

!

!'()

*"
*#
*$

*%

⋯

,- .,0 ,1,2 3

𝜎º 𝑧 =
d𝜎 𝑧
d𝑧

Figure	credit:	Nati Srebro

Activation	functions
• Sigmoid 𝜎 𝑧 = "

"Z»¼½ _¾

• Tanh 𝜎 𝑧 = "_»¼½ _¾
"Z»¼½ _¾

o The	good:	
§ squash	outputs	to	a	fixed	range
§ no	gradient	explosion	from	
repeatedly	multiplying	𝑾 𝒍

o The	bad
§ gradient	𝜎′(𝑧) is	nearly	zero	
for	most	values	of	𝑧

• ReLU 𝜎 𝑧 = max(0, 𝑧)
o Avoids	gradient	saturation	(in	part),	
but	can	lead	to	gradient	explosion	
in	some	architectures	(e.g.,	RNNs)

§ Gradient	clipping	- 𝑔 7 = max(𝑔 7 , 𝐺Àª¼)

21

Activation	functions

• If	during	SGD	updates,	a	ReLU unit	gets	to	a	state	where	
for	all	data	points,	the	activations	is	0,	then	the	unit	
never	recovers	from	0	gradient
• Some	variants	of	ReLU

o Leaky	ReLU:	𝜎 𝑧 = max(𝛼𝑧, 𝑧) where	𝛼 > 1

o Exponential	ReLU 𝜎 𝑧 = Â𝑧																													if		𝑧 ≥ 0
𝛼 exp 𝑧 − 1 			if	𝑧 < 0

22

Optimization

• Common	problems	arising	from	models
o Gradient	clipping	
o Gradient	explosion

• SGD	“knobs”	in	NN	training	
o Initialization
o Step	size/learning	rate	
o SGD	variants

§ Momentum	for	SGD
§ Adaptive	variants	of	SGD

o Mini-batch	SGD
o Batch	normalization

23

Knob	1:	Initialization

24

Non-convex	objective:	initialization	plays	a	crucial	role

• Can	we	initialize	all	weights	to	0?

• Random	initialization:	Initialize	all	weights	with	small	random	real	numbers,	
e.g.,	Gaussian	with	mean	zero,	𝒩 0,0.01

o Consider	a	node	𝑣 with	𝑛 incoming	weights	𝑤=
o Assume	parent	nodes	are	also	mean	zero.
What	is	variance	of	activation	𝑎 𝑣 at	node	𝑣	
with	incoming	weights	𝑤= ∼ 𝒩 0,0.01 ?

𝑢"

𝑢#

𝑢$

𝑢r

𝑣

𝑤"
𝑤#
𝑤$

𝑤r

𝑣𝑎𝑟 𝑎 𝑣 = 𝑣𝑎𝑟 ∑ 𝑤=�
= 𝑢= =

#𝑝𝑎𝑟𝑒𝑛𝑡𝑠. 𝑣𝑎𝑟 𝑢= 𝑣𝑎𝑟 𝑤=

Knob	1:	Initialization

• Xavier	initialization:	scale	the	std-dev	to	normalize	the	variance	in	each	
node
o if	node	𝒗 has	𝒏 incoming	weights,	
each	incoming	weight	gets		
random	initialization	of	𝒩 0, 𝜎#/𝑛

o This	assumes	parent	nodes	are	zero	mean
o what	values	can	parent	nodes	take	after	activation?

𝑜 𝑢 = 𝜎(𝑎[𝑢])
§ was	proposed	for	zero	mean	activations:	
not	satisfied	by	ReLUs

• Kaiming initialization: specifically	for	ReLUs.	

• On	avg.	we	will	have	half	of	the	units	active,	so	initialize	incoming	
weights	of	node	𝑣 with	𝒩 0,2𝜎#/𝑛

25

𝑢"

𝑢#

𝑢$

𝑢r

𝑣

𝑤"
𝑤#
𝑤$

𝑤r

𝑢"

𝑢#

𝑢$

𝑢r

𝑣

𝑤"
𝑤#
𝑤$

𝑤r

Knob	2:	Step	size/learning	rate

Learning	rate/step	𝜂7	size	is	the	most	important	parameter	to	tune
• Theory	from	convex	optimization: for	SGD	decay	the	learning	rate	with	
𝑡 as	≈ "

