Day 3: Classification,
logistic regression

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

20 June 2018

TOYOTA
TECHNOLOGICAL

n INSTITUTE
AT CHICAGO

Topics so far

e Supervised learning, linear regression

* Yesterday
o Overfitting,
o Ridge and lasso Regression
o Gradient descent

* Today
o Bias variance trade-off
o Classification
o Logistic regression
o Regularization for logistic regression
o Classification metrics

Bias-variance tradeoff

Empirical vs population loss

Population distribution Let (x,y) ~ D e.g, Pr(x) = uniform(0,1)
We h y =w*.x + € wheree = N (0,0.1)
€ have = Pr(y|x) = N (w*.x,0.1)

o Loss function £(¥,y) Pr(x,y) = Pr(x) Pr(y|x)
o Hypothesis class H
o Training data S = {(x(i),y(i)):i =1,2, ...,N} ~i:q DN

= Think of S as random variable

What we really want f € H to minimize population loss
Lo(f) £ Eole(F@, 0] = | (FG,) Prixy)
(x,y)

ERM minimizes empirical loss

Ls(f) = Bs[£(f (),)] = Ef’(f(x(”) y®)

Empirical vs population loss
L(F) & Eple(F (),)] = j(L0 Pr(xy)
X,y

Lo(f) 2 E[2(f(x),y)] = Z£(f(x(l)) y(l))

e fs from some model overfits to S if there is f* € H with

Es[¢(fs(x),y)| < Es[£(f*(x), y)] but Ep[£(fs(x),y)] » Ep[€(f*(x),)]
* If f isindependent of S;.4;, then both Lg, . (f) and Lg, . (f) are
good approximations of Ly (f)

* But generally, f depends on S;qir. Why?

o LStrain(fStrain) is no more a good approximation of Ly (f)

o LStest(fStrain) is still a good approximation of Ly (f) since fStrain is
independent of S;.q¢

Optimum Unrestricted Predictor

* Consider population squared loss

argmin L(f) 2 Ep[£(f (x), ¥)] = Eqxy)[(f (x) — ¥)?]

feH

* Say H is unrestricted — any function f: x — y is allowed
L(f) = Byl (F00) =)21 = By [, [(F(2) —)7]|

= B, [B, [(FGO — By yl] + B, [ylx] - »)]|

= E. [E, [(f(@) — E, [yIx]) |x] + E, [E |(Ey [ylx] - ¥) |x”

+ 2B, [E,[(F(0) — B, [yl (By [ylx] —)]

not a funct|on of y

(J
Y

=0
= Edl(f/() — By lyD)] + vy [(By 1] =)]
m|n|m|zedforf E,[ylx] N0|se

Bias variance decomposition

* Best unrestricted predictor /™" (x) = E,, [y|x]

+ L(fs) = Ex[(fs(0) = £ () T+ Eo, [(F () —)]
* EsL(fs) = ESE, [(fs(x) ()] + notse

BsE, [() - £ (0)°] = B [Es [(5,00 = 77 (0) 1

= E,Es [(fs(0) — Eslfs (0] + Es[fs(0)] — £ () |«
= E Eg[(fs(x) — Es[fs(x)])2|x] + E, [(Es[fs(x)] - f**(x))zl

+ 2Ex [Es{(EslSs = s\X) = EglJs(X x]]

= Es[(f5(0) — Es[fs(D?] + Ex | (Bslfs (0] — £ ()]
EsL(fs) = Es, [(fs(x) — Eg[fs ()])?] = variance
+E, |(Es [50] — £ ()| + bias?
+E,, [(f ™ (x) —y)?] + noise

Bias-variance tradeoff

EsL(fs) = Es [(fs() — Eslfs(OD?] | = variance

+E, [(Es [£500] - £ ()] + bias?

