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Topics	so	far

• Supervised	learning,	linear	regression	
• Yesterday

o Overfitting,	
o Ridge	and	lasso	Regression
o Gradient	descent

• Today
o Bias	variance	trade-off
o Classification
o Logistic	regression
o Regularization	for	logistic	regression
o Classification	metrics
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Bias-variance tradeoff
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Empirical	vs	population	loss

• Population	distribution	Let	 𝑥, 𝑦 ∼ 𝒟
• We	have

o Loss	function	ℓ(𝑦(, 𝑦)
o Hypothesis	class	ℋ
o Training	data	𝑆 = 𝑥 - , 𝑦 - : 𝑖 = 1,2, … , 𝑁 ∼445 𝒟6

§ Think	of	S as	random	variable

• What	we	really	want	𝑓 ∈ ℋ to	minimize	𝐩𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧	𝐥𝐨𝐬𝐬

𝐿𝒟(𝑓) ≜ 𝐄𝒟 ℓ 𝑓 𝑥 , 𝑦 = F ℓ 𝑓 𝑥 , 𝑦
�

(H,I)
	Pr(𝑥, 𝑦)

• ERM	minimizes	empirical	loss

𝐿L 𝑓 ≜ 𝐄ML ℓ 𝑓 𝑥 , 𝑦 =
1
𝑁
Nℓ 𝑓 𝑥 - , 𝑦 -
6

-OP

e.g,	Pr 𝑥 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 0,1
𝑦 = 𝑤∗. 𝑥 + 𝜖 where	𝜖 = 𝒩 0,0.1

⇒ Pr 𝑦 𝑥 = 𝒩 𝑤∗. 𝑥, 0.1
Pr 𝑥, 𝑦 = Pr 𝑥 Pr	(𝑦|𝑥)
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Empirical	vs	population	loss

𝐿(𝑓) ≜ 𝐄𝒟 ℓ 𝑓 𝑥 , 𝑦 = F ℓ 𝑓 𝑥 , 𝑦
�

(H,I)
	Pr(𝑥, 𝑦)

𝐿L 𝑓 ≜ 𝐄ML ℓ 𝑓 𝑥 , 𝑦 =
1
𝑁
Nℓ 𝑓 𝑥 - , 𝑦 -
6

-OP

• 𝑓_L from	some	model	overfits to	𝑆 if	there	is	𝑓∗ ∈ ℋ with	
𝐄ML ℓ 𝑓_L 𝑥 , 𝑦 ≤ 𝐄ML ℓ 𝑓∗ 𝑥 , 𝑦 	but		𝐄𝒟 ℓ 𝑓_L 𝑥 , 𝑦 ≫ 𝐄𝒟 ℓ 𝑓∗ 𝑥 , 𝑦

• If	𝑓 is	independent	of	𝑆efg-h then	both	𝐿Lijklm 𝑓 and	𝐿Linoi 𝑓 are	
good	approximations	of	𝐿𝒟 𝑓

• But	generally,	𝑓_ depends	on	𝑆efg-h.	Why?
o 𝐿Lijklm 𝑓_Lijklm is	no	more	a	good	approximation	of	𝐿𝒟 𝑓

o 𝐿Linoi 𝑓_Lijklm is	still	a	good	approximation	of	𝐿𝒟 𝑓 since 𝑓_Lijklm is	
independent	of	𝑆epqe
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Optimum	Unrestricted	Predictor

• Consider	population	squared	loss

argmin
w∈ℋ

𝐿(𝑓) ≜ 𝐄𝒟 ℓ 𝑓 𝑥 , 𝑦 = 𝐄(H,I) 𝑓 𝑥 − 𝑦 y

• Say	ℋ is	unrestricted	– any	function	𝑓: 𝑥 → 𝑦 is	allowed
𝐿 𝑓 = 𝐄(H,I) 𝑓 𝑥 − 𝑦 y = 𝐄H 𝐄I 𝑓 𝑥 − 𝑦 y	|𝑥

