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Topics so far

* Linear regression

* Classification
o nearest neighbors, decision trees, logistic regression

* Yesterday
o Maximum margin classifiers, Kernel trick

* Today
o Quick review of probability
o Generative models — naive Bayes classifier
o Structured Prediction — conditional random fields



Several slides adapted from David Sontag who in turn
credits Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and
Vibhav Gogate



Bayesian/probabilistic learning

» Uses probability to model data and/or quantify
uncertainties in prediction
o Systematic framework to incorporate prior knowledge
o Framework for composing and reasoning about uncertainity

o What is the confidence in the prediction given observations
so far?

* Model assumptions need not hold (and often do not
hold) in reality

o even so, many probabilistic models work really well in
practice



Quick overview of random variables

Random variables: A variable about which we (may) have uncertainty
o e.g., W = weather tomorrow, or T = temperature

For all random variables X domain X of X is the set of values X can take

Discrete random variables: probability distribution is a table

P(T) P(W)
T P w P
wam | 0.5 sun 0.6
cod [ 05 rain 0.1
fog 0.3
meteor 0.0

o Fordiscrete RVX, Vx € X,Pr(X =x) =20 and ), e Pr(X =x) =1

Pr(W = sun) = 0.6

Continuous random X with domain X € R
o Cumulative distribution function Fy(t) = Pr(X < t)
= again Fy(t) € [0,1] and also Fy(—) = 0, Fxy(+w) =1

o Probability density function (if exists) Py (t) =

dF x(t)
dt

= |s always positive, but can be greater than 1



Quick overview of random variables

* Expectation
Discrete RV Elf(X)] =X, ex f(x) Pr(X = x)

* Mean E[X]
e Variance E[(X — E[X])?]



Joint distributions

* Joint distribution of random variables X4, X5, ..., X is defined for
all x; € X1,x, € X5, ..., x5 € X4
p(xXq1, X9, ey Xg) = Pr(Xy = x4, Xy = X9, e, Xg = Xx4)

P(T,W)

T w P
hot sun | 04
hot | ran | 0.1

cold | sun | 0.2

cold | ran | 0.3

 How may numbers needed for d variables each having domain of
K values?

o K%11 Too many numbers, usually some assumption is made to
reduce number of probabilities



Marginal distribution

e Sub-tables obtained by elimination of variables

* Probability distribution of a subset of variables

}3(7114f)
T W P
hot sun 04
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(T)
T P
hot 05
cold 0.5
P(H')
W P
sun 06
rain 04

P(X1=mz) = Z P(X1 =x1, X0 = x5)
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Marginal distribution

e Sub-tables obtained by elimination of variables
* Probability distribution of a subset of variables

* Given: joint distribution
p(x1, X9, e, Xg) = Pr(Xy = x1, X5 = %9, .., Xg = Xx4)
forx; € Xq,x, € Xy, ..., x5 € Xg4

* Say we want get a marginal of just x4, x,, xc,
that is we want to get
p(xq, X2, %4) = Pr (Xq = x1,X; = Xp, Xy = Xy4)

* This can be obtained by mariginalizing

N S Y S

Z3€EX3 Zs€Xs Zg€EXg



Conditioning

* Random variables X and Y with domains X and Y
Pr(X=x,Y =vy)

Pr(X =x|Y =y) =

* Probability
distributions of
subset of
variables with
fixed values of
others

P(W|T)

Conditional Distributions
- P(W|T = hot)

Pr(Y =y)

Joint Distribution

P(T, H)
W P T W -
sun 0.8 hot sun 04
rain 0.2 hot | rain 0.1
P(Hlfl’ —_ COld) cold sun 02
cold rain 0.3
w P
sun 04
rain 06




Conditioning

* Random variables X and Y with domains X and Y

Pr(X =x,Y =
Pr(X =x|Y =y) = r(Pr(sz ) 2

* Conditional expectation

EFCOIY =y] = ) fOOPr(X = x|Y =)

XEX

* h(y) = E[f(X)|Y = y]is a function of y

* h(Y) is a random variable with distribution given by
Pr(h(Y) = h(y)) = Pr(Y = y)
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Product rule

* Going from conditional distribution to joint distribution
Pr(X =x,Y =y)
PriX=x|Y =y) =

