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COMPARING PROBABILITY

DISTRIBUTIONS

Applications: Hypothesis testing, Feature matching in computer vision.

Methods: χ2 test, simple L2 norm between densities, EMD/KR metric.

Advantages of EMD: Error in sample values causes shift in estimated dis-
tributions. Unlike others, this is not heavily penalized by EMD.

Disadvantage of EMD: O(n3 log n) computation time. So fast approxima-

tion needed !

KR METRIC / EMD
P1, P2 Probability distributions on a compact metric space S
p1, p2 Probability densities
p := p1 − p2 Difference density
c(x, y) = ‖x− y‖s Cost function
q(x, y) Joint density with p1 and p2 as marginals
f (x) Potential function

EMD := inf
q

∫
||x− y||s q(x, y)dxdy

s.t.

∫
q(u, y)dy −

∫
q(x, u)dx = p(u)

Theorem 1 (Kantorovich-Rubinstein [2]).

Dual EMD := supf
∫
f (x)p(x)dx −→ Inner Product

s.t.f (x) − f (y) ≤ ||x− y||s −→ Hölder continuity of order s

Hölder continuity : CH(f ) := supx 6=y
|f (x)−f (y)|
‖x−y‖s

exists and is

finite.

Computation of wavelet EMD

WAVELET APPROXIMATION

Theorem 2 ([3]). f ∈ L1
loc(R

n), belongs to Cs(Rn) if and only if, in
a wavelet decomposition of regularity r ≥ 1 > s there exist constants
C0 and C1 such that,

Approx. coeffs.: |fk| ≤ C0, k ∈ Z
n and

Detail coeffs.: |fλ| ≤ C12
−j(n/2+s), λ ∈ Λj, j ≥ 0 (1)

Lemma 1. If 0 < s < 1 and (1) holds, then f ∈ Cs(Rn) with
CH(f ) < C such that

a12(ψ; s)C1 ≤ C ≤ a21(ψ; s)C0 + a22(ψ; s)C1 (2)

For discrete distributions, if we change the definition of CH(f ) to

CH(f ) := sup|x−y|≥1
|f (x)−f (y)|
‖x−y‖s

then the same holds for s = 1 as

well.

Dual EMD in wavelet domain:

Maximize pT f =
∑
k pkfk +

∑
λ pλfλ

subject to |fk| ≤ C0 and |fλ| ≤ C12
−j(s+n/2) (3)

Theorem 3 (Main result). (pk, pλ) are wavelet coefficients of the
difference density p. Then for any constants C0 ≥ 0 and C1 > 0,

WEMD := C0

∑
k

|pk| + C1

∑
λ

2−j(s+n/2)|pλ| (4)

is an equivalent metric to the KR metric; i.e. there exist constants
CL > 0 and CU > 0 such that

CL · WEMD ≤ EMD ≤ CU · WEMD (5)

For discrete distributions, the same result holds for s = 1 as well.

WEMD =
∑
λ

|pλ|2
−j(s+n/2) (6)

(Since C0, C1 are arbitrary.) This is an O(n) time computation !
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EXPERIMENTS

Daubechies CU/CL Daub. symmetric CU/CL
db3 6.33 sym3 6.33
db4 7.29 sym4 4.64
db5 9.92 sym5 6.01
db6 12.59 sym6 5.58

Coiflets CU/CL Ojanen CU/CL
coif1 4.38 oj8 7.46
coif2 4.75 oj10 10.56
coif3 5.85 oj12 13.79

Theoretical (loose) estimates for MAX error for 1D wavelets.

Method Bounds Normalized Preproc. Compare
ratio RMS error time time

EMD – – 0.92 s 63 ms
Wavelet EMD 7.03 18% 2.35 s 0.11 ms
Indyk-Thaper 11.00 43% 0.51 s 22 ms

Error and time requirements for 16x16x16 colour histograms

WEMD (coif3) has less error than Indyk and Thaper’s [1]
method.
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Colour histograms for content based image retrieval: wavelet
EMD performance compared to other EMD methods


