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Topics	so	far

• Linear	regression
• Classification

o nearest	neighbors,	decision	trees,	logistic	regression

• Yesterday
o Maximum	margin	classifiers,	Kernel	trick

• Today
o Quick	review	of	probability
o Generative	models	– naive	Bayes	classifier
o Structured	Prediction	– conditional	random	fields
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Several	slides	adapted	from	David	Sontag	who	in	turn	
credits	Luke	Zettlemoyer,	Carlos	Guestrin,	Dan	Klein,	and	

Vibhav Gogate
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Bayesian/probabilistic	learning

• Uses	probability	to	model	data	and/or	quantify	
uncertainties	in	prediction
o Systematic	framework	to	incorporate	prior	knowledge
o Framework	for	composing	and	reasoning	about	uncertainity
o What	is	the	confidence	in	the	prediction	given	observations	
so	far?

• Model	assumptions	need	not	hold	(and	often	do	not	
hold)	in	reality
o even	so,	many	probabilistic	models	work	really	well	in	
practice
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Quick	overview	of	random	variables
• Random	variables:	A	variable	about	which	we	(may)	have	uncertainty

o e.g.,	𝑊 = 𝑤𝑒𝑎𝑡ℎ𝑒𝑟	𝑡𝑜𝑚𝑜𝑟𝑟𝑜𝑤,	or	𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
• For	all	random	variables	𝑋 domain	𝒳 of	𝑋 is	the	set	of	values	𝑋 can	take
• Discrete	random	variables:	probability	distribution	is	a	table

o For	discrete	RV	𝑋, ∀𝑥 ∈ 𝒳, Pr 𝑋 = 𝑥 ≥ 0 		and		 ∑ Pr 𝑋 = 𝑥 = 1�
?∈𝒳

• Continuous	random	𝑋 with	domain	𝒳 ⊆ ℝ
o Cumulative	distribution	function	 𝐹C 𝑡 = Pr(𝑋 ≤ 𝑡)

§ again	𝐹C 𝑡 ∈ 0,1 	and	also	𝐹C −∞ = 0, 𝐹C +∞ = 1
o Probability	density	function (if	exists)	𝑃C 𝑡 = KLM N

KO
§ Is	always	positive,	but	can	be	greater	than	1
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Quick	overview	of	random	variables

• Expectation
Discrete	RV 𝐄 𝑓(𝑋) = ∑ 𝑓(𝑥)	Pr(𝑋 = 𝑥)�

?∈𝒳

• Mean	 𝐄 𝑋
• Variance 𝐄 𝑋 − 𝐄 𝑋 V
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Joint	distributions

• Joint	distribution	of	random	variables	𝑋W, 𝑋V, … , 𝑋Y is	defined	for	
all	𝑥W ∈ 𝒳W, 𝑥V ∈ 𝒳V,… , 𝑥Y ∈ 𝒳Y	

𝑝 𝑥W, 𝑥V, … , 𝑥Y = Pr(𝑋W = 𝑥W, 𝑋V = 𝑥V,… , 𝑋Y = 𝑥Y)

• How	may	numbers	needed	for	𝑑 variables	each	having	domain	of	
K	values?

o 𝐾Y!!	Too	many	numbers,	usually	some	assumption	is	made	to	
reduce	number	of	probabilities	
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Marginal	distribution

• Sub-tables	obtained	by	elimination	of	variables
• Probability	distribution	of	a	subset	of	variables
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Marginal	distribution

• Sub-tables	obtained	by	elimination	of	variables
• Probability	distribution	of	a	subset	of	variables
• Given:	joint	distribution	
𝑝 𝑥W, 𝑥V, … , 𝑥Y = Pr(𝑋W = 𝑥W, 𝑋V = 𝑥V, … , 𝑋Y = 𝑥Y)
for	𝑥W ∈ 𝒳W, 𝑥V ∈ 𝒳V,… , 𝑥Y ∈ 𝒳Y

