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Review



Supervised learning — key questions

e Data: what kind of data can we
get? how much data can we get?

Data

* Model: what is the correct model
for my data? — want to minimize
the effort put into this question!

* Training: what resources -
computation/memory - does the
algorithm need to estimate the
model f?

Algorithm

e Testing: how well will f perform
when deployed? what is the
computational/memory
requirement during deployment?



Linear regression

Input x € X c RY, output y € R, want to learn f: X - R
Training data S = {(x(i),y(i)):i = 1,2, ...,N}

Parameterize candidate f: X’ — R by linear functions,
H ={x->w.x:we€RY

Estimate w by minimizing loss on training data

W = argmln]SS(w) = Z(W x@ — y(l))

o J&5(w) is convex inw = m|n|m|ze]SS(w) by setting gradient to 0
o Bus*(w) = XL, (w. x® — y(l))x(l)
o Closed form solutionw = (X'X) 1Xy

* Can get non-linear functions by mapping x = ¢(x) and doing
linear regression on ¢ (x)



Overfitting

* For same amount of data, < o | == Training error
more complex models (0 Test error
. . Be; ]
(e.g., higher degree polynomials) 0.2 \
. 3 \
overfit more 3 ‘
c 0.1 \
e or need more data to fit more — S
0.0 =009

complex models | 5 10 15

* complexity & number of parameters

Model selection

* m model classes {H, H5, ..., H,, }
* S = Strain YU Svar Y Stest

Train on S;4;y to pick best f, € H,

Pick f* based on validation loss on S, 4;

Evaluate test loss LStest(f*)




Regularization

* Complexity of model class can also be controlled by
norm of parameters — smaller range of values allowed

* Regularization for linear regression
argmin /2> (w) + A|lw
w

argmin /2> (w) + A|lw
w

2
2

1

* Again do model selection to pick A—using S,,4; or cross-

validation



Classification

* OQutput y € U takes discrete set of values, e.g., Y = {0,1} or
Y ={-1,1}or Y = {spam,nospam}

o Unlike regression, label-values do not have meaning

e Classifiers divide the space of input X (often R%) to
“regions” where each region is assigned a label

* Non-parametric models

o k-nearest neighbors — regions
defined based on nearest neighbors

o decision trees — structured

rectangular regions

* Linear models — classifier regions
are halfspaces




Classification — logistic regression

Logistic loss

2(f (x),y) = log(1 + exp(—f (x)y))

X=R% Y={-11}5={(x®,yD)i=12,..,N}

£(f (), )

Linear model f(x) = f,,(x) =w.x

Output classifier y(x) = sign(w. x)
Empirical risk minimization:

w = argminz log (1 + exp(—w. x(i)y(i)))
Yo

1.0

0

fx)y -

Alternative, probabilistic formulation: ) 08
PI‘ - 1 X) = §0.4
o 1) 1+ exp(—w.x) 0
Multi-class generalization: Y = {1,2, ..., m} E——
exp(—wy,. x)
Pr(y|x) =

2y exp(—wy/. x)

Can again get non-linear decision boundaries by mapping x = ¢(x)




Classification — maximum margin classifier

Separable data

* Original formulation
y(i)w_ x@

W = argmax min
weRd L lwl|

e Fixing ||lw|| =1 | |
W = argmax min y(‘)(w. x(‘)) s.t. |lw|l =1
w l

e Fixing min y®Pw.x® =1
l

W = argmin ||w|? s.t. Vi, y®w.x®D)>1
w

Slack variables for non-separable data

W = argmin [WlZ +4 3, & st Vi, y®@(w.x®) =1 ¢
w,{¢;=0}

= argmin ||w||* +A }; max (0 1— (l)(w x(l)))
w,{¢$;=0}




Kernel trick

* Using representor theorem w = YV, g;x(®

min ||w||? + Az max(0,1 — y® w.x®)
w .

l
= 52{1{3{ BTGP + AZ max(0,1 — y(i)(Gﬁ)i)
l

G € RV*N with G;; = x¥. x1) is called the gram matrix

» Optimization depends on x(*) only through G;; = x(®. x)

