Day 10: Review

Introduction to Machine Learning Summer School
June 18, 2018 - June 29, 2018, Chicago

Instructor: Suriya Gunasekar, TTI Chicago

29 June 2018

TOYOTA
TECHNOLOGICAL

n INSTITUTE
AT CHICAGO

T4 THE UNIVERSITY OF :@@;
</ CHICAGO

Review

Supervised learning — key questions

e Data: what kind of data can we
get? how much data can we get?

Data

* Model: what is the correct model
for my data? — want to minimize
the effort put into this question!

* Training: what resources -
computation/memory - does the
algorithm need to estimate the
model f?

Algorithm

e Testing: how well will f perform
when deployed? what is the
computational/memory
requirement during deployment?

Linear regression

Input x € X c RY, output y € R, want to learn f: X - R
Training data S = {(x(i),y(i)):i = 1,2, ...,N}

Parameterize candidate f: X’ — R by linear functions,
H ={x->w.x:we€RY

Estimate w by minimizing loss on training data

W = argmln]SS(w) = Z(W x@ — y(l))

o J&5(w) is convex inw = m|n|m|ze]SS(w) by setting gradient to 0
o Bus*(w) = XL, (w. x® — y(l))x(l)
o Closed form solutionw = (X'X) 1Xy

* Can get non-linear functions by mapping x = ¢(x) and doing
linear regression on ¢ (x)

Overfitting

* For same amount of data, < o | == Training error
more complex models (0 Test error
. . Be;]
(e.g., higher degree polynomials) 0.2 \
. 3 \
overfit more 3 ‘
c 0.1 \
e or need more data to fit more — S
0.0 =009

complex models | 5 10 15

* complexity & number of parameters

Model selection

* m model classes {H, H5, ..., H,, }
* S = Strain YU Svar Y Stest

Train on S;4;y to pick best f, € H,

Pick f* based on validation loss on S, 4;

Evaluate test loss LStest(f*)

Regularization

* Complexity of model class can also be controlled by
norm of parameters — smaller range of values allowed

* Regularization for linear regression
argmin /2> (w) + A|lw
w

argmin /2> (w) + A|lw
w

2
2

1

* Again do model selection to pick A—using S,,4; or cross-

validation

Classification

* OQutput y € U takes discrete set of values, e.g., Y = {0,1} or
Y ={-1,1}or Y = {spam,nospam}

o Unlike regression, label-values do not have meaning

e Classifiers divide the space of input X (often R%) to
“regions” where each region is assigned a label

* Non-parametric models

o k-nearest neighbors — regions
defined based on nearest neighbors

o decision trees — structured

rectangular regions

* Linear models — classifier regions
are halfspaces

Classification — logistic regression

Logistic loss

2(f (x),y) = log(1 + exp(—f (x)y))

X=R% Y={-11}5={(x®,yD)i=12,..,N}

£(f (),)

Linear model f(x) = f,,(x) =w.x

Output classifier y(x) = sign(w. x)
Empirical risk minimization:

w = argminz log (1 + exp(—w. x(i)y(i)))
Yo

1.0

0

fx)y -

Alternative, probabilistic formulation:) 08
PI‘ - 1 X) = §0.4
o 1) 1+ exp(—w.x) 0
Multi-class generalization: Y = {1,2, ..., m} E——
exp(—wy,. x)
Pr(y|x) =

2y exp(—wy/. x)

Can again get non-linear decision boundaries by mapping x = ¢(x)

Classification — maximum margin classifier

Separable data

* Original formulation
y(i)w_ x@

W = argmax min
weRd L lwl|

e Fixing ||lw|| =1 | |
W = argmax min y(‘)(w. x(‘)) s.t. |lw|l =1
w l

e Fixing min y®Pw.x® =1
l

W = argmin ||w|? s.t. Vi, y®w.x®D)>1
w

Slack variables for non-separable data

W = argmin [WlZ +4 3, & st Vi, y®@(w.x®) =1 ¢
w,{¢;=0}

= argmin ||w||* +A }; max (0 1— (l)(w x(l)))
w,{¢$;=0}

Kernel trick

* Using representor theorem w = YV, g;x(®

min ||w||? + Az max(0,1 — y® w.x®)
w .

