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Abstract

We continue our study [12] of Shannon sampling and function reconstruction. In this
paper, the error analysis is improved. The problem of function reconstruction is extended
to a more general setting with frames beyond point evaluation. Then we show how our
approach can be applied to learning theory: a functional analysis framework is presented;
sharp, dimension independent probability estimates are given not only for error in the L2

spaces, but also for the error in the reproducing kernel Hilbert space where the a learning
algorithm is performed. Covering number arguments are replaced by estimates of integral
operators.

Keywords and Phrases: Shannon sampling, function reconstruction, learning Theory,
reproducing kernel Hilbert space, frames

§1. Introduction

This paper considers regularization schemes associated with the least square loss and

Hilbert spaces H of continuous functions. Our target is to provide a unified approach for

two topics: interpolation theory, or more generally, function reconstruction in Shannon

sampling theory with H being a space of band-limited functions or functions with certain
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supported partially by the Research Grants Council of Hong Kong [Project No. CityU
103704] and by City University of Hong Kong [Project No. 7001442].
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decay; and regression problem in learning theory withH being a reproducing kernel Hilbert

space HK .

First, we improve the probability estimates in [12] with a simplified development.

Then we apply the technique for function reconstruction to learning theory. In particular,

we show that a regression function fρ can be approximated by a regularization scheme fz,λ

in HK . Dimension independent exponential probability estimates are given for the error

‖fz,λ−fρ‖K . Our error bounds provide clues to the asymptotic choice of the regularization

parameter γ or λ.

§2. Sampling Operator

Let H be a Hilbert space of continuous functions on a complete metric space X and

the inclusion J : H → C(X) is bounded with ‖J‖ < ∞.

Then for each x ∈ X, the point evaluation functional f → f(x) is bounded on H with

norm at most ‖J‖. Hence there exists an element Ex ∈ H such that

f(x) =< f, Ex >H, ∀f ∈ H. (2.1)

Let x be a discrete subset of X. Define the sampling operator Sx : H → `2(x) by

Sx(f) =
(
f(x)

)
x∈x

.

We shall always assume that Sx is bounded.

Denote ST
x as the adjoint of Sx. Then for each c ∈ `2(x), there holds

< f, ST
x c >H=< Sxf, c >`2(x)=

∑

x∈x

cxf(x) =< f,
∑

x∈x

cxEx >H, ∀f ∈ H.

It follows that

ST
x c =

∑

x∈x

cxEx, ∀c ∈ `2(x).
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§3. Algorithm

To allow noise, we make the following assumption.

Special Assumption. The sampled values y = (yx)x∈x have the form:

For some f∗ ∈ H, and each x ∈ x, yx = f∗(x) + ηx, where ηx is drawn from ρx. (3.1)

Here for each x ∈ X, ρx is a probability measure with zero mean, and its variance σ2
x

satisfies σ2 :=
∑

x∈x σ2
x < ∞.

Note that
∑

x∈x(f∗(x))2 = ‖Sxf∗‖2`2(x) ≤ ‖Sx‖2‖f∗‖2H < ∞.

The Markov inequality for a nonnegative random variable ξ asserts that

Prob{ξ ≤ E(ξ)
δ
} ≥ 1− δ, ∀ 0 < δ < 1. (3.2)

It tells us that for every ε > 0,

Prob
{‖{ηx}‖2`2(x) > ε

} ≤ E
(‖{ηx}‖2`2(x)

)
/ε =

σ2

ε
.

By taking ε →∞, we see that {ηx} ∈ `2(x) and hence y ∈ `2(x) in probability.

Let γ ≥ 0. With the sample z := (x, yx)x∈x, consider the algorithm

Function reconstruction f̃ := arg min
f∈H

{∑

x∈x

(
f(x)− yx

)2 +γ‖f‖2H
}

. (3.3)

Theorem 1. If ST
x Sx + γI is invertible, then f̃ exists, is unique and

f̃ = Ly, L :=
(
ST

x Sx + γI
)−1

ST
x .

Proof. Denote

Ez(f) :=
∑

x∈x

(
f(x)− yx

)2
.

