

COMPARING PROBABILITY DISTRIBUTIONS

Applications: Hypothesis testing, Feature matching in computer vision. **Methods:** χ^2 test, simple L_2 norm between densities, EMD/KR metric.

Advantages of EMD: Error in sample values causes shift in estimated distributions. Unlike others, this is not heavily penalized by EMD.

Disadvantage of EMD: $O(n^3 \log n)$ computation time. So fast approximation needed !

KR METRIC / EMD

P_1, P_2 Probability distributions on a compact metric space S p_1, p_2 Probability densities $p := p_1 - p_2$ Difference density $c(x, y) = x - y ^s$ Cost function $q(x, y)$ Joint density with p_1 and p_2 as marginals $f(x)$ Potential function	Fo C ₁ we
$EMD := \inf_{q} \int x - y ^{s} q(x, y) dx dy$ s.t. $\int q(u, y) dy - \int q(x, u) dx = p(u)$ Theorem 1 (Kantorovich-Rubinstein [2]).	D
$Dual EMD := \sup_{f} \int f(x)p(x)dx \longrightarrow Inner Product$ $s.t.f(x) - f(y) \leq x - y ^{s} \longrightarrow H\"{o}lder \ continuity \ of \ order \ s$	Th di <u>f</u>
Hölder continuity : $C_H(f) := \sup_{x \neq y} \frac{ f(x) - f(y) }{ x - y ^s}$ exists and is finite.	is C _l

[2] S. T. Rachev and L. Rüschendorf. *Mass Transportation Problems I: Theory*. Springer, 1998.[3] Y. Meyer. *Wavelets and Operators, Vol 1*. Cambridge university press, 1992.

Approximate earth mover's distance in linear time

Sameer Shirdhonkar and David W. Jacobs

{ssameer,djacobs}@umiacs.umd.edu

http://www.umiacs.umd.edu/~ssameer/

WAVELET APPROXIMATION

Theorem 2 ([3]). $f \in L^1_{loc}(\mathbb{R}^n)$, belongs to $C^s(\mathbb{R}^n)$ if and only if, in a wavelet decomposition of regularity $r \ge 1 > s$ there exist constants C_0 and C_1 such that,

Approx. coeffs.: $|f_k| \le C_0, \quad k \in \mathbb{Z}^n$ and Detail coeffs.: $|f_\lambda| \le C_1 2^{-j(n/2+s)}, \quad \lambda \in \Lambda_j, \quad j \ge 0$ (1)

Lemma 1. If 0 < s < 1 and (1) holds, then $f \in C^{s}(\mathbb{R}^{n})$ with $C_{H}(f) < C$ such that

$$a_{12}(\psi;s)C_1 \le C \le a_{21}(\psi;s)C_0 + a_{22}(\psi;s)C_1 \tag{6}$$

r discrete distributions, if we change the definition of $C_H(f)$ to $H(f) := \sup_{|x-y| \ge 1} \frac{|f(x) - f(y)|}{||x-y||^s}$ then the same holds for s = 1 as

al EMD in wavelet domain:

Maximize
$$\mathbf{p}^T \mathbf{f} = \sum_k p_k f_k + \sum_\lambda p_\lambda f_\lambda$$

subject to $|f_k| \le C_0$ and $|f_\lambda| \le C_1 2^{-j(s+n/2)}$ (3)

eorem 3 (Main result). (p_k, p_λ) are wavelet coefficients of the *ference density* p. Then for any constants $C_0 \ge 0$ and $C_1 > 0$,

WEMD :=
$$C_0 \sum_{k} |p_k| + C_1 \sum_{\lambda} 2^{-j(s+n/2)} |p_{\lambda}|$$
 (4)

an equivalent metric to the KR metric; i.e. there exist constants L > 0 and $C_U > 0$ such that

$$C_L \cdot WEMD \le EMD \le C_U \cdot WEMD$$
 (5)

For discrete distributions, the same result holds for s = 1 *as well.*

$$WEMD = \sum_{\lambda} |p_{\lambda}| 2^{-j(s+n/2)}$$
(6)

(Since C_0, C_1 are arbitrary.) This is an O(n) time computation !

^[1] P. Indyk and N. Thaper. Fast image retrieval via embeddings. In *3rd International Workshop on Statistical and Computational Theories of Vision (at ICCV)*, 2003.