= 𝐄H 𝐄I 𝑓 𝑥 − 𝐄I 𝑦 𝑥 + 𝐄I 𝑦 𝑥 − 𝑦 y|𝑥

= 𝐄H 𝐄I 𝑓 𝑥 − 𝐄I 𝑦 𝑥
y|𝑥 + 𝐄H 𝐄I 𝐄I 𝑦 𝑥 − 𝑦 y|𝑥 		

+ 2	𝐄H 𝐄I (𝑓 𝑥 − 𝐄I 𝑦 𝑥 )(𝐄I 𝑦 𝑥 − 𝑦)|𝑥

= 𝐄H[ 𝑓 𝑥 − 𝐄I 𝑦 𝑥
y] + 𝐄H,I 𝐄I 𝑦 𝑥 − 𝑦 y

not	a	function	of	𝑦

= 0

Noiseminimized	for	𝑓 = 𝐄I 𝑦 𝑥
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Bias	variance	decomposition

• Best	unrestricted	predictor	𝑓∗∗(𝑥) = 𝐄I[𝑦|𝑥]

• 𝐿 𝑓L = 𝐄H[ 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y] + 𝐄H,I 𝑓∗∗ 𝑥 − 𝑦 y

• 𝐄L𝐿 𝑓L = 𝐄L𝐄H 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y + 𝑛𝑜𝑖𝑠𝑒

𝐄L𝐄H 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y = 𝐄H 𝐄L 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y|𝑥

= 𝐄H𝐄L 𝑓L 𝑥 − 𝐄L 𝑓L 𝑥 + 𝐄L 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y|𝑥

= 𝐄H𝐄L 𝑓L 𝑥 − 𝐄L 𝑓L 𝑥 y|𝑥 + 𝐄H 𝐄L 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y 			

+ 2	𝐄H 𝐄L 𝐄L 𝑓L 𝑥 − 𝑓∗∗ 𝑥 𝑓L 𝑥 − 𝐄L 𝑓L 𝑥 |𝑥

= 𝐄L,H 𝑓L 𝑥 − 𝐄L 𝑓L 𝑥 y + 𝐄H 𝐄L 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y

=	variance
+		bias2
+	noise

𝐄L𝐿 𝑓L = 𝐄L,H	 𝑓L 𝑥 − 𝐄L 𝑓L 𝑥 y

+𝐄H 𝐄L	 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y

+𝐄H,I[ 𝑓∗∗ 𝑥 − 𝑦 y	]
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Bias-variance	tradeoff

• 𝑓L ∈ ℋ
• noise is	irreducible
• variance can	reduced	by	

o get	more	data
o make	𝑓L less	sensitive	to	𝑆

§ less	number	of	candidates	in	ℋ to	choose	fromàless variance
§ reducing	the	“complexity”	of	model	class	ℋ decreases	variance

• biasy ≥ min
w∈���� ℋ

𝐄H 𝑓 𝑥 − 𝑓∗∗ 𝑥 y

§ expanding	model	class	ℋ decreases	bias

=	variance
+		bias2
+	noise

𝐄L𝐿 𝑓L = 𝐄L,H	 𝑓L 𝑥 − 𝐄L 𝑓L 𝑥 y

+𝐄H 𝐄L	 𝑓L 𝑥 − 𝑓∗∗ 𝑥 y

+𝐄H,I[ 𝑓∗∗ 𝑥 − 𝑦 y	]
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Model	complexity
• reducing	the	complexity	of	model	class	ℋ decreases	variance
• expanding	model	class	ℋ decreases	bias
• Complexity	≈ number	of	choices	in	ℋ