Pr(Y =y)
|

PriX=x,Y=y)=Pr(Y =y)Pr(X =x|Y =y)
 What about thee variables?
Pr(X; = x1,X; = x5, X3 = x3) =
Pr(X; = x1) Pr(X; = x2|X; = x1) Pr(X5 = x3]|X; = x1, X5 = x3)

* More generally,
Pr(Xl — xl,XZ — XZ, ...,Xd — xd)

d
= Pr(X; = x1) 1_[ Pr(Xy = xp|Xk—1 = Xp—1,Xk—2 = Xg—2, ... X1 = X1)
k=2
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Optimal unrestricted classifier

C class classification problem Y = {1,2, ..., C}
Population distribution Let (x,y) ~ D

Consider the population 0-1 loss of classifier y(x)

Ff(ky)f £ Exy[1ly # 90| = Pr(y # 9(0)
cIaI:sn:l)er = Pr(x) Pr(}’ 2 Y(x)|x)

y(x)

Conditional risk
L(y|x)

Check that this is minimized for

Pr(y # 9(x0)|%) =1—Pr(y = $(x)|x) Qe iin i

Optimal unrestricted classifier or Bayes optimal classifier
y*(x) = argmax Pr(y = c|x)
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Generative vs discriminative models

* Recall optimal unrestricted predictor for following cases
o Regression+squared loss=2> f**(x) = E|y|x]
o Classification+ 0-1 loss =2 y**(x) = argmax Pr(y = c|x)
C

* Non-probabilistic approach: don't deal with probabilities, just estimate
f (x) directly to the data.
* Discriminative models: Estimate/infer the conditional density Pr(y|x)
o Typically uses a parametric model fy;,(x) of Pr(y|x)

* Generative models: Estimate the full joint probability density Pr(y, x)
o Normalize to find the conditional density Pr(y|x)
o Specify models for Pr(x, y) or [Pr(x|y) and Pr(y)]
o Why? In two slides!
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Bayes rule

* Optimal classifier
y**(x) = argmax Pr(y = c|x)
C

* Bayes rule: Pr(x,y) = Pr(y|x) Pr(x) = Pr(x|y) Pr(y)

y**(x) = argmax Pr(y = c|x)
C

Pr(x|y = ¢) Pr(y = ¢)
= argmax
% Pr(x)
= argmax Pr(x|y = c¢) Pr(y = ¢)
C
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Bayes rule

* Optimal classifier
7**(x) = argmax Pr(y = c|x)
C

= argmax Pr(x|y = c¢) Pr(y = ¢)
C

 Why is this helpful?

o One conditional might be tricky to model with prior
knowledge but the other simple

o €.g., say we want to specify a model for digit recognition

Binary -
s / I | R

= compare specifying Pr(image|digit = 1) vs
Pr(digit = 1|image)



Generative model for classification

argmax Pr(y = c|x)
C

= argmax Pr(x|y = c¢) Pr(y = ¢)
C

* C class classification with binary features
x € R%andy €{1,2, ..., C}
* Want to specify Pr(x|y) = Pr(xq, x5, ..., x4|V)
* If each of x;, x5, ..., x4 can take one of K values. How

many parameters to specify Pr(x|y)?

o C K41l Too many
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Naive Bayes assumption

Specifying Pr(x|y) = Pr(xy, x5, ..., X4|y) requires C K¢

Naive Bayes assumption:
features are independent given class y

e e.g., for two features
Pr(x1, x2|y) = Pr(x;[y) Pr(x;|y)
* more generally,

Pr(xy, X2, ..., xq|y) = Pr(x,|y) Pr(x;|y)...Pr(xq|y)
= [T=1 Pr(xx|y)
* number of parameters if each of x4, x,, ..., x4 can take one
of K values?

oCKd
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Naive Bayes classifier

* Naive Bayes assumption: features are independent given class:
Pr(xy, x2, ..., Xq|y) = Hg=1 Pr(xg|y)
 CclassesY = {1,2, ..., C} d binary feature X = {0,1}¢
* Model parameters: specify from prior knowledge and/or learn from data
o Priors Pr(y = c¢) - #parameters C — 1
o Conditional probabilities Pr(x;, = 1|y = c¢) > #parameters Cd

" if xq, %9, ..., X, takes one of K discrete values rather than binary 2
#parameters (K — 1)Cd