l
= 52{1{3{ BTGP + AZ max(0,1 — y(i)(Gﬁ)i)
l

G € RV*N with G;; = x¥. x1) is called the gram matrix

» Optimization depends on x(*) only through G;; = x(®. x)

* For predictionw.x =), 5; x@ . x, we again only need x® . x

e Function K(x,x") = x.x" is called the Kernel

* When learning non-linear classifiers using feature transformations x = ¢ (x)

and fy,(x) = w. $(x)
o Classifier fully specified in terms of Ky (x, x') = K(¢(x), p(x"))
o ¢(x) itself can be very very high dimensional (maybe even infinite

dimensional)
- e.g., polynomial kernels, RBF kernel

Optimization
ERM+regularization optimization problem

N
@ = argmin J2(w): = Z ew. (@), y D) + 2w
w i=1

If]b’}(w) is convex in w, then w is optimum if and only if gradient at wis O, i.e.,
Vj$(w) =0
Gradient descent: start with initialization w® and iteratively update
oowttl = wt — ntV]él(Wt)
o where VJ¢(w?) = ¥, 7e(wt. ¢ (xD),yD) + A7||wi||
Stochastic gradient descent:
o use gradients from only one example

o wttl = wt — 77t ﬁ(i)]S/}(wt)
o where? WJ¢(w) = 7e(wt. p(x@),yD) + %V||wt|| for a random
sample (x(®, y ()

10

Other classification models

Optimal unrestricted predictor

o Regression + squared loss=2> f**(x) = E|y|x]

o Classification + 0-1 loss 2 y**(x) = argmax. Pr(y = c|x)
Discriminative models: directly model Pr(y|x), e.g., logistic regression

Generative models: model full joint distribution Pr(y, x) =
Pr(x|y) Pr(y)
Why generative models?
o One conditional might be simpler to model with prior knowledge,
e.g., compare specifying Pr(image|digit = 1) vs
Pr(digit = 1|image)
o Naturally handles missing data
Two examples of generative models
o Naive Bayes classifier — digit recognition, document classification
o Hidden Markov model — POS tagging

11

Other classifiers

* Naive Bayes classifier: with d features x = [x4, x5, ..., X4| where each
X1, X5, ..., X4 can take one of K values = C K¢ parameters

o NB assumption: features are independent given class y = C K d params.

Pr(xy, Xz, ., Xg|y) = Pr(x,|y) Pr(x;|y)..Pr(xq|y) = [14=1 Pr(xk|y)
o Training amounts to averaging samples across classes

* Hidden Markov model: variable length input/observations
{x1, X5, ..., X} (€.8., words) and variable length output/state

V1, Y2 -, ¥m} (e.g., tags)

o HMM assumption: a) current state conditioned on immediate previous
state is conditionally independent of all other variables, and (b) current
observation conditioned on current state is conditionally independent of
all other variables.

m
Pr(xy, X2, vy Xy Y1, Y25 s Ym) = Pr(y;) Pr(x|y) 1_[Pr(yilyi-1) Pr(yilxy)
k=2

o Parameters estimated using MLE dynamic programming

12

Feed-Forward Neural Networks

Vour JIE (V,E),G,W(x)

Architecture:

* Directed Acyclic Graph G(V,E). Units (neurons) indexed by vertices in V.
* “Input Units” v; ...v4 € V : no incoming edges have value o[v;] = x;
 Each edge u — v has weight Wlu - v]
* Pre-activation alv] =), ,cg W[u — v]o[u]
e Outputvalue o[v] =ad(alv])
* “Output Unit” v, €V, fr(x) = alv,yy]
Figure credit: Nati Srebro 13

Feed forward fully connected network

X1

X2

X3 % fw@ =w®' @)
Xa f,) = s(WPf (x))