Since
∑

x∈x

(
f(x)

)2 = ‖Sxf‖2`2(x) =< ST
x Sxf, f >H, we know that for f ∈ H,

Ez(f) + γ‖f‖2H =<
(
ST

x Sx + γI
)
f, f >H −2 < ST

x y, f >H +‖y‖2`2(x).

Taking the functional derivative [10] for f ∈ H, we see that any minimizer f̃ of (3.3)

satisfies
(
ST

x Sx + γI
)
fz,γ = ST

x y.

This proves Theorem 1.

The invertibility of the operator ST
x Sx + γI is valid for rich data.
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Definition 1. We say that x provides rich data (with respect to H) if

λx := inf
f∈H

‖Sxf‖`2(x)/‖f‖H (3.4)

is positive. It provides poor data if λx = 0.

The problem of function reconstruction here is to estimate the error ‖f̃ − f∗‖H. In

this paper we shall show in Corollary 2 below that in the rich data case, with γ = 0, for

every 0 < δ < 1, with probability 1− δ, there holds

‖f̃ − f∗‖H ≤ ‖J‖
√

σ2/δ

λ2
x

. (3.5)

This estimate does not require the boundedness of the noise ρx. Moreover, under the

stronger condition (see 12]) that |ηx| ≤ M for each x ∈ x, we shall use the McDiarmid

inequality and prove in Theorem 5 below that for every 0 < δ < 1, with probability 1− δ,

‖f̃ − f∗‖H ≤ ‖J‖
λ2

x

(√
8σ2 log

1
δ

+
4
3
M log

1
δ

)
. (3.6)

The two estimates, (3.5) and (3.6), improve the bounds in [12]. It turns out that Theorem

4 in [12] is a consequence of the remark which follows it about the Markov inequality.

Conversations with David McAllester were important to clarify this point.

§4. Sample Error

Define

fx,γ := L
(
Sxf∗

)
. (4.1)

The sample error takes the form ‖f̃ − fx,γ‖2H.

Theorem 2. If ST
x Sx + γI is invertible and Special Assumption holds, then for every

0 < δ < 1, with probability 1− δ, there holds

‖f̃ − fx,γ‖2H ≤
‖(ST

x Sx + γI
)−1‖2‖J‖2σ2

δ
.

If |ηx| ≤ M for some M ≥ 0 and each x ∈ x, then for every ε > 0, we have

Proby

{
‖f̃ − fx,γ‖2H ≤ ‖L‖2σ2(1 + ε)

}
≥ 1− exp

{
− εσ2

2M2
log

(
1 + ε

)}
.
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Proof. Write ‖f̃ − fx,γ‖2H as

‖L(
y − Sxf∗

)‖2H ≤ ‖(ST
x Sx + γI

)−1‖2‖ST
x

(
y − Sxf∗

)‖2H.

But

ST
x

(
y − Sxf∗

)
=

∑

x∈x

(
yx − f∗(x)

)
Ex.

Hence

‖ST
x

(
y − Sxf∗

)‖2H =
∑

x∈x

∑

x′∈x

(
yx − f∗(x)

)(
yx′ − f∗(x′)

)
< Ex, Ex′ >H .

By the independence of the samples and E(yx − f∗(x)) = 0, E
{(

yx − f∗(x)
)2} = σ2

x,

its expected value is

E
(‖ST

x

(
y − Sxf∗

)‖2H
)

=
∑

x∈x

σ2
x < Ex, Ex >H .

Now < Ex, Ex >H= ‖Ex‖2H ≤ ‖J‖2. Then the expected value of the sample error can be

bounded as

E
(‖f̃ − fx,γ‖2H

) ≤ ‖(ST
x Sx + γI

)−1‖2‖J‖2σ2.

The first desired probability estimate follows from the Markov inequality (3.2).

For the second estimate, we apply Theorem 3 from [12] (with w ≡ 1) to the random

variables {η2
x}x∈x. Special Assumption tells us that E(ηx) = 0, which implies E(η2

x) = σ2
x.

Then we see that for every ε > 0,

Proby

{∑

x∈x

{
η2

x − σ2
x

}
> ε

}
≤ exp

{
− ε

2M2
log

(
1 +

M2ε∑
x∈x σ2(η2

x)
)}

.

Here we have used the condition |ηx| ≤