FE, [(F(0) —)] +noise
*fsEH

°* noise is irreducible

e variance can reduced by
o get more data

o make f less sensitive to S
= |ess number of candidates in H to choose from—>less variance
= reducing the “complexity” of model class H decreases variance

* bias? > min E, [(f(x) — f**(x))zl

feconv(H)
= expanding model class H decreases bias

Model complexity

reducing the complexity of model class H decreases variance

expanding model class H decreases bias

Complexity =& number of choices in H
For any loss L, for all f € H with probability greater than1 — 6

log|H'| + log%
LD < Ls(H) + [——

many other variants for infinite cardinality classes

often bounds are loose
Complexity = number of degrees of freedom

e.g., number of parameters to estimate

more data =»can fit more complex models
Is H; = {x > wy + wq1.X — W5.x} more complex than H, =
{x > wy+wq.x}?

What we need is how many different “behaviors” we can get on same S

Ssummary

e Overfitting
o What is overfitting?
o How to detect overfitting?
o Avoiding overfitting using model selection

e Bias — variance tradeoff

Classification

* Supervised learning: estimate a mapping f from input
x € X tooutputy €Y
o Regression Y = R or other continuous variables
o Classification Y takes discrete set of values
" Examples:
o Y = {spam, nospam},

a digits (not values) Y = {0,1,2, ..., 9}

* Many successful applications of ML in vision, speech,
NLP, healthcare

Classification vs Regression

* Label-values do not have meaning
o Y = {spam,nospam}orY = {0,1} or Y = {—1,1}
* Ordering of labels does not matter (for most parts)
o f(x) ="0"wheny =“1"isasbadas f(x) = “9” wheny = “1"
* Often f(x) does not return labels y
o €.g.in binary classification with Y = {—1,1} we often estimate
f: X — Rand then post process to get y(f(x)) =1[f(x) = 0]

o mainly for computational reasons
= remember, we need to solve min),; £ x () , ®)
min 3, £(f (x*), y)
= discrete values = combinatorial problems = hard to solve

o more generally H c {f: X —» R} andloss : RXY —» R

= compare to regression, where typically H c {f: X — Y} and
loss £: YXY - R

11

Non-parametric classifiers

12

Nearest Neighbor (NN) Classifier

* Training data S = {(x(i),y(i)):i = 1,2, ...,N}
* Want to predict label of new point x
* Nearest Neighbor Rule
o Find the closest training point: i* = arg ml_in p(x, x)

o Predict label of x as y(x) = y(i*) |

* Computation
o Training time: Do nothing

o Test time: search the training
set for a NN

Figure credit: Nati Srebro

13

Nearest Neighbor (NN) Classifier

e Where is the main model?

o i* = argmin p(x, x®)
l

o What is the right “distance” between images? Between sound
waves”? Between sentences?

o Often p(x,x") = ||p(x) — d(x')]||, or other norms ||x — x'||;

! p@-dell, |
B = (5x[1],%[2])

0.0 —

Slide credit: Nati Srebro

14

k-Nearest Neighbor (kNN) classifier

* Training data S = {(x(i),y(i)):i = 1,2, ...,N}
* Want to predict label of new point x
* k-Nearest Neighbor Rule
o Find the k closest training point: iy, i5, ..., iy
o Predict label of x as
9(x) = majority(y D,y ., y(@)
* Computation

o Training time: Do nothing

o Test time: search the training set for k NNs

k-Nearest Neighbor

* Advantages
onho training
ouniversal approximator — non-parametric

* Disadvantages
onot scalable
=test time memory requirement
=test time computation
oeasily overfits with small data

Training vs test error

1-NN
* Training error?
0
* Test error?
* Depends on Pr(x, y)

k-NN

Figure credit: Nati Srebro

* Training error: can be
greater than O

* Test error: again depends
on Pr(x,y)

17

ighbor

k-Nearest Ne
Data Fit / Complex

ity Tradeoff

18

Nati Srebro

Slide credi

Space partition

kNN partitioning of X (or R%) into regions of +1 and -1
* What about discrete valued features x?
* Even for continuous x, can we get more structured
partitions?
o easy to describe
"eg, R, ={x:x; <tyand x, > t,} 3
o reduces degrees of freedom

* Any non-overlapping
partition using only _—
(hyper) rectangles
- representable by a tree

Figure credit: Greg Shaknarovich - | 19

Decision trees

* Focus on binary trees (trees with at most two
children at each node)

e How to create trees?