• Say	we	want	get	a	marginal	of	just	𝑥W, 𝑥V, 𝑥\,	
that	is	we	want	to	get	
𝑝 𝑥W, 𝑥V, 𝑥] = Pr	(XW = xW, XV = xV, 𝑋] = 𝑥])

• This	can	be	obtained	by	mariginalizing
𝑝 𝑥W, 𝑥V, 𝑥] = ` ` … ` 𝑝(𝑥W, 𝑥V, 𝑧b, 𝑥], 𝑧\, … , 𝑧Y)

�

cd∈𝒳d

�

ce∈𝒳e

�

cf∈𝒳f
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Conditioning

• Random	variables	𝑋 and	𝑌 with	domains	𝒳 and	𝒴

Pr 𝑋 = 𝑥 𝑌 = 𝑦 =
Pr 𝑋 = 𝑥, 𝑌 = 𝑦

Pr 𝑌 = 𝑦

9

• Probability	
distributions	of	a	
subset	of	
variables	with	
fixed	values	of	
others



Conditioning

• Random	variables	𝑋 and	𝑌 with	domains	𝒳 and	𝒴

Pr 𝑋 = 𝑥 𝑌 = 𝑦 =
Pr 𝑋 = 𝑥, 𝑌 = 𝑦

Pr 𝑌 = 𝑦
• Conditional	expectation

𝐄[𝑓(𝑋)|𝑌 = 𝑦] = ` 𝑓 𝑥 Pr 𝑋 = 𝑥 𝑌 = 𝑦
�

?∈𝒳

• ℎ 𝑦 = 𝐄[𝑓(𝑋)|𝑌 = 𝑦] is	a	function	of	𝑦

• ℎ 𝑌 is	a	random	variable	with	distribution	given	by	
Pr(ℎ 𝑌 = ℎ(𝑦)) = Pr(𝑌 = 𝑦)
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Product	rule
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• Going	from	conditional	distribution	to	joint	distribution

Pr 𝑋 = 𝑥 𝑌 = 𝑦 =
Pr 𝑋 = 𝑥, 𝑌 = 𝑦

Pr 𝑌 = 𝑦

Pr 𝑋 = 𝑥, 𝑌 = 𝑦 = Pr(𝑌 = 𝑦) Pr 𝑋 = 𝑥 𝑌 = 𝑦
• What	about	thee	variables?

Pr 𝑋W = 𝑥W, 𝑋V = 𝑥V, 𝑋b = 𝑥b =

Pr(𝑋W = 𝑥W) Pr 𝑋V = 𝑥V 𝑋W = 𝑥W Pr 𝑋b = 𝑥b 𝑋W = 𝑥W, 𝑋V = 𝑥V
• More	generally,	

Pr 𝑋W = 𝑥W, 𝑋V = 𝑥V, … , 𝑋Y = 𝑥Y

= Pr(𝑋W = 𝑥W)mPr(𝑋n = 𝑥n|𝑋noW = 𝑥noW	, 𝑋noV = 𝑥noV, … , 𝑋W = 𝑥W)
Y

npV



Optimal	unrestricted	classifier

• 𝐶 class	classification	problem	𝒴 = {1,2, … , 𝐶}
• Population	distribution	Let	 𝒙, 𝑦 ∼ 𝒟
• Consider	the	population	0-1	loss	of	classifier	𝑦x(𝑥)

𝐿 𝑦x ≜ 𝐄𝒙,{ 𝟏 𝑦 ≠ 𝑦x 𝒙 = Pr
~,�

𝑦 ≠ 𝑦x 𝒙

= Pr 𝒙 Pr(𝑦 ≠ 𝑦x(𝒙)|𝒙)

• Pr(𝑦 ≠ 𝑦x 𝒙 |𝒙) 	= 1 − Pr(𝑦 = 𝑦x 𝒙 |𝒙)
• Optimal	unrestricted	classifier	or	Bayes	optimal	classifier

𝑦x∗∗ 𝒙 = argmax
�

Pr(𝑦 = 𝑐|𝒙)