• For	any	loss	𝐿,	for	all	𝑓 ∈ ℋ with	probability	greater	than	1 − 𝛿

𝐿 𝑓 ≤ 𝐿L 𝑓 +
log ℋ + log 1𝛿

𝑁

�

• many	other	variants	for	infinite	cardinality	classes
• often	bounds	are	loose

• Complexity	≈	number	of	degrees	of	freedom
• e.g.,	number	of	parameters	to	estimate
• more	data	ècan	fit	more	complex	models

• Is	ℋP = {𝒙 → 𝑤� + 𝒘𝟏. 𝒙 − 𝒘𝟐. 𝒙}more	complex	than	ℋy =
{𝒙 → 𝑤� + 𝒘𝟏. 𝒙}?
• What	we	need	is	how	many	different	“behaviors”	we	can	get	on	same	𝑆
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Summary

• Overfitting
o What	is	overfitting?
o How	to	detect	overfitting?
o Avoiding	overfitting	using	model	selection

• Bias	– variance	tradeoff



Classification

• Supervised	learning:	estimate	a	mapping	𝑓 from	input	
𝑥 ∈ 𝒳 to	output	𝑦 ∈ 𝒴
o Regression 𝒴 = ℝ	or	other	continuous	variables
o Classification 𝒴 takes	discrete	set	of	values	

§ Examples:	
q 𝒴 = {spam, nospam},	
q digits	(not	values)	𝒴 = {0,1,2, … , 9}

• Many	successful	applications	of	ML	in	vision,	speech,	
NLP,	healthcare

10



Classification	vs	Regression

• Label-values	do	not	have	meaning	
o 𝒴 = {spam, nospam} or	𝒴 = {0,1} or	𝒴 = {−1,1}

• Ordering	of	labels	does	not	matter	(for	most	parts)
o 𝑓(𝑥) = “0” when	𝑦 = “1” is	as	bad	as	𝑓(𝑥) = “9” when	𝑦 = “1”

• Often	𝑓(𝑥) does	not	return	labels	𝑦
o e.g.	in	binary	classification	with	𝒴 = {−1,1} we	often	estimate	
𝑓:𝒳 → ℝ and	then	post	process	to	get	𝑦( 𝑓 𝑥 = 𝟏 𝑓 𝑥 ≥ 0

o mainly	for	computational	reasons

§ remember,	we	need	to	solve	min
w∈ℋ

∑ ℓ(𝑓 𝑥 - , 𝑦 - )�
- 	

§ discrete	values	à combinatorial	problems	à hard	to	solve	
o more	generally	ℋ ⊂ 𝑓:𝒳 → ℝ and	loss	ℓ:ℝ×𝒴 → ℝ

§ compare	to	regression,	where	typically	ℋ ⊂ 𝑓:𝒳 → 𝒴 and	
loss	ℓ:𝒴×𝒴 → ℝ

11



Non-parametric classifiers

12



• Training	data	S = 𝑥 - , 𝑦 - : 𝑖 = 1,2, … , 𝑁

• Want	to	predict	label	of	new	point	𝑥

• Nearest	Neighbor	Rule

o Find	the	closest	training	point:	𝑖∗ = argmin
-
𝜌(𝑥, 𝑥 - )

o Predict	label	of	𝑥 as	𝑦( 𝑥 = 𝑦 -∗

• Computation
o Training	time:	Do	nothing

o Test	time:	search	the	training	
set	for	a	NN

Nearest	Neighbor	(NN)	Classifier

?