ÊZ7
à Use	only	as	heuristic	– does	not	extent	for	non-convex	function

Figure	credit:	Lecun et	al.	(1996),	Andrej	Karpathy,	Greg	Shaknarovich

Knob	2:	Step	size/learning	rate

Learning	rate/step	size	𝜂7 is	the	most	important	parameter	to	tune
• In	practice:	some	degree	of	babysitting

o start	with	a	reasonable	step	size,
𝜂7 = 0.01

o monitor	validation/training	loss
o drop	𝜂7	(typically	1/10)	when	
learning	appears	stuck

• Tips
o wait	a	bit	before	dropping;
o If	monitoring	training	loss,

§ calculating	loss	on	full	dataset	can	be	expensive
§ instead	use	moving	average	from	SGD	iterations

o Crashes	due	to	NaNs etc.	often	due	to	𝜂7

Figure	credit:	Larson	et	al.	

Knob	3:	Variants	of	SGD

𝑾� = argmin
J

{ℓ 𝑓	𝑾 𝒙 𝒊 , 𝑦 =
�

=�"

• Stochastic	gradient	descent:	for	random	 𝒙 𝒊 , 𝑦 = ∈ 𝑆
𝑾(7Z") ← 𝑾 7 − 𝜂(7)𝛻ℓ 𝑓𝑾 𝒕 𝒙 𝒊 , 𝑦 =

• optim.SGD(model.parameters(),	lr =	0.01)

• Two	variants	of	SGD	are	commonly	used:
o Momentum	

§ optim.SGD(model.parameters(),	lr =	0.01,	momentum=0.9)
o Adaptive	step	sizes	

§ Adagrad: optim.Adagrad(model.parameters(),	lr =	0.01)
§ Adam:	optim.Adam(params, lr=0.001, betas=(0.9, 0.999))

28

Knob	3a:	Momentum	for	SGD
• S(GD)	have	trouble	navigating	areas	where	the	curvature	is	steeper	in	
one	dimension	than	the	other
o ends	up	oscillating	around	the	slopes	and	makes	slow	progress

• Fix:	Momentum	term

𝑊 7Z" = 𝑊 7 − 𝜂 7 𝛻ℓ 𝑓J 𝑥	 , 𝑦
						+𝛾 7 𝑊 7 −𝑊 7_"

o reduces	updates	along	directions	
that	change	gradients	frequently

o increases	updates	along	directions	
where	the	gradients	are	consistent

o dampens	oscillations

29Figure	credit:	Andrej	Karpathy,	Greg	Shaknarovich

Knob	3b:	Adaptive	step	sizes

𝑾 7Z" 𝑢 → 𝑣 = 𝑾 7 𝑢 → 𝑣 − 𝜂7𝒈 7 𝑢 → 𝑣
• All	weights	have	same	learning	rate

AdaGrad: Reduce	learning	rate	proportional	to	updates.	

𝒔 𝒕 𝑢 → 𝑣 = 𝒔 𝒕_𝟏 𝑢 → 𝑣 + 𝒈 7 [𝑢 → 𝑣]
#

𝑾 7Z" 𝑢 → 𝑣 = 𝑾 7 −
𝜂7

𝒔 𝒕 𝑢 → 𝑣� + 𝜖
𝒈 7 𝑢 → 𝑣

• Rarely	used,	reduces	learning	rate	too	aggressively

RMSprop: Adagrad +	forgetting	

𝒔 𝒕 𝑢 → 𝑣 = 𝛿𝒔 𝒕_𝟏 𝑢 → 𝑣 + (1 − 𝛿) 𝒈 7 [𝑢 → 𝑣]
#

𝑾 7Z" 𝑢 → 𝑣 = 𝑾 7 −
𝜂7

𝒔 𝒕 𝑢 → 𝑣� + 𝜖
𝒈 7 𝑢 → 𝑣

Knob	3b:	Adaptive	step	sizes

𝑾 7Z" 𝑢 → 𝑣 = 𝑾 7 − 𝜂7𝒈 7 𝑢 → 𝑣
Adam: RMSprop with	momentum

𝒎 𝒕 𝑢 → 𝑣 = 𝛽"𝒎 𝒕_𝟏 𝑢 → 𝑣 + 1 − 𝛽" 𝒈 7 𝑢 → 𝑣

𝒔 𝒕 𝑢 → 𝑣 = 𝛽#𝒔 𝒕_𝟏 𝑢 → 𝑣 + (1 − 𝛽#) 𝒈 7 [𝑢 → 𝑣]
#

𝑾 7Z" 𝑢 → 𝑣 = 𝑾 7 −
𝜂7

𝒔 𝒕 𝑢 → 𝑣� + 𝜖
𝒎 7 𝑢 → 𝑣

• Most	commonly	used	adaptive	method.
o optim.Adam(params, lr=0.001, betas=(0.9, 0.999))