* L hidden layers with layer [havinb d; hidden units

* Parameters:
for each intermediate layer W) € R%-1 %4t where d, = d

final layer weights w(l*1) € R4z
* For 2-hidden layer fiy (x) = w® ' (W(Z)J(W(l)x)). More generally,

fw(x) = w5 (W(L_l) e (W(Z)G(W(l)x)))

14

Back-Propagation

* Efficient calculation of Vy£(fiy(x), y) using chain rule

X1 alv] = Z WOu - v]olu]
& olv] = o(alv])
X3
Z[vout] = 'el(a[vout]» y)
Xq z[u] = o'(alu)) Z WOy - v]z[v]

u—-v

* Forward propagation: calculate activations a[v] and outputs o[V|
det LW (x),y)

* Backward propagation: calculate z[v] = Sal
. . o 0(fw(x).y) _
Gradient descent update: using W Oluoy] — z|v]o|u]

(t+1) — w(t+1D) @) Fw),y)
w u-vl=w [w=>v]=n oW O [u-v]

Optimization for NN training

* Check
o Add gradCheck()
o Randomly permute data for SGD sequence

* Choose activations to avoid
o Gradient clipping
o Gradient explosion

e SGD “knobs” in NN training

o Initialization = Kaiming/Xavier, or warm start initialization.
Step size/learning rate = very important to tune based on training/ validation loss

(@)

o SGD variants

= Momentum for SGD = usually added with SGD (default parameter
momentum=0.9 often works well)

= Adaptive variants of SGD - common alternative to SGD+momentum is
Adam W|th 182 > ﬁl' e.g.,ﬁz == 0999, ﬁl = 0.9

o Mini-batch SGD -2 ~128 common
o Batch normalization = use batch normalization

16

Regularization in NN

* Explicit regularization

o Data augmentation =2 Augment training data with known
invariances/noise models = very effective

= think of what is the right data augmentation for your problem
o Weight decay = arg mui/n Ls(fw) + % |W||?

" tune step sizes/ A parameter

* Dropout = Randomly (temporarily) remove p fraction of the units in each
step of SGD = usually very useful

o Early stopping
* Choice of architecture affects validation performance/generalization!

* Many optimization choices also affect validation performance—unlike convex
optimization problems with a unique global minimum, where optimization

algorithm only changes the speed/computation of training 2 Not well
understood phenomenon

o Keep in mind while making choices in previous slides

17

NN architectures — CNNs

/ 5x5x3 filter

32 height
/7
I‘ Convolve the filter with the image
i.e. “slide over the image spatially,
A widih computing dot products”

w |
aQ
B
5

__— 32x32x3 image
/ _ 5x5x3 filter
@ convolve (slide) over all

spatial locations
7

3 1
Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/ 18

28

28

NN architectures — CNNs

VY

Convolution Layer

A A

3 6
* Each convolution layer has input of size W;,, XH;,, XD;,

28

* Hyperparameters: Number of filters D,,,;; Size of filters K; XK5;
Stride S; Zero padding P

* Parameters: K1 XKy XDy XDyt

* OQutput: W,y ¢ XHyy: XD,y Where
o Woue = (W_in—K_1-2P)/S +1
o Hyye = (H_in—K_2—2P)/S +1

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

19

CNNs

e Typical layers
o Convolution+RelLU
o Max-pooling

o Final few fully connected
layers

e Common datasets

o MNIST (small) _—

o CIFAR-10 & CIFAR-100 [F=&]
o ImageNet o
o MS COCO m{ LT }
* Tip: Try warm-start e
initialization from -
models pre-trained ——
on imageNet e —
[Tt]

AlexNet

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/

T

| FC 0 |

[Saftieo. | [aa=]

we [FCwo | [e]
ey [_Fcams] | o]
we [_Foame] | TR
| Pod] | rw, * J
convs-3 | re, * | | ro * |
convs-2 | rw, & | | —~]
convs-1 | | Pt]
| P] | rw, 512 |
convé-3 | w512 || w512 |
convé-2 | w512 | | w212 |
conwé-1 | v 812 || rw, 512 |
| Pod] | Mo |
conv3-2 | e | J
conv3-1 | rw, oo | | |
| Fod] | Mo |
conva2 | rn | - J
conva-1 | rn | ; J
| Pod] | Pod |
conv1-2 | ™ | v. o4 |
convi-1 | ™] [=]
[Yol] Yol]
VGG16 VGG19