Risk	of	
classifier	
𝑦x(𝒙)

Conditional	risk	
𝐿(𝑦x|𝒙)
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Check	that	this	is	minimized	for	
𝑦x 𝑥 = argmax

�
Pr(𝑦 = 𝑐|𝑥)



Generative	vs	discriminative	models

• Recall	optimal	unrestricted	predictor	for	following	cases
o Regression+squared	lossà 𝑓∗∗(𝒙) = 𝐄 𝑦 𝒙
o Classification+	0-1	loss	à 𝑦x∗∗ 𝒙 = argmax

�
Pr(𝑦 = 𝑐|𝒙)

• Non-probabilistic	approach:	don't	deal	with	probabilities,	just	estimate	
𝑓(𝒙) directly	to	the	data.

• Discriminative	models:	Estimate/infer	the	conditional	density	Pr(𝑦|𝒙)
o Typically	uses	a	parametric	model	𝑓�(𝒙) of	Pr(𝑦|𝒙)

• Generative	models: Estimate	the	full	joint	probability	density	Pr 𝑦, 𝒙
o Normalize	to	find	the	conditional	density	Pr(𝑦|𝒙)
o Specify	models	for	Pr 𝒙, 𝑦 or		[Pr 𝒙|𝑦 and	Pr(𝑦)]
o Why?	In	two	slides!
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Bayes	rule

• Optimal	classifier
𝑦x∗∗ 𝑥 = argmax

�
Pr 𝑦 = 𝑐 𝑥

• Bayes	rule:	Pr(𝑥, 𝑦) = Pr 𝑦 𝑥 Pr(𝑥) = Pr(𝑥|𝑦) Pr(𝑦)

𝑦x∗∗ 𝑥 = argmax
�

Pr 𝑦 = 𝑐 𝑥

= argmax
�

Pr 𝑥 𝑦 = 𝑐 Pr 𝑦 = 𝑐
Pr 𝑥

= argmax
�

Pr 𝑥 𝑦 = 𝑐 Pr 𝑦 = 𝑐 		
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Bayes	rule

• Optimal	classifier
𝑦x∗∗ 𝑥 = argmax

�
Pr 𝑦 = 𝑐 𝑥

= argmax
�

Pr 𝑥 𝑦 = 𝑐 Pr 𝑦 = 𝑐

• Why	is	this	helpful?	
o One	conditional	might	be	tricky	to	model	with	prior	
knowledge	but	the	other	simple

o e.g.,	say	we	want	to	specify	a	model	for	digit	recognition

§ compare	specifying	Pr(image|digit = 1) vs	
Pr(digit = 1|image)

15
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Generative	model	for	classification

argmax
�

Pr 𝑦 = 𝑐 𝑥

= argmax
�

Pr 𝑥 𝑦 = 𝑐 Pr 𝑦 = 𝑐

• C	class	classification	with	binary	features		
𝑥 ∈ ℝY and	𝑦 ∈ 1,2, … , 𝐶

• Want	to	specify	Pr(𝑥|𝑦) = Pr(𝑥W, 𝑥V, … , 𝑥Y|𝑦)

• If	each	of	𝑥W, 𝑥V, … , 𝑥Y can	take	one	of	K	values.	How	
many	parameters	to	specify	Pr(𝑥|𝑦)?
o 𝐶	𝐾Y!!		Too	many
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Naive	Bayes	assumption

Specifying	Pr(𝒙|𝑦) = Pr(𝑥W, 𝑥V, … , 𝑥Y|𝑦) requires	𝐶	𝐾Y

Naive	Bayes	assumption:
features	are	independent	given	class	𝑦
• e.g.,	for	two	features	