• Good	first	step:
o Pick	one	of	(SGD+momentum)	or	(Adam)

Knob	4:	Mini-batches

• Instead	of	using	a	single	example	to	obtain	gradient	estimate,	use	
multiple	examples:

• Pick	𝑚 examples	𝐵 7 = 𝑖"
7 , 𝑖#

7 , … , 𝑖­
7 randomly

𝑔 7 =
1
𝑚

{ 𝛻�ℓ 𝑓𝑾 � 𝒙 𝒊 , 𝑦 =
�

=∈Ñ �

J At	each	iteration:	better	gradient	estimate,	better	(more	
accurate)	update	step

L But	at	the	cost	of	𝑚 backprops per	update

Allows	parallelization,	pipelining,	efficient	memory	access

Knob	5:	(Mini)Batch	Normalization

𝑜[𝑣] = 𝜎 𝑐E
𝑎[𝑣] − 𝔼t 𝑎[𝑣]

Var� 𝑎[𝑣]� + 𝑏E

• Different	parametrization	of	same	function	class
• SGD	(or	AdaGrad or	ADAM)	on	 𝑾, 𝑐E , 𝑏E
• Greatly	helps	with	optimization	in	practice

Calculated	on
minibatch

Slide	credit:	Nati Srebro

34

Bonus	knob:	warm	start/pre-training

• Suppose	we	want	to	continue	training	for	more	epochs
o save	snapshots	of	weights	and	resume	again
o need	to	carefully	initialize	learning	rate	now

• Also,	can	use	weights	pre-trained	from	another	task	as	
initialization	for	fine	tuning	a	new	task
o e.g,	take	features	from	network	trained	for	imagenet image	
classification	and	just	change	the	last	layer	for	new	task

𝑣"

𝑣#

𝑣$

𝜙 𝑥 "
𝑥"

𝑥#

𝑥%

⋯

𝑣567⋯⋯
𝜙 𝑥 Õ

35

Bonus	knob:	warm	start/pre-training

• Suppose	we	want	to	continue	training	for	more	epochs
o save	snapshots	of	weights	and	resume	again
o need	to	carefully	initialize	learning	rate	now

• Also,	can	use	weights	pre-trained	from	another	task	as	
initialization	for	fine	tuning	a	new	task
o e.g,	take	features	from	network	trained	for	imagenet image	
classification	and	just	change	the	last	layer	for	new	task

𝑣"

𝑣#

𝑣$

𝜙 𝑥 "
𝑥"

𝑥#

𝑥%

⋯

𝑣567⋯
𝜙 𝑥 Õ

Be	careful	with	step	
size/learning	rate
-⋯

Neural	Network	Optimization

• Main	technique:	Stochastic	Gradient	Descent
• Back	propagation:	allows	calculating	gradients	
efficiently
• No	guarantees: not	convex,	can	take	a	long	time,	but:

o Often	still	works	fine,	finds	a	good	local	minimum

• Over	parameterization:	it	seems that	using	LARGE	
network	(sometimes	with	#weights≫#sameples)	
helps	optimization
o Remember	lecture	2,	where	doing	this	was	a	bad	idea!!
o Not	well	understood

Optimization
• Check

o Add	gradCheck()
o Randomly	permute	data	for	SGD	sequence

• Choose	activations	to	avoid
o Gradient	clipping	
o Gradient	explosion

• SGD	“knobs”	in	NN	training	
o Initialization	à Kaiming/Xavier,	or	warm	start	initialization
o Step	size/learning	rate	à very	important	to	tune	based	on	training/validation	loss
o SGD	variants

§ Momentum	for	SGD	à usually	added	with	SGD	(default	parameter	
momentum=0.9	often	works	well)

§ Adaptive	variants	of	SGD	à common		alternative	to	SGD+momentum is	
Adam	with	𝛽# ≫ 𝛽", 𝑒. 𝑔. , 𝛽# = 0.999, 𝛽" = 0.9

o Mini-batch	SGD	à ~128 common
o Batch	normalization	à use	batch	normalization

37

Regularization

38

Using	“Too	Large”	Networks

• It	seems	that	using	LARGE	network	helps	optimization.
• Typically,	#weight	≈≥ sample	size	

o Good	generalization	even	without	regularization
o Not	well	understood

?