* For predictionw.x = ), 5; x@ . x, we again only need x® . x

e Function K(x,x") = x.x" is called the Kernel

* When learning non-linear classifiers using feature transformations x = ¢ (x)

and fy,(x) = w. $(x)
o Classifier fully specified in terms of Ky (x, x') = K(¢(x), p(x"))
o ¢(x) itself can be very very high dimensional (maybe even infinite

dimensional)
- e.g., polynomial kernels, RBF kernel



Optimization
ERM+regularization optimization problem

N
@ = argmin J2(w): = Z ew. (@), y D) + 2w
w i=1

If]b’}(w) is convex in w, then w is optimum if and only if gradient at wis O, i.e.,
Vj$(w) =0
Gradient descent: start with initialization w® and iteratively update
oowttl = wt — ntV]él(Wt)
o where VJ¢(w?) = ¥, 7e(wt. ¢ (xD),yD) + A7||wi||
Stochastic gradient descent:
o use gradients from only one example

o wttl = wt — 77t ﬁ(i)]S/}(wt)
o where? WJ¢(w) = 7e(wt. p(x@),yD) + %V||wt|| for a random
sample (x(®, y ()
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Other classification models

Optimal unrestricted predictor

o Regression + squared loss=2> f**(x) = E|y|x]

o Classification + 0-1 loss 2 y**(x) = argmax. Pr(y = c|x)
Discriminative models: directly model Pr(y|x), e.g., logistic regression

Generative models: model full joint distribution Pr(y, x) =
Pr(x|y) Pr(y)
Why generative models?
o One conditional might be simpler to model with prior knowledge,
e.g., compare specifying Pr(image|digit = 1) vs
Pr(digit = 1|image)
o Naturally handles missing data
Two examples of generative models
o Naive Bayes classifier — digit recognition, document classification
o Hidden Markov model — POS tagging

11



Other classifiers

* Naive Bayes classifier: with d features x = [x4, x5, ..., X4| where each
X1, X5, ..., X4 can take one of K values = C K¢ parameters

o NB assumption: features are independent given class y = C K d params.

Pr(xy, Xz, ., Xg|y) = Pr(x,|y) Pr(x;|y)..Pr(xq|y) = [14=1 Pr(xk|y)
o Training amounts to averaging samples across classes

* Hidden Markov model: variable length input/observations
{x1, X5, ..., X} (€.8., words) and variable length output/state

V1, Y2 -, ¥m} (e.g., tags)

o HMM assumption: a) current state conditioned on immediate previous
state is conditionally independent of all other variables, and (b) current
observation conditioned on current state is conditionally independent of
all other variables.

m
Pr(xy, X2, vy Xy Y1, Y25 s Ym) = Pr(y;) Pr(x|y) 1_[ Pr(yilyi-1) Pr(yilxy)
k=2

o Parameters estimated using MLE dynamic programming

12



Feed-Forward Neural Networks

Vour JIE (V,E),G,W(x)

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;
 Each edge u — v has weight Wlu - v]
* Pre-activation alv] =), ,cg W[u — v]o[u]
e Outputvalue o[v] =ad(alv])
* “Output Unit” v, €V, fr(x) = alv,yy]
Figure credit: Nati Srebro 13




Feed forward fully connected network

X1

X2

X3 % fw@ =w®' @)
Xa f, ) = s(WPf (x))

* L hidden layers with layer [ havinb d; hidden units

* Parameters:
for each intermediate layer W) € R%-1 %4t where d, = d

final layer weights w(l*1) € R4z
* For 2-hidden layer fiy (x) = w® ' (W(Z)J(W(l)x)). More generally,

fw(x) = w5 (W(L_l) e (W(Z)G(W(l)x)))

14



Back-Propagation

* Efficient calculation of Vy£(fiy(x), y) using chain rule

X1 alv] = Z WOu - v]olu]
& olv] = o(alv])
X3
Z[vout] = 'el(a[vout]» y)
Xq z[u] = o'(alu)) Z WOy - v]z[v]

u—-v

* Forward propagation: calculate activations a[v] and outputs o[ V|
det LW (x),y)

* Backward propagation: calculate z[v] = Sal
. . o 0(fw(x).y) _
Gradient descent update: using W Oluoy] — z|v]o|u]

(t+1) — w(t+1D) @) Fw),y)
w u-vl=w [w=>v]=n oW O [u-v]




Optimization for NN training

* Check
o Add gradCheck()
o Randomly permute data for SGD sequence

* Choose activations to avoid
o Gradient clipping
o Gradient explosion

e SGD “knobs” in NN training

o Initialization = Kaiming/Xavier, or warm start initialization.
Step size/learning rate = very important to tune based on training/ validation loss

(@)

o SGD variants

= Momentum for SGD = usually added with SGD (default parameter
momentum=0.9 often works well)

= Adaptive variants of SGD - common alternative to SGD+momentum is
Adam W|th 182 > ﬁl' e.g.,ﬁz == 0999, ﬁl = 0.9

o Mini-batch SGD -2 ~128 common
o Batch normalization = use batch normalization

16



Regularization in NN

* Explicit regularization

o Data augmentation =2 Augment training data with known
invariances/noise models = very effective

= think of what is the right data augmentation for your problem
o Weight decay = arg mui/n Ls(fw) + % |W||?