13Figure	credit:	Nati Srebro



Nearest	Neighbor	(NN)	Classifier

• Where	is	the	main	model?
o 𝑖∗ = argmin

-
𝜌(𝑥, 𝑥 - )

o What	is	the	right	“distance”	between	images?	Between	sound	
waves?	Between	sentences?

o Often	𝜌 𝑥, 𝑥� = 𝜙 𝑥 − 𝜙 𝑥� y or	other	norms	 𝑥 − 𝑥� P

𝝓� 𝒙 − 𝝓�(𝒙�)	 𝟐
𝝓� 𝒙 = (𝟓𝒙 𝟏 , 𝒙 𝟐 )𝒙 − 𝒙� 𝟏

14Slide	credit:	Nati Srebro



• Training	data	S = 𝑥 - , 𝑦 - : 𝑖 = 1,2, … , 𝑁

•Want	to	predict	label	of	new	point	𝑥
• k-Nearest	Neighbor	Rule

o Find	the	𝒌 closest	training	point:	𝑖P∗, 𝑖y∗, … , 𝑖¢∗

o Predict	label	of	𝑥 as	
𝑦( 𝑥 = majority 𝑦 -¥∗ , 𝑦 -¦∗ , … , 𝑦 -§

∗

• Computation
o Training	time:	Do	nothing
o Test	time:	search	the	training	set	for	k	NNs

k-Nearest	Neighbor	(kNN)	classifier

15



k-Nearest	Neighbor

•Advantages
ono	training
ouniversal	approximator – non-parametric

•Disadvantages
onot	scalable

§test	time	memory	requirement	
§test	time	computation

oeasily	overfits with	small	data

16



Training	vs	test	error

17

1-NN
• Training	error?
• 0

• Test	error?
• Depends	on	Pr(𝑥, 𝑦)

k-NN
• Training	error: can	be	
greater	than	0

• Test	error:	again	depends	
on	Pr(𝑥, 𝑦)

Figure	credit:	Nati Srebro



k-Nearest	Neighbor:
Data	Fit	/	Complexity	Tradeoff

k=1 k=5 k=12

k=50 k=100 k=200

S= h*=

18Slide	credit:	Nati Srebro



Space	partition

• kNN	partitioning	of	𝒳 (or	ℝ¨)	into	regions	of	+1	and	-1
• What	about	discrete	valued	features	𝑥?
• Even	for	continuous	𝑥,	can	we	get	more	structured	
partitions?
o easy	to	describe

§ e.g.,	𝑅y = {𝑥: 𝑥P < 𝑡P	and	𝑥y > 𝑡y}
o reduces	degrees	of	freedom

• Any	non-overlapping	
partition	using	only	
(hyper)	rectangles
à representable	by	a	tree

19Figure	credit:	Greg	Shaknarovich



Decision	trees

• Focus	on	binary	trees	(trees	with	at	most	two	
children	at	each	node)

• How	to	create	trees?

•What	is	a	“good”	tree?
oMeasure	of	“purity”	at	each		leaf	node	where	
each	leaf	node	corresponding	to	a	region		𝑅-
purity 𝑡𝑟𝑒𝑒 = ∑ |#	blue	at	𝑅4 −		#	red	at	𝑅-|�

°l

20

There	are	various	metrics	of	(im)purity	
that	are	used	in	practice,	but	the	rough	
idea	is	the	same



Decision	trees

• How	to	create	trees?
• Training	data	𝑆 = 𝑥 - , 𝑦 - : 𝑖 = 1,2, … , 𝑁 ,	where	
𝑦 - ∈ {blue, red}
• At	each	point,	
purity 𝑡𝑟𝑒𝑒 =N|#	blue	at	leaf −		#	red	at	leaf|

�

²³´µ

• Start	with	all	data	at	root	
o only	one	𝑙𝑒𝑎𝑓 = 𝑟𝑜𝑜𝑡.	What	is	
purity 𝑡𝑟𝑒𝑒 ?	

21



Decision	trees

• How	to	create	trees?
• Training	data	𝑆 = 𝑥 - , 𝑦 - : 𝑖 = 1,2, … , 𝑁 ,	where	
𝑦 - ∈ {blue, red}
• At	each	point,	
purity 𝑡𝑟𝑒𝑒 =N|#	blue	at	leaf −		#	red	at	leaf|

�

²³´µ

• Start	with	all	data	at	root	
o only	one	𝑙𝑒𝑎𝑓 = 𝑟𝑜𝑜𝑡.	What	is	
purity 𝑡𝑟𝑒𝑒 ?	