20

Residual Networks

hl = hl—l + R@LU(COHV(hl_l))

Avoids gradient saturation

]relu e w—

Enabled training of really deep networks
o Typical choice is 152 layers
o 1000+ layers have been trained with

ResNets
e Can also extend for other architectures like
FCNs/RNNs
Research
Revolution of Depth 2.2
152 layers e
164
\ 17 B
22 lwyers 19 Layers —m
" 67 73 I
. b Blayers | | Blayers shalkre ‘—“‘!"ﬁ", = g
H l l H--BH--B__ 1N Total depths of 34, 50, 101, or [o]
WSVRC'HS ILSVRC'14 ISVRC14 ISVRC'M3 ISVRC12 ILSVRC WSVRC10 | -]
seri cfol',.,.l.«. IR I RIS TAREELL SRoeh 152 layers for ImageNet : =t |

ImageNet Classification top-5 error (%)

300V

Figures taken from lecture slides at http://cs231n.stanford.edu/slides/2017/ 21

NN architectures — RNNs

* Input: each example is a sequence
d
[xl,xz, X € R]

* Labels: can be single label y or another sequence
» Output of RNNs: [y, hy, ..., by €]Rd’]

* Note: this is just one example, the training dataset will contain many such
examples

* RNN model: Fori = 1,2, ...,n
hi — tanh(Wxi + Vhi—l)

22

NN architectures — RNNs

* RNN model: Fori = 1,2, ...,n
hi — tanh(Wxi + Vhi—l)

* h, = tanh(Wx, + V tanh(Wx,,_; + V(... + tanh(Wx; + Vhy))))
o Like fully connected networks, but parameters are reused

* loss 'g([hlr hz; ery hn]» y)

one to one one to many many to one many to many many to many

— p— p— p— pr— p— pr— pr—

+) ’) 4) L} L) L} L) .

pr— p— p— — —

- - ‘u 'o- »-‘ - - - = -

‘ i ?Al A PO T

: o ddl

[A. Karpathy]

- Can create deeper networks by using [hl, hy, .., h, € Rd’] as
sequential input to next layer

NN Architectures LSTMs

» RNN produces a sequence of output vectors
T1...TN — hy...hn
» LSTM produces “memory cell vectors’ along with output
T1...IN — c¢1...cN, h1...hn

» These c;...cny enable the network to keep or drop
information from previous states.

24

NN Architectures LSTMs

* Simple RNNs

Neural Network Paintwie Vector Ce

Layer Operation Transfer oncotenate Copry

* In LSTMs, each time frame associated with a complex cell

T““‘ / T
=y >
Qarsd
A 1 A
| E
] 0 — > <
Neural Network Paintwise Vector Concatenate Copy

Layer Operation Tran

Figures taken from blog post on LSTMs by C. Olah 25

NN Architecture LSTMs

@ e Cell state c, e Cell state update

1
— -
i Y
C,

Ciy '
>

C,
(X O >

* Forget gate g, Output gate
A
fe @anfD>
.
oy , 0]
‘%j I >
* Input gate

See lecture slides
for exact equations

Figures taken from blog post on LSTMs by C. Olah 26

NN architectures — encoder-decoder

* Encoder RNN: First encodes

= () in the input and captures the
@ é) context in &

e Decoder RNN: decodes the

\ output from ¢

,
fi
B @ @ J e Decoder with attention:

instead of relying just on final
context ¢, use a linear
combination of all the hidden
states in the encoder

(not depicted in figure)

P
"

See lecture slides
for exact equations

Slide credit: Greg Shaknarovich

Ensembles

e Reduce bias:

o build ensemble of low-variance, high-bias predictors
sequentially to reduce bias

o AdaBoost: binary classication, exponential surrogate loss

e Reduce variance:

o build ensemble of high-variance, low-bias predictors in
parallel and use randomness and averaging to reduce
variance

o random forests, bagging

* Problems
o Computationally expensive (train and test time)
o Often loose interpretability