" if x4, X5, ..., X,y are continuous, additionally model Pr(x;|y = ¢) as
some parametric distribution, like Gaussian Pr(x,|y = ¢) ~
N (Ug ¢, 0), and estimate the parameters (uy ., o) from data

* Classifier rule:
yyp(x) = argmax Pr(xq, x,,...,x4|y = ¢) Pr(y = ¢)
¢ d
= argmax Pr(y =c) Pr(x,|y = ¢)
¢ k=1
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Digit recognizer

* Input: pixel grids

* Qutput: a digit 0-9

Slide credit: David Sontag



What has to be learned?
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Slide credit: David Sontag
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VILE for parameters of NB

* Training dataset S = {(x(i)»y(i)):i =12, ""N}

 Maximum likelihood estimation for naive Bayes with
discrete features and labels

* Assume S has iid examples
o Prior: what is the probability of observing label y

Yy 1[y(i) = C]
P p— =
r(y = c) N
o Conditional distribution:

N (i) _ (i) —
- 1lx,” =z, =C
Pr(x, = zx|Y =¢) = 2i=1 1% ui2d |




VILE for parameters of NB

* Training amounts to, for each of the classes, averaging all of
the examples together:

Pf;‘l| Y=5) P{X|V=5)

Slide credit: David Sontag
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Smoothing for parameters of NB

* Training dataset S = {(X(i):y(i)):i =12, '"’N}

* Maximum likelihood estimation for naive Bayes with
discrete features and labels

* Assume S has iid examples
o Prior: what is the probability of observing label y

2 1[3’(i) — C]
P — —
r(y = c) N
o Conditional distribution:
%1 < = 7 y® = ]
X 1[y(i) = |

Pr(x, =z |Y =c¢) =
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Smoothing for parameters of NB

* Training dataset S = {(X(i):y(i)):i =12, '"’N}

* Maximum likelihood estimation for naive Bayes with
discrete features and labels

* Assume S has iid examples
o Prior: what is the probability of observing label y

. () —
Pr(y =c¢c) = 2 1[y C]

N
o Conditional distribution:
5 1[0 = 5y0 =] +

Pr(xk — Zkly — C) — Zi 1[y(l) — C]
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Smoothing for parameters of NB

* Training dataset S = {(x(i)»y(i)):i =12, ""N}

 Maximum likelihood estimation for naive Bayes with
discrete features and labels

* Assume S has iid examples
o Prior: what is the probability of observing label y

Y 1y® =]
N

Pr(y = ¢) =

o Conditional distribution:

.1 [x,(ci) = 7.,y = c] + €
Zi 1[y(i) =c] + sz, €

Pr(xk = Zkly = C) =
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Missing features

One of the key strengths of Bayesian approaches is that
they can naturally handle missing data

* What happens if we don’t have value of some feature x,gi)
o e.g., applicants credit history unknown

o e.g., some medical tests not performed

* How to compute Pr(xl, X2y e Xj_1, 1) Xjp1 oo ,xd|y) ?

o e.g., three coin tosses E = {H,?,T} i X=H -
X,=H [ » X =T
o = Pr(E) = Pr({H,H,T}) + Pr({H,T,T}) "\ 1y /L2

-
2

* More generally

Pr(xl,xz, e Xj_1, ?,xj+1 ...,xd|y) = Z Pr(xl,xz, e Xj_1,Zj, Xj41 ...,xd|y)
Zj

Slide credit: David Sontag



Missing features in naive Bayes

Pr(xl, X2, een .X'j_l; ? ) xj+1 LW xdly)

= z Pr(xl,xz, e Xj—1,Zj, Xj+1 ---;xdb’)

-2, ) [ [prady)

k]
* Simply ignore the missing
1_[ Pr(x|y) 2 Pr(z|y) values and compute likelihood
k) based only observed features
* no need to fill-in or explicitly
1_[ Pr(xgly) model missing values
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Naive Bayes

e Generative model
o Model Pr(x|y) and Pr(y)

* Prediction: models the full
joint distribution and uses
Bayes rule to get Pr(y|x)

* Can generate data given label

* Naturally handles missing
data

Logistic Regression

Discriminative model
o Model Pr(y|x)

Prediction: directly models
what we want Pr(y|x)

Cannot generate data

Cannot handle missing data
easily
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