Pr(𝑥W, 𝑥V|𝑦) = Pr(𝑥W|𝑦) Pr(𝑥V|𝑦)
• more	generally,	

Pr(𝑥W, 𝑥V, … , 𝑥Y|𝑦) = Pr(𝑥W|𝑦) Pr(𝑥V|𝑦)…Pr(𝑥Y|𝑦)
= ∏ Pr(𝑥n|𝑦)Y

npW

• number	of	parameters	if	each	of	𝑥W, 𝑥V, … , 𝑥Y can	take	one	
of	K	values?
o 𝐶	𝐾	𝑑
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Naive	Bayes	classifier
• Naive	Bayes	assumption:	features	are	independent	given	class:

Pr(𝑥W, 𝑥V, … , 𝑥Y|𝑦) = ∏ Pr(𝑥n|𝑦)Y
npW 	

• C	classes	𝒴 = {1,2, … , 𝐶} d	binary	feature	𝒳 = 0,1 Y

• Model	parameters:	specify	from	prior	knowledge	and/or	learn	from	data
o Priors	Pr 𝑦 = 𝑐 à #parameters 𝐶 − 1
o Conditional	probabilities	Pr(𝑥n = 1|𝑦 = 𝑐)à #parameters 𝐶𝑑

§ if	𝑥W, 𝑥V, … , 𝑥� takes	one	of	𝐾 discrete	values	rather	than	binary	à
#parameters 𝐾 − 1 𝐶𝑑

§ if	𝑥W, 𝑥V, … , 𝑥� are	continuous,	additionally	model	Pr(𝑥n|𝑦 = 𝑐) as	
some	parametric	distribution,	like	Gaussian	Pr(𝑥n|𝑦 = 𝑐) ∼
𝒩(𝜇n,�, 𝜎),	and	estimate	the	parameters	(𝜇n,�, 𝜎) from	data

• Classifier	rule:
𝑦x�� 𝑥 = argmax

�
		Pr 𝑥W, 𝑥V, … , 𝑥Y 𝑦 = 𝑐 Pr(𝑦 = 𝑐)

																= argmax		
�

Pr(𝑦 = 𝑐)mPr(𝑥n|𝑦 = 𝑐)
Y

npW
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Digit	recognizer
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What	has	to	be	learned?

20Slide	credit:	David	Sontag



MLE	for	parameters	of	NB

• Training	dataset	𝑆 = 𝑥 � , 𝑦 � : 𝑖 = 1,2, … , 𝑁
• Maximum	likelihood	estimation	for	naive	Bayes	with	
discrete	features	and	labels
• Assume	𝑆 has	iid examples

o Prior:	what	is	the	probability	of	observing	label	𝑦

Pr 𝑦 = 𝑐 =
∑ 𝟏 𝑦 � = 𝑐�
�pW

𝑁
o Conditional	distribution:

Pr 𝑥n = 𝑧n|𝑌 = 𝑐 =
∑ 1[𝑥n

� = 𝑧n, 𝑦 � = 𝑐]�
�pW

∑ 1[𝑦 � = 𝑐]�
�pW
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``𝟏 𝑦 � = 𝑐� 	
�

�

�

��	

``𝟏 𝑥n
� = 𝑧n�, 𝑦 � = 𝑐 	

�

�

�

c��	



MLE	for	parameters	of	NB

22Slide	credit:	David	Sontag



Smoothing	for	parameters	of	NB

• Training	dataset	𝑆 = 𝑥 � , 𝑦 � : 𝑖 = 1,2, … , 𝑁
• Maximum	likelihood	estimation	for	naive	Bayes	with	
discrete	features	and	labels
• Assume	𝑆 has	iid examples

o Prior:	what	is	the	probability	of	observing	label	𝑦

Pr 𝑦 = 𝑐 =
∑ 𝟏 𝑦 � = 𝑐�
�

𝑁
o Conditional	distribution:

Pr 𝑥n = 𝑧n|𝑌 = 𝑐 =
∑ 1 𝑥n

� = 𝑧n, 𝑦 � = 𝑐�
� + 𝜖
∑ 1 𝑦 � = 𝑐�
� + ∑ 𝜖�

c��
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Smoothing	for	parameters	of	NB