 What is a “good” tree?

o Measure of “purity” at each leaf node where
each leaf node corresponding to a region R;

purity(tree) = g, |# blue at Ry — # red at R;|

There are various metrics of (im)purity
that are used in practice, but the rough
idea is the same

20

Decision trees

How to create trees?

Training data § = {(x(i),y(i)):i =1,2, ...,N}, where
y® € {blue, red}

At each point,
purity(tree) = z |# blue at leaf — # red at leaf]

leaf

Start with all data at root

o only one leaf = root. What is
purity(tree)?

21

Decision trees

How to create trees?

Training data § = {(x(i),y(i)):i =1,2, ...,N}, where
y® € {blue, red}

At each point,
purity(tree) = z |# blue at leaf — # red at leaf]

leaf

Start with all data at root
o only one leaf = root. What is
purity(tree)?
Create a split based on a rule that increases
the amount of “purity” of tree.
o How complex can the rules be?

22

Decision trees

How to create trees?

Training data § = {(x(i),y(i)):i =1,2, ...,N}, where

y® € {blue, red}
At each point,

purity(tree) = z |# blue at leaf — # red at leaf]

leaf

Start with all data at root

o only one leaf = root. What is
purity(tree)?

Create a split based on a rule that increases
the amount of “purity” of tree.

o How complex can the rules be?

Repeat

A S

4 E) cg E
When to stop?
what is the
complexity of a DT?
* Limit the number

of leaf nodes

23

Decision trees

* Advantages
o interpretable
o easy to deal with non-numeric features
o hatural extensions to multi-class, multi-label

* Disadvantages
o hot scalable
o hard decisions — non-smooth decisions
o often overfits in spite of regularization

* Check CART package in scikit-learn

24

Parametric classifiers

* What is the equivalent of linear regression?
o something easy to train

o something easy to use at test time

e f(x) = f,,(x) =w.x + w,
cH ={f, =x>w.x+wy:w € RY,w, € R}
* but f(x) € {—1,1}! how do we get labels?
o reasonable choice
y(x) =1if fp(x) = 0and y(x) = —1 otherwise

o linear classifier: y(x) = sign(w. x + W)

25

Parametric classifiers

c H ={f, =x>w.x+wy:w € R%,w, €R}

e y(x) = sign(W.x + W,)

* w.x + wy = 0 (linear) decision boundary or
separating hyperplane

o that separates R? into two halfspaces
(regions) x, A
W.x+W,>0andw.x + W, <0 <

* more generally, y(x) = sign (f(x)) oS,
- decision boundary is f(x) = 0 \
4
‘F

26

Linear classifier

27

Classification vs Regression

* Label-values do not have meaning
o Y = {spam,nospam}orY = {0,1} or Y = {—1,1}
* Ordering of labels does not matter (for most parts)
o f(x) ="0"wheny =“1"isasbadas f(x) = “9” wheny = “1"
* Often f(x) does not return labels y
o €.g.in binary classification with Y = {—1,1} we often estimate
f: X — Rand then post process to get y(f(x)) =1[f(x) = 0]

o mainly for computational reasons
= remember, we need to solve min),; £ x () , ®)
min 3, £(f (x*), y)
= discrete values = combinatorial problems = hard to solve

o more generally H c {f: X —» R} andloss : RXY —» R

= compare to regression, where typically H c {f: X — Y} and
loss £: YXY - R

28

Classification vs Regression

* Label-values do not have meaning

oy={5

e Ordering o

. . = “1”
What if we ignore above |

o e.g.in and solve classification stimate

f: X = . . (x) = 0]
. using regression?
o mainly
" rer)