• Create	a	split	based	on	a	rule	that	increases
the	amount	of	“purity”	of	tree.	
o How	complex	can	the	rules	be?

22



Decision	trees

• How	to	create	trees?
• Training	data	𝑆 = 𝑥 - , 𝑦 - : 𝑖 = 1,2, … , 𝑁 ,	where	
𝑦 - ∈ {blue, red}
• At	each	point,	
purity 𝑡𝑟𝑒𝑒 =N|#	blue	at	leaf −		#	red	at	leaf|

�

²³´µ

• Start	with	all	data	at	root	
o only	one	𝑙𝑒𝑎𝑓 = 𝑟𝑜𝑜𝑡.	What	is	
purity 𝑡𝑟𝑒𝑒 ?	

• Create	a	split	based	on	a	rule	that	increases
the	amount	of	“purity”	of	tree.	
o How	complex	can	the	rules	be?

• Repeat
23

When	to	stop?	
what	is	the	
complexity	of	a	DT?
• Limit	the	number	

of	leaf	nodes



Decision	trees

• Advantages
o interpretable
o easy	to	deal	with	non-numeric	features
o natural	extensions	to	multi-class,	multi-label

• Disadvantages
o not	scalable
o hard	decisions	– non-smooth	decisions
o often	overfits in	spite	of	regularization

• Check	CART	package	in	scikit-learn

24



Parametric	classifiers

• What	is	the	equivalent	of	linear	regression?
o something	easy	to	train
o something	easy	to	use	at	test	time

• 𝑓 𝒙 = 𝑓𝒘 𝒙 = 𝒘. 𝒙 + 𝑤�
• ℋ = {𝑓𝒘 = 𝒙 → 𝒘. 𝒙 + 𝑤�:𝒘 ∈ ℝ¨,𝑤� ∈ ℝ}

• but	𝑓 𝒙 ∉ {−1,1}!	how	do	we	get	labels?
o reasonable	choice	

𝑦( 𝒙 = 1 if	𝑓𝒘¹ 𝒙 ≥ 0 and	𝑦( 𝒙 = −1 otherwise
o linear	classifier:	𝑦( 𝒙 = sign(𝒘¹. 𝒙 + 𝑤¹�)

25



Parametric	classifiers

• ℋ = 𝑓𝒘 = 𝒙 → 𝒘. 𝒙 + 𝑤�:𝒘 ∈ ℝ¨,𝑤� ∈ ℝ
• 𝑦( 𝒙 = sign(𝒘¹. 𝒙 + 𝑤¹�)
• 𝒘¹. 𝒙 + 𝑤¹� = 0 (linear)	decision	boundary	or	
separating	hyperplane	
o that	separates	ℝ¨ into	two	halfspaces
(regions)	
𝒘¹. 𝒙 + 𝑤¹� > 0 and	𝒘¹. 𝒙 + 𝑤¹� < 0

• more	generally,	𝑦( 𝒙 = sign 𝑓_ 𝒙
à decision	boundary	is	𝑓_ 𝒙 = 0

26
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Linear classifier

27



Classification	vs	Regression

• Label-values	do	not	have	meaning	
o 𝒴 = {spam, nospam} or	𝒴 = {0,1} or	𝒴 = {−1,1}

• Ordering	of	labels	does	not	matter	(for	most	parts)
o 𝑓(𝑥) = “0” when	𝑦 = “1” is	as	bad	as	𝑓(𝑥) = “9” when	𝑦 = “1”