28

Bagging: Bootstrap aggregation

Averaging independent models reduces variance without increasing bias.

e But we don’t have independent datasets!
o Instead take repeated bootstrap samples from training set S

* Bootstrap sampling: Given dataset S = {(x(i),y(i)):i = 1,2, ...,N},
create S’ by drawing N examples at random with replacement from S

* Bagging:
o Create M bootstrap datasets y

1,52 e S
o Train distinct models f,,;: X = Y
Build Multiple \

= O > = U <=

4_N0'.4_ O -
- LN
—

by training only on S,

N
L= _‘O"-.4— U

o Output final predictor <?
. 1 M . ifiers -
F(x) = HZm:l fm (x) (for regression)

or F(x) = majority(f,,;(x)) (for classification)

Figure credit: David Sontag

29

Adaboost

Training data S = {(x(i),y(i)):i =1,2,..,N}

* Maintain weights Wi(t) for each example
(x®,y®), initially all W, = —

e Fort=1,2,...,T

o Normalize weights Dl-(t) =

o Pick a classifier f; has better than
0.5 weighted loss

er = 210, DO (£, (x @), y®)

1_Et

1
o Seta; = Elog -
t

o Update weights
WD = 1 exp (= O, (x0)

Example credit: Greg Shaknarovich

30

Adaboost

Training data S = {(x(i),y(i)):i =1,2,..,N}

* Maintain weights Wl-(t) for each example
(x®,y®), initially all w® = X

e Fort=1,2,...,T

o Normalize weights Dl-(t) =

o Pick a classifier f; has better than
0.5 weighted loss

e = XIL, DI (f,(x @), y®)

1_Et

1
o Seta; = Elog -
t

o Update weights
Wi(t+1) _ Wi(t) exp (_aty(i)ft(x(i)))

* Output strong classifier Fr(x) = sign(Q; a;f:(x))

Example credit: Greg Shaknarovich

¢ O

O
u O
B V
H n
]
O O
O

l

31

Supervised learning summary

* Linear regression

e Classification
o Logistic regression
o Maximum margin classifiers, kernel trick
o Generative models: Naive Bayes, HMMs
o Neural networks

e Ensemble methods

* Main concepts:

o Detecting and avoiding overfitting and the tradeoff between
bias and complexity

o Learning parameters using empirical risk minimization (ERM)
plus regularization

o Optimization techniques: specially (stochastic) gradient
descent = for both convex and non-convex problems

32

Unsupervised learning

* Unsupervised learning:
Requires data x € X, but no
labels

* Goal?: Compact
representation of the data by
detecting patterns

o e.g. Group emails by topic

e Useful when we don’t know
what we are looking for

o makes evaluation tricky

e Applications in visualization,
exploratory data analysis,
semi-supervised learning

Figure credit: David Sontag 33

Linear dimensionality reduction

Problem: Given high dimensional feature x = [x4, x5, ..., x4] € R?
find transformations z(x) = [z, (x), z,(x), ..., z, (x)] € R*
so that “almost all useful information” about x is retained in z(x)

o Learn z(x) from dataset of examples S = {x(i) e R%:i=1,2, ...,N}
Linear dimensionality reduction: z(x) restricted to be a linear function
PCA: given data x € R%, find U € R*¥*? to minimize

mUinz [UTUx® —x®|” s.c. UUT =1
i

. . . . a 1 ; N T
o solution given by eigenvalue decomposition of X, = " ’L-Vzl x® x®

o finds directions of maximum variation in data
o check: make sure to center the data so that each feature has zero mean

Can get non-linear embedding by doing PCA on ¢(x) => Kernel PCA

34

Non linear dimensionality reduction

* |somap: Neighborhood of points represented using the kNN-graph with
weights proportional to distance between the points

o geodesic distance d(x,x’) = length of shortest path in the graph
o Use any shortest path algorithm can be used to construct a matrix M €
RYN with M;; = d(x(i),x(j)) forall x@ xW e s

o MDS: Find a (low dimensional) embedding z(x) of x so that geodesic
distance match the Euclidean distance in the transformed space