" tune step sizes/ A parameter

* Dropout = Randomly (temporarily) remove p fraction of the units in each
step of SGD = usually very useful

o Early stopping
* Choice of architecture affects validation performance/generalization!

* Many optimization choices also affect validation performance—unlike convex
optimization problems with a unique global minimum, where optimization

algorithm only changes the speed/computation of training 2 Not well
understood phenomenon

o Keep in mind while making choices in previous slides

17



NN architectures — CNNs

/ 5x5x3 filter

32 height
/7
I‘ Convolve the filter with the image
i.e. “slide over the image spatially,
A widih computing dot products”

w |
aQ
B
5

__— 32x32x3 image
/ _ 5x5x3 filter
@ convolve (slide) over all

spatial locations
7

3 1
Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/ 18

28
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NN architectures — CNNs

VY

Convolution Layer

A A

3 6
* Each convolution layer has input of size W;,, XH;,, XD;,

28

* Hyperparameters: Number of filters D,,,;; Size of filters K; XK5;
Stride S; Zero padding P

* Parameters: K1 XKy XDy XDyt

* OQutput: W,y ¢ XHyy: XD,y Where
o Woue = (W_in—K_1-2P)/S +1
o Hyye = (H_in—K_2—2P)/S +1

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

19



CNNs

e Typical layers
o Convolution+RelLU
o Max-pooling

o Final few fully connected
layers

e Common datasets

o MNIST (small) _—

o CIFAR-10 & CIFAR-100 [F=& ]
o ImageNet o
o MS COCO m{ LT }
* Tip: Try warm-start e
initialization from -
models pre-trained ——
on imageNet e —
[ Tt ]

AlexNet

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

T

| FC 0 |

[ Saftieo. | [ aa= ]

we [ FCwo | [ e ]
ey [_Fcams ] | o ]
we [_Foame ] | TR
| Pod ] | rw, * J
convs-3 | re, * | | ro * |
convs-2 | rw, & | | —~ ]
convs-1 | | Pt ]
| P ] | rw, 512 |
convé-3 | w512 || w512 |
convé-2 | w512 | | w212 |
conwé-1 | v 812 || rw, 512 |
| Pod ] | Mo |
conv3-2 | e | J
conv3-1 | rw, oo | | |
| Fod ] | Mo |
conva2 | rn | - J
conva-1 | rn | ; J
| Pod ] | Pod |
conv1-2 | ™ | v. o4 |
convi-1 | ™ ] [ = ]
[ Yol ] Yol ]
VGG16 VGG19
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Residual Networks

hl = hl—l + R@LU(COHV(hl_l))

Avoids gradient saturation

]relu e w—

Enabled training of really deep networks
o Typical choice is 152 layers
o 1000+ layers have been trained with

ResNets
e Can also extend for other architectures like
FCNs/RNNs
Research
Revolution of Depth 2.2
152 layers e
164
\ 17 B
22 lwyers 19 Layers —m
" 67 73 I
. b Blayers | | Blayers shalkre ‘—“‘!"ﬁ", = g
H l l H--BH--B__ 1N Total depths of 34, 50, 101, or [ o ]
WSVRC'HS  ILSVRC'14  ISVRC14  ISVRC'M3  ISVRC12  ILSVRC WSVRC10 | - ]
seri cfol',.,.l.«. IR I RIS TAREELL SRoeh 152 layers for ImageNet : =t |

ImageNet Classification top-5 error (%)

300V

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/ 21



NN architectures — RNNs

* Input: each example is a sequence
d
[xl,xz, X € R ]

* Labels: can be single label y or another sequence
» Output of RNNs: [y, hy, ..., by € ]Rd’]

* Note: this is just one example, the training dataset will contain many such
examples

* RNN model: Fori = 1,2, ...,n
hi — tanh(Wxi + Vhi—l)

22



NN architectures — RNNs

* RNN model: Fori = 1,2, ...,n
hi — tanh(Wxi + Vhi—l)