• Often	𝑓(𝑥) does	not	return	labels	𝑦
o e.g.	in	binary	classification	with	𝒴 = {−1,1} we	often	estimate	
𝑓:𝒳 → ℝ and	then	post	process	to	get	𝑦( 𝑓 𝑥 = 𝟏 𝑓 𝑥 ≥ 0

o mainly	for	computational	reasons

§ remember,	we	need	to	solve	min
w∈ℋ

∑ ℓ(𝑓 𝑥 - , 𝑦 - )�
- 	

§ discrete	values	à combinatorial	problems	à hard	to	solve	
o more	generally	ℋ ⊂ 𝑓:𝒳 → ℝ and	loss	ℓ:ℝ×𝒴 → ℝ

§ compare	to	regression,	where	typically	ℋ ⊂ 𝑓:𝒳 → 𝒴 and	
loss	ℓ:𝒴×𝒴 → ℝ

28



Classification	vs	Regression

• Label-values	do	not	have	meaning	
o 𝒴 = {spam, nospam} or	𝒴 = {0,1} or	𝒴 = {−1,1}

• Ordering	of	labels	does	not	matter	(for	most	parts)
o 𝑓(𝑥) = “0” when	𝑦 = “1” is	as	bad	as	𝑓(𝑥) = “9” when	𝑦 = “1”

• Often	𝑓(𝑥) does	not	return	labels	𝑦
o e.g.	in	binary	classification	with	𝒴 = {−1,1} we	often	estimate	
𝑓:𝒳 → ℝ and	then	post	process	to	get	𝑦( 𝑓 𝑥 = 𝟏 𝑓 𝑥 ≥ 0

o mainly	for	computational	reasons

§ remember,	we	need	to	solve	min
w∈ℋ

∑ ℓ(𝑓 𝑥 - , 𝑦 - )�
- 	

§ discrete	values	à combinatorial	problems	à hard	to	solve	
o more	generally	ℋ ⊂ 𝑓:𝒳 → ℝ and	loss	ℓ:ℝ×𝒴 → ℝ

§ compare	to	regression,	where	typically	ℋ ⊂ 𝑓:𝒳 → 𝒴 and	
loss	ℓ:𝒴×𝒴 → ℝ

29

What	if	we	ignore	above	
and	solve	classification	

using	regression?



Classification	as	regression

• Binary	classification	𝒴 = −1,1 and	𝒳 ∈ ℝ¨

• Treat	it	as	regression	with	squared	loss,	say	linear	
regression
o Training	data	𝑆 = 𝒙 𝒊 , 𝑦 - : 𝑖 = 1,2, … , 𝑁
o ERM	

𝒘¹,𝑤¹� = argmin
»,»¼

N 𝒘. 𝒙 𝒊 + 𝑤� − 𝑦 - y
�

-

		

30



Classification	as	regression

𝑥

𝑦

𝑥

𝑦( = +1 𝑦( = −1

31

𝑦( 𝑥 = sign(𝑤𝑥 + 𝑤�)

Example	credit:	Greg	Shaknarovich



Classification	as	regression

𝑥

𝑥

𝑦 classified	correctly	by	
𝑦( 𝑥 = sign 𝑤. 𝑥

but	squared	loss	 𝑤. 𝑥 + 1 y	will	
be	high

32Example	credit:	Greg	Shaknarovich



Classification	as	regression

𝑥

𝑦 = +1 𝑦 = −1

𝑥

𝑦

33Example	credit:	Greg	Shaknarovich



Classification	as	regression

34Slide	credit:	Greg	Shaknarovich



• The	correct	loss	to	use	is	0-1	loss	after thresholding
ℓ�P 𝑓 𝑥 , 𝑦 = 𝟏 sign 𝑓 𝑥 ≠ 𝑦

= 𝟏 sign 𝑓 𝑥 𝑦 < 0

Surrogate	Losses

35

0 𝑓(𝑥)𝑦 →

ℓ(
𝑓
𝑥
,𝑦
)



• The	correct	loss	to	use	is	0-1	loss	after thresholding
ℓ�P 𝑓 𝑥 , 𝑦 = 𝟏 sign 𝑓 𝑥 ≠ 𝑦