Figure	credit:	Behnam	Neyshabur and	Nati Srebro

Using	“Too	Large”	Networks

• It	seems	that	using	LARGE	network	helps	optimization.
• Typically,	#weight	≈≥ sample	size	

o Good	generalization	even	without	regularization
o Not	well	understood

Figures	from	Neyshabur et	al.	2015

Regularization	

• It	seems	that	using	LARGE	networks	helps	optimization.
• Typically,	#weight	≈≥ sample size	

o Good	generalization	even	without	regularization
o Not	well	understood

• Still	some	regularization	techniques	are	commonly	used
o Weight	decay
o Dropout
o Data	augmentation

Regularization	- ℓ# (weight	decay)	

• Minimize	Regularized	ERM

argmin
𝑾

𝐿Ù 𝑓𝑾 +
𝜆
2
𝑾 #

• Backpropagation	is	the	same
o objective:

1
𝑁
{ ℓ 𝑓𝑾 𝒙 𝒊 , 𝑦 = +

𝜆
2
𝑾 #

�

=

o gradient	estimate:
ℓ 𝑓𝑾 𝒕 𝒙 𝒊 , 𝑦 = + 𝜆𝑾 7 = 𝒈 𝒕 + 𝜆𝑾 7

o updates:
𝑾 7Z" = 𝑾 7 − 𝜂7 ⋅ 𝒈 𝒕 + 𝜆𝑾 7 = 1 − 𝜂7𝜆 𝑾 7 − 𝜂7𝒈 𝒕

Dropouts

• At	each	step	of	SGD:
o Randomly (temporarily)	remove	𝑝 fraction	of	the	units
o Keep	weights	between	remaining	units
o Update	weights	between	remaining	units	using	backprop
(as	if	removed	units	don’t	exist)

• For	prediction:
o Use	all	units	and	weights

𝑣"

𝑣#

𝑣$

𝑣%
𝑢

𝑣

𝑣567

𝑥"

𝑥#

𝑥$

𝑥%

⋯

Learn	robust	
representations

Slide	credit:	Nati Srebro

44

Data	augmentation

• Augment	training	data	with	invariances	we	know	exists	
for	task
o e.g.,	image	classification

§ translation	invariance
§ horizontal	invariance
§ rotation	invariance	(some	cases)
§ scale	invariance

• Augment	training	data	to	
have	noise/other	artifacts	in	feature	space	
o e.g.,	color	jitter,	random	noise

• Super	effective	in	many	
computer	vision	tasks

Figures	credit:	Andrej	Karpathy

Summary

45

Optimization
• Check

o Add	gradCheck()
o Randomly	permute	data	for	SGD	sequence

• Choose	activations	to	avoid
o Gradient	clipping	
o Gradient	explosion

• SGD	“knobs”	in	NN	training	
o Initialization	à Kaiming/Xavier,	or	warm	start	initialization
o Step	size/learning	rate	à very	important	to	tune	based	on	training/validation	loss
o SGD	variants

§ Momentum	for	SGD	à usually	added	with	SGD	(default	parameter	
momentum=0.9	often	works	well)

§ Adaptive	variants	of	SGD	à common		alternative	to	SGD+momentum is	
Adam	with	𝛽# ≫ 𝛽", 𝑒. 𝑔. , 𝛽# = 0.999, 𝛽" = 0.9

o Mini-batch	SGD	à ~128 common
o Batch	normalization	à use	batch	normalization

46

Regularization

• Data	augmentation	– very	effective
o Think	of	what	is	the	right	data	augmentation	for	your	problem

• Weight	decay	– tune	step	sizes/	𝜆	parameter

• Dropout	– usually	very	useful
• Choice	of	architecture	affects	validation	
performance/generalization!

o why?

• Many	optimization	choices	affect	validation	performance—unlike	
convex	optimization	problems	with	a	unique	global	minimum,	
where	optimization	algorithm	only	changes	the	
speed/computation	of	training	and	not	generalizationà Not	well	
understood

o Keep	in	mind	while	making	choices	in	previous	slides

47