* h, = tanh(Wx, + V tanh(Wx,,_; + V(... + tanh(Wx; + Vhy))))
o Like fully connected networks, but parameters are reused

* loss 'g([hlr hz; ery hn]» y)

one to one one to many many to one many to many many to many

— p— p— p— pr— p— pr— pr—

+ ) ’ ) 4 ) L} L) L} L) .

pr— p— p— — —

- - ‘u 'o- »-‘ - - - = -

‘ i ?Al A PO T

: o ddl

[A. Karpathy]

- Can create deeper networks by using [hl, hy, .., h, € Rd’] as
sequential input to next layer



NN Architectures LSTMs

» RNN produces a sequence of output vectors
T1...TN —  hy...hn
» LSTM produces “memory cell vectors’ along with output
T1...IN — c¢1...cN, h1...hn

» These c;...cny enable the network to keep or drop
information from previous states.

24



NN Architectures LSTMs

* Simple RNNs

Neural Network Paintwie Vector Ce

Layer Operation  Transfer oncotenate Copry

* In LSTMs, each time frame associated with a complex cell

T““‘ / T
=y >
Qarsd
A 1 A
| E
] 0 — > <
Neural Network Paintwise Vector Concatenate Copy

Layer Operation Tran

Figures taken from blog post on LSTMs by C. Olah 25




NN Architecture LSTMs

@ e Cell state c, e Cell state update

1
— -
i Y
C,

Ciy '
>

C,
(X O >

* Forget gate g,  Output gate
A
fe @anfD>
.
oy , 0]
‘%j I >
* Input gate

See lecture slides
for exact equations

Figures taken from blog post on LSTMs by C. Olah 26




NN architectures — encoder-decoder

* Encoder RNN: First encodes

= () in the input and captures the
@ é ) context in &

e Decoder RNN: decodes the

\ output from ¢

,
fi
B @ @ J e Decoder with attention:

instead of relying just on final
context ¢, use a linear
combination of all the hidden
states in the encoder

(not depicted in figure)

P
"

See lecture slides
for exact equations

Slide credit: Greg Shaknarovich



Ensembles

e Reduce bias:

o build ensemble of low-variance, high-bias predictors
sequentially to reduce bias

o AdaBoost: binary classication, exponential surrogate loss

e Reduce variance:

o build ensemble of high-variance, low-bias predictors in
parallel and use randomness and averaging to reduce
variance

o random forests, bagging

* Problems
o Computationally expensive (train and test time)
o Often loose interpretability

28



Bagging: Bootstrap aggregation

Averaging independent models reduces variance without increasing bias.

e But we don’t have independent datasets!
o Instead take repeated bootstrap samples from training set S

* Bootstrap sampling: Given dataset S = {(x(i),y(i)):i = 1,2, ...,N},
create S’ by drawing N examples at random with replacement from S

* Bagging:
o Create M bootstrap datasets y

1,52 e S
o Train distinct models f,,;: X = Y
Build Multiple \

= O > = U <=

4_N0'.4_ O -
- LN
—

by training only on S,

N
L= _‘O"-.4— U

o Output final predictor <?
. 1 M . ifiers -
F(x) = HZm:l fm (x) (for regression)

or F(x) = majority(f,,;(x)) (for classification)

Figure credit: David Sontag
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Adaboost

Training data S = {(x(i),y(i)):i =1,2,..,N}

* Maintain weights Wi(t) for each example
(x®,y®), initially all W, = —

e Fort=1,2,...,T

o Normalize weights Dl-(t) =

o Pick a classifier f; has better than
0.5 weighted loss

er = 210, DO (£, (x @), y®)

1_Et

1
o Seta; = Elog -
t

o Update weights
WD = 1 exp (= O, (x0)

Example credit: Greg Shaknarovich
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Adaboost

Training data S = {(x(i),y(i)):i =1,2,..,N}

* Maintain weights Wl-(t) for each example
(x®,y®), initially all w® = X

e Fort=1,2,...,T

o Normalize weights Dl-(t) =

o Pick a classifier f; has better than
0.5 weighted loss

e = XIL, DI (f,(x @), y®)

1_Et

1
o Seta; = Elog -
t

o Update weights
Wi(t+1) _ Wi(t) exp (_aty(i)ft(x(i)))

* Output strong classifier Fr(x) = sign(Q; a;f:(x))