= 𝟏 sign 𝑓 𝑥 𝑦 < 0
• Linear	regression	uses	ℓ¾L 𝑓 𝑥 , 𝑦 = 𝑓 𝑥 − 𝑦 y

• Why	not	do	ERM	over	ℓ�P 𝑓 𝑥 , 𝑦 directly?
o non-continuous,	non-convex

Surrogate	Losses

36

0 𝑦(𝑦 →

ℓ(
𝑓
𝑥
,𝑦
)

0 𝑓(𝑥)𝑦 →



Surrogate	Losses

37

• Hard	to	optimize	over	ℓ�P,	find	another	loss	ℓ(𝑦(, 𝑦)
o Convex	(for	any	fixed	𝑦)	à easier	to	minimize
o An	upper	bound	of	ℓ�P à small	ℓ ⇒ small	ℓ�P

• Satisfied	by	squared	loss	
àbut	has	“large”	loss	even	when	ℓ�P 𝑦(, 𝑦 = 0
• Two	more	surrogate	losses	in	in	this	course
o Logistic	loss	
ℓ²�¿ 𝑦(, 𝑦 = log 1 + exp −𝑦(𝑦
(TODAY)
o Hinge	loss
ℓÁ-hÂp 𝑦(, 𝑦 = max(0,1 − 𝑦(𝑦)	
(TOMORROW)	

0 𝑓(𝑥)𝑦 →

ℓ(
𝑓
𝑥
,𝑦
)



Logistic Regression

38



Logistic	regression:	ERM	on	surrogate	loss

• 𝑆 = 𝒙 𝒊 , 𝑦 - : 𝑖 = 1,2, … ,𝑁 , 	𝒳 = ℝ¨, 	𝒴 = {−1,1}
• Linear	model	𝑓 𝒙 = 𝑓𝒘 𝒙 = 𝒘. 𝒙 + 𝑤�
• Minimize	training	loss	

𝒘¹,𝑤¹� = argmin
𝒘,»¼

Nlog 1 + exp − 𝒘. 𝒙 𝒊 + 𝑤� 𝑦 - 	
�

-

		

• Output	classifier	𝑦( 𝒙 = sign(𝒘. 𝒙 + 𝑤�)

Logistic	loss	
ℓ 𝑓 𝑥 , 𝑦 = log 1 + exp −𝑓(𝑥)𝑦

39

ℓ(
𝑓
𝑥
,𝑦
)

0 𝑓(𝑥)𝑦 →



𝒘¹,𝑤¹� = argmin
𝒘,»¼

Nlog 1 + exp − 𝒘. 𝒙 𝒊 + 𝑤� 𝑦 - 	
�

-

	

• Learns	a	linear	decision	boundary
o {𝒙:𝒘. 𝒙 + 𝑤� = 0} is	a	hyperplane	in	ℝ¨ - decision	boundary
o {𝒙:𝒘. 𝒙 + 𝑤� = 0} divides	ℝ¨ into	two	halfspace (regions)
o 𝒙:𝒘. 𝒙 + 𝑤� ≥ 0 will	get	label	+1 and	
{𝒙:𝒘. 𝒙 + 𝑤� < 0} will	get	label	-1

• Maps	𝒙 to	a	1D	coordinate	

𝑥� =
𝒘. 𝒙 + 𝑤�

𝒘

Logistic	regression

𝒙

𝒙′

𝑥P

𝑥y

𝑤

ç

40Figure	credit:	Greg	Shaknarovich



Logistic	Regression

𝒘¹,𝑤¹� = argmin
𝒘,»¼

Nlog 1 + exp − 𝒘. 𝒙 + 𝑤� 𝑦 	
�

-

	

• Convex	optimization	problem
• Can	solve	using	gradient	descent
• Can	also	add	usual	regularization:	ℓy, ℓP

o More	details	in	the	next	session
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