• Training	dataset	𝑆 = 𝑥 � , 𝑦 � : 𝑖 = 1,2, … , 𝑁
• Maximum	likelihood	estimation	for	naive	Bayes	with	
discrete	features	and	labels
• Assume	𝑆 has	iid examples

o Prior:	what	is	the	probability	of	observing	label	𝑦

Pr 𝑦 = 𝑐 =
∑ 𝟏 𝑦 � = 𝑐�
�

𝑁
o Conditional	distribution:

Pr 𝑥n = 𝑧n|𝑌 = 𝑐 =
∑ 1 𝑥n

� = 𝑧n, 𝑦 � = 𝑐�
� + 𝜖
∑ 1 𝑦 � = 𝑐�
� + ∑ 𝜖�

c��

24



Smoothing	for	parameters	of	NB

• Training	dataset	𝑆 = 𝑥 � , 𝑦 � : 𝑖 = 1,2, … , 𝑁
• Maximum	likelihood	estimation	for	naive	Bayes	with	
discrete	features	and	labels
• Assume	𝑆 has	iid examples

o Prior:	what	is	the	probability	of	observing	label	𝑦

Pr 𝑦 = 𝑐 =
∑ 𝟏 𝑦 � = 𝑐�
�

𝑁
o Conditional	distribution:

Pr 𝑥n = 𝑧n|𝑌 = 𝑐 =
∑ 1 𝑥n

� = 𝑧n, 𝑦 � = 𝑐�
� + 𝜖
∑ 1 𝑦 � = 𝑐�
� + ∑ 𝜖�

c��
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Missing	features

One	of	the	key	strengths	of	Bayesian	approaches	is	that	
they	can	naturally	handle	missing	data
• What	happens	if	we	don’t	have	value	of	some	feature	𝑥n

(�)

o e.g.,	applicants	credit	history	unknown
o e.g.,	some	medical	tests	not	performed

• How	to	compute	Pr 𝑥W, 𝑥V, … 𝑥�oW, ? , 𝑥��W … , 𝑥Y 𝑦 ?
o e.g.,	three	coin	tosses	E = 𝐻, ? , 𝑇
o ⇒ Pr 𝐸 = Pr 𝐻,𝐻, 𝑇 +Pr({𝐻, 𝑇, 𝑇})

• More	generally	

Pr 𝑥W, 𝑥V, … 𝑥�oW, ? , 𝑥��W … , 𝑥Y 𝑦 =`Pr 𝑥W, 𝑥V, … 𝑥�oW, 𝑧�, 𝑥��W … , 𝑥Y 𝑦
�

c 
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Missing	features	in	naive	Bayes

Pr 𝑥W, 𝑥V, … 𝑥�oW, ? , 𝑥��W … , 𝑥Y 𝑦

=`Pr 𝑥W, 𝑥V, … 𝑥�oW, 𝑧�, 𝑥��W … , 𝑥Y 𝑦
�

c 

=` Pr 𝑧� 𝑦 mPr 𝑥n 𝑦
�

n¡�

�

c 

=mPr 𝑥n 𝑦
�

n¡�

`Pr 𝑧� 𝑦
�

c 

=mPr 𝑥n 𝑦
�

n¡�
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• Simply	ignore	the	missing	
values	and	compute	likelihood	
based	only	observed	features

• no	need	to	fill-in	or	explicitly	
model	missing	values
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Naive	Bayes
• Generative	model

o Model	Pr(𝒙|𝑦) and	Pr(𝑦)

• Prediction: models	the	full	
joint	distribution	and	uses	
Bayes	rule	to	get	Pr(𝑦|𝒙)

• Can	generate	data	given	label
• Naturally	handles	missing	
data

Logistic	Regression
• Discriminative	model

o Model	Pr(𝑦|𝒙)

• Prediction:	directly	models	
what	we	want	Pr(𝑦|𝒙)

• Cannot	generate	data
• Cannot	handle	missing	data	
easily