. . . 2
min %, jeqy (12(x©) — 2(xP)]| - ;)

* Works well for small scale problems

35

Non linear dimensionality reduction

 Autoencoders:
x1 @ fl
xz ° j"cz

* ¢(x) = fw, (%)
X = fw,(d(x))

* some loss £(%, x)

W,,W, = min 23 (sz (fwl(x(i))),x(i))

Wy, W,

* learn using SGD with backpropagation

36

MLE of latent variable models

e Generative model:
o Observed variables x € X
o Latent variables z € Z

o Probabilistic generative model parameterized by parameters ® is
Py (x,2) = Pp(2) Py (x|2)
= For each example x, first sample z ~ Py (2), then sample x ~
Py (x|2)
= Note: we never see z, appears only in generative assumption

= Latent variables allows for easier specification of Pr(x)

* MLE estimation: given dataset S = {x(i):i = 1,2, ...,N}

N
" = argmaxE log Pr(x(i))
>
=1

N
" = argmaxz: <log2 P (x(i),z)>
@

=1 ZEZ

37

Expectation Maximization high-level algo

N
d* = argmaxz (log z Pq)(x(i),z(i)))
o 4 :
i=1 zDeg
* Main idea: Say we are looking at problems where the above optimization is
“casy” if we “know” zW1 but we don’t know z®.

o Fix-alternate between estimating zW and @

« Start with some estimate ®(©) of parameters we want to estimate:

o Expectation step (E-step): Compute an expectation to “fill in” missing
variables z(! assuming our current estimate of parameter ®® s correct.

o Maximization step (M-step): Assuming our estimates z® from above E-
step is correct, solve maximization to estimate o (t+1)

= Recall that if we pretend to know z@W the optimization is “easy”

* No magic! still optimizing hard non-convex function with lots of local optima

o not guaranteed to converge to global optima and
o but often also give good enough solutions even if they are local optima

38

EM algorithm

N

P* = argmaxz (log z Pq,(x(i),z(i)))
@

=1 Z(i)EZ

* Expectation step (E-step): “fill in” missing variables AL assuming our
current estimate of ®® is correct.

* How to do this?
o Specify an auxiliary model Py (z|x)
o Instead of filling in one value of z this gives a distribution over z|x

o ldea: find a way to estimate W under this model! If the model is correct,
we in turn get a good estimate of z

ELBO(®,¥) = E,py(|x) log Pep(x|2) + DKL(P‘P(le)”PCD(Z))

* Forany W, ELBO,(®,¥) < log(}. e Po(x,2)) and maximized when
Py(z|x) = Pp(2) = Ypex Po (2, X)

39

EM algorithm

N

d* = argmaxz (log Z P¢(x(i),z(i))>
d

=1 zWDez

* Specify joint models Pg (2, x) and auxiliary model Py(z]x)
* Initialize ®©@, g ©)
* Fort =1,2, ...,

° l.IJ(t) — mq?X ELBO(CI)(t_l), qj)

+ ®® = max ELBO(®, ¥®)
P

40

Unsupervised learning — clustering

* k-means clustering
o hard clustering
o Initialize cluster centroid

o Alternatingly
= Compute cluster memberships (hard membershipts)
= Update cluster centroids

e Gaussian mixture models

o soft clustering: cluster membership is a probability vector m €
A*~1 over k mixture components and mixture components
are Gaussians with means uq, U, ..., Ug

o EM algorithm alternatingly:
= Computes soft cluster memberships 7®

» Updates mixture component means ,ugt),ugt), ...,,u,(f)