Example credit: Greg Shaknarovich

¢ O

O
u O
B V
H n
]
O O
O

l

31



Supervised learning summary

* Linear regression

e Classification
o Logistic regression
o Maximum margin classifiers, kernel trick
o Generative models: Naive Bayes, HMMs
o Neural networks

e Ensemble methods

* Main concepts:

o Detecting and avoiding overfitting and the tradeoff between
bias and complexity

o Learning parameters using empirical risk minimization (ERM)
plus regularization

o Optimization techniques: specially (stochastic) gradient
descent = for both convex and non-convex problems

32



Unsupervised learning

* Unsupervised learning:
Requires data x € X, but no
labels

* Goal?: Compact
representation of the data by
detecting patterns

o e.g. Group emails by topic

e Useful when we don’t know
what we are looking for

o makes evaluation tricky

e Applications in visualization,
exploratory data analysis,
semi-supervised learning

Figure credit: David Sontag 33



Linear dimensionality reduction

Problem: Given high dimensional feature x = [x4, x5, ..., x4] € R?
find transformations z(x) = [z, (x), z,(x), ..., z, (x)] € R*
so that “almost all useful information” about x is retained in z(x)

o Learn z(x) from dataset of examples S = {x(i) e R%:i=1,2, ...,N}
Linear dimensionality reduction: z(x) restricted to be a linear function
PCA: given data x € R%, find U € R*¥*? to minimize

mUinz [UTUx® —x®|” s.c. UUT =1
i

. . . . a 1 ; N T
o solution given by eigenvalue decomposition of X, = " ’L-Vzl x® x®

o finds directions of maximum variation in data
o check: make sure to center the data so that each feature has zero mean

Can get non-linear embedding by doing PCA on ¢(x) => Kernel PCA

34



Non linear dimensionality reduction

* |somap: Neighborhood of points represented using the kNN-graph with
weights proportional to distance between the points

o geodesic distance d(x,x’) = length of shortest path in the graph
o Use any shortest path algorithm can be used to construct a matrix M €
RYN with M;; = d(x(i),x(j)) forall x@ xW e s

o MDS: Find a (low dimensional) embedding z(x) of x so that geodesic
distance match the Euclidean distance in the transformed space

. . . 2
min %, jeqy (12(x©) — 2(xP)]| - ;)

* Works well for small scale problems

35



Non linear dimensionality reduction

 Autoencoders:
x1 @ fl
xz ° j"cz

* ¢(x) = fw, (%)
X = fw,(d(x))

* some loss £(%, x)

W,,W, = min 23 (sz (fwl(x(i))),x(i))

Wy, W,

* learn using SGD with backpropagation

36



MLE of latent variable models

e Generative model:
o Observed variables x € X
o Latent variables z € Z

o Probabilistic generative model parameterized by parameters ® is
Py (x,2) = Pp(2) Py (x|2)
= For each example x, first sample z ~ Py (2), then sample x ~
Py (x|2)
= Note: we never see z, appears only in generative assumption

= Latent variables allows for easier specification of Pr(x)

* MLE estimation: given dataset S = {x(i):i = 1,2, ...,N}

N
" = argmaxE log Pr(x(i))
>
=1

N
" = argmaxz: <log2 P (x(i),z)>
@

=1 ZEZ

37



Expectation Maximization high-level algo

N
d* = argmaxz (log z Pq)(x(i),z(i)))
o 4 :
i=1 zDeg
* Main idea: Say we are looking at problems where the above optimization is
“casy” if we “know” zW1 but we don’t know z®.

o Fix-alternate between estimating zW and @

« Start with some estimate ®(©) of parameters we want to estimate:

o Expectation step (E-step): Compute an expectation to “fill in” missing
variables z(! assuming our current estimate of parameter ®® s correct.

o Maximization step (M-step): Assuming our estimates z® from above E-
step is correct, solve maximization to estimate o (t+1)

= Recall that if we pretend to know z@W the optimization is “easy”

* No magic! still optimizing hard non-convex function with lots of local optima

o not guaranteed to converge to global optima and
o but often also give good enough solutions even if they are local optima

38



EM algorithm

N

P* = argmaxz (log z Pq,(x(i),z(i)))
@

=1 Z(i)EZ

* Expectation step (E-step): “fill in” missing variables AL assuming our
current estimate of ®® is correct.