= discrete values = combinatorial problems = hard to solve
o more generally H c {f: X - R} andloss #: RXY - R

= compare to regression, where typically H c {f: X — Y} and
loss £: YXTY - R

29

Classification as regression

* Binary classification Y = {—1,1} and X € R

* Treat it as regression with squared loss, say linear
regression
o Training data S = {(x¥,y®):i = 1,2, ..., N}
o ERM

W,Wq

. Nx 2
W; W() — argmin Z(W x(l) + Wy — y(l))
l

Classification as regression

—_— et >
X
' vV — UV — — A~ .
y y=+1,¥y=-1 $(x) = sign(wx + wp)

v

Example credit: Greg Shaknarovich

31

Classification as regression

—o—0—0—¢ NN %>
X
yA classified correctly by
y(x) = sign(w. x)
1o o9 0 o but squared loss (w. x + 1)? will
be high
v

Example credit: Greg Shaknarovich 32

Classification as regression

A
y Y
-0 09 @
v

Example credit: Greg Shaknarovich

33

Classification as regression

6 14
12
4! 10 a2 L
8 .
2 6 ¥ e
4 /
0l .
-2 ;ﬁ’fn
-2 v +,
4! ; : : , -4
4 - 0 5 y 6 25 0 5 10 15 20

Slide credit: Greg Shaknarovich 34

Surrogate Losses

* The correct loss to use is 0-1 loss after thresholding

£01(f (x),y) = 1[sign(f (x)) = y]

£(f(x),y)

= 1[sign(f (x)y) < 0]

]

0 f(x)y =

35

Surrogate Losses

* The correct loss to use is 0-1 loss after thresholding
M (f (), y) = 1[sign(f (0)) # y]
= 1[sign(f (x)y) < 0]
e Linear regression uses #°(f(x),y) = (f (x) — y)?

£(f(x),y)

0 f(x)y =

e Why not do ERM over £°1(f(x), y) directly?
o non-continuous, non-convex

36

Surrogate Losses

e Hard to optimize over £%1, find another loss £(9, y)
o Convex (for any fixed y) = easier to minimize

o An upper bound of #°1 = small £ = small £91
 Satisfied by squared loss
- but has “large” loss even when £°1(3,y) = 0

* Two more surrogate losses in in this course

o Logistic loss

£1°8(9,y) = log(1 + exp(—=9y).
(TODAY)

o Hinge loss

L9 (9, y) = max(0,1 — yy)
(TOMORROW)

£(f (x), y)

0 f)y >

Logistic Regression

Logistic regression: ERM on surrogate loss

Logistic loss |
£(f (x),y) = log(1 + exp(—f (x)y)

£(f (), %)

0 fey-
S={(x®W,y®):i=12,.,N}, X =R% Y={-11}

Linear model f(x) = f,,(x) = w.x + wy

Minimize training loss

w, W, = argminz log (1 + exp(—(w. x® 4 Wo)y(i)))
w,Wg :

Output classifier y(x) = sign(w.x + wy)

39

Logistic regression

w,w, = argminz log (1 + exp(—(w_ x®D 4 Wo)y(i)))
w,W -

* Learns a linear decision boundary
o {x:w.x + wy = 0} is a hyperplane in R? - decision boundary
o {x:w.x + w, = 0} divides R? into two halfspace (regions)
o {x:w.x + wy = 0} will get label +1 and
{x:w.x + wy < 0} will get label -1 2, A

 Maps x to a 1D coordinate

Figure credit: Greg Shaknarovich

Logistic Regression

W, W, = argmlnz: log(1 + exp(—(w.x + wg)y))

W,Wy

e Convex optimization problem
* Can solve using gradient descent

* Can also add usual regularization: £,, €4
o More details in the next session

41