* Main modeling in specifying distance or learning
representation

41

Topics not covered

42

Semi-Supervised Learning
Using unlabeled data to help predictions

O
. . O O 5
g
] O
o Ug O O
00g O = o 0O
O
- o C O O O O
O
= 04 O O
O [m] O
o Hp oD DDE DDD
O O
0 O g I gf m@g 0 D@E@%% %o O
O al %%ﬁ@ 05 - O
O oo m o @ O DD
o o oO
O 8 - - O
O U o oo 0@ 4 - -
O 0 m O O
- O oo - - | oo o
O) U oo O
O
| - Og AP DD@?E&D% Eﬁﬂ]g yallis W T o 400 o
Dﬁm@a@% o @@ = ﬁdﬂ O O
mjp=st EEDD o ey O E% g = g%dﬂ -
O m m| B -F ooo oLl o Oo 00
m| Odg O m] N - =] 0o O |
O
[} DD . O oo O
O O
o o O o O o
O
Iz} O g O Og O O
]]]
O
= o O 0g ©
o oo]
- O 0 O 0 O
o o o o ©
O O
o o u m]
O
O o U
0o By O =l o 5
oo O O
oo O o o2 g
] OO o

Slide credit: Nati Srebro

Active Learning

Training data is randomly drawn/fixed

What if we could explicitly ask for specific training data?

o E.g. we could query an expert (a teacher, a user, someone on
mechanical turk) about a specific point

Setting
o We have a large collection of unlabeled points
o Can query labels for specific unlabeled examples

o Each query has a cost associated, so we want to minimize the
number of queries

o Goal is to still learn a mapping from input to some
label/output

How to design the querying system so that we learn good models with
smallest amount of data?

Limited/partial Feedback

* Instead of getting correct label, we only know if the prediction
was correct or not

* Only know loss/payoff of label/action chosen, not of others

* “Bandit” problems: ad placement, recommendation systems, ...

* New challenge: Exploration vs Exploitation

Slide credit: Nati Srebro

Reinforcement Learning

e Control agent (robot) in environment, only see reward when you get it

* Long term planning to finish a task

O

O

At time t you are in some (unknown to you) state s;

You choose an action a;, based on which you move to a new state s;,; =
f(s¢, a;) (maybe with some randomness) and receive reward r(s;41).

You don’t know f(:,-) and r(+) (need to learn them)

You only know the rewards r(s;) you get, and possibly other limited feedback
about the state o(s;)

Goal: maximize rewards

.. mouse moving in a maze

State = location and direction

Action = move forward, turn left or turn riginternal state ?ieward
Reward = cheese

Observation(State) =
(front wall, left wall, right wall, back wall)

>

learning rate o
inverse temperature

Slide credit: Nati Srebro discount rate y

Probabilistic Models

* Probabilistic models define models for
Pr(x,y) or Pr(x|y) or Pr(y|x)

* We saw some simple examples of this flavor

* More complex models often use many latent variables
o typically represented as using graphical models such as
Bayesian Networks and Markov Random Fields
* Techniques for
o Modeling : how to represent Pr(x,y) or Pr(x|y) or Pr(y|x)
o Inference : inferring the values of latent variables
o Learning : prediction

* Many times the optimization problems are non-convex
and sometimes even non-computable

o approximate inference algorithms are very common

Machine Learning Landscape

Convex (= Linear)

* Linear/logistic reg.
* SVMs

* Boosting

 Many other models

Main optimization tools:
LP/SDP solvers and SGD

Combinatorial Classes

* Formulas (DNFs)
* Decision trees

Main optimization tools: greedy,
combinatorial search (using
pruning, genetic programming,
simulated annealing, etc)

Non-Parametric

Nearest-Neighbor
Parzan Window
Random walk on
example graph

Non-Convex

* Neural Networks
e Dictionary and
representation learning

Main optimization tools: SGD
with tricks

Probabilistic Models

Fit data to generative model
Bayes nets, graphical models
Latent variable models

Typically non-convex, same issues as
non-convex models

Slide credit: Nati Srebro

Expert designed = data driven

machine learning

® —0
Expert Just dump all
designed data into the
systems machine

THIS 15 YOUR MACHINE LEARNING SYSTETM?
YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT

(THE ANSLJIERS ON THE OTHER SIDE.

mrmammm?)

C. M. Bishop: “...a training 5 T T PLE WL

THEY START LOOKING RIGHT.

set is used to tune the
parameters of an adaptive
model”

49