* How to do this?
o Specify an auxiliary model Py (z|x)
o Instead of filling in one value of z this gives a distribution over z|x

o ldea: find a way to estimate W under this model! If the model is correct,
we in turn get a good estimate of z

ELBO(®,¥) = E,py(|x) log Pep(x|2) + DKL(P‘P(le)”PCD(Z))

* Forany W, ELBO,(®,¥) < log(}. e Po(x,2)) and maximized when
Py(z|x) = Pp(2) = Ypex Po (2, X)

39



EM algorithm

N

d* = argmaxz (log Z P¢(x(i),z(i))>
d

=1 zWDez

* Specify joint models Pg (2, x) and auxiliary model Py(z]x)
* Initialize ®©@, g ©)
* Fort =1,2, ...,

° l.IJ(t) — mq?X ELBO(CI)(t_l), qj)

+ ®® = max ELBO(®, ¥®)
P

40



Unsupervised learning — clustering

* k-means clustering
o hard clustering
o Initialize cluster centroid

o Alternatingly
= Compute cluster memberships (hard membershipts)
= Update cluster centroids

e Gaussian mixture models

o soft clustering: cluster membership is a probability vector m €
A*~1 over k mixture components and mixture components
are Gaussians with means uq, U, ..., Ug

o EM algorithm alternatingly:
= Computes soft cluster memberships 7®

» Updates mixture component means ,ugt),ugt), ...,,u,(f)

* Main modeling in specifying distance or learning
representation

41



Topics not covered
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Semi-Supervised Learning
Using unlabeled data to help predictions
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Slide credit: Nati Srebro



Active Learning

Training data is randomly drawn/fixed

What if we could explicitly ask for specific training data?

o E.g. we could query an expert (a teacher, a user, someone on
mechanical turk) about a specific point

Setting
o We have a large collection of unlabeled points
o Can query labels for specific unlabeled examples

o Each query has a cost associated, so we want to minimize the
number of queries

o Goal is to still learn a mapping from input to some
label/output

How to design the querying system so that we learn good models with
smallest amount of data?



Limited/partial Feedback

* Instead of getting correct label, we only know if the prediction
was correct or not

* Only know loss/payoff of label/action chosen, not of others

* “Bandit” problems: ad placement, recommendation systems, ...

* New challenge: Exploration vs Exploitation

Slide credit: Nati Srebro



Reinforcement Learning

e Control agent (robot) in environment, only see reward when you get it

* Long term planning to finish a task

O

O

At time t you are in some (unknown to you) state s;

You choose an action a;, based on which you move to a new state s;,; =
f(s¢, a;) (maybe with some randomness) and receive reward r(s;41).

You don’t know f(:,-) and r(+) (need to learn them)

You only know the rewards r(s;) you get, and possibly other limited feedback
about the state o(s;)

Goal: maximize rewards

.. mouse moving in a maze

State = location and direction

Action = move forward, turn left or turn riginternal state ?ieward
Reward = cheese

Observation(State) =
(front wall, left wall, right wall, back wall)

>

learning rate o
inverse temperature

Slide credit: Nati Srebro discount rate y




Probabilistic Models

* Probabilistic models define models for
Pr(x,y) or Pr(x|y) or Pr(y|x)

* We saw some simple examples of this flavor

* More complex models often use many latent variables
o typically represented as using graphical models such as
Bayesian Networks and Markov Random Fields
* Techniques for
o Modeling : how to represent Pr(x,y) or Pr(x|y) or Pr(y|x)
o Inference : inferring the values of latent variables
o Learning : prediction

* Many times the optimization problems are non-convex
and sometimes even non-computable

o approximate inference algorithms are very common



Machine Learning Landscape

Convex (= Linear)

* Linear/logistic reg.
* SVMs

* Boosting

 Many other models

Main optimization tools:
LP/SDP solvers and SGD

Combinatorial Classes

* Formulas (DNFs)
* Decision trees

Main optimization tools: greedy,
combinatorial search (using
pruning, genetic programming,
simulated annealing, etc)

Non-Parametric

Nearest-Neighbor
Parzan Window
Random walk on
example graph

Non-Convex

* Neural Networks
e Dictionary and
representation learning

Main optimization tools: SGD
with tricks

Probabilistic Models

Fit data to generative model
Bayes nets, graphical models
Latent variable models

Typically non-convex, same issues as
non-convex models

Slide credit: Nati Srebro




Expert designed = data driven

machine learning

® —0
Expert Just dump all
designed data into the
systems machine

THIS 15 YOUR MACHINE LEARNING SYSTETM?
YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT

( THE ANSLJIERS ON THE OTHER SIDE.

mrmammm?)

C. M. Bishop: “...a training 5 T T PLE WL

THEY START LOOKING RIGHT.

set is used to tune the
parameters of an adaptive
model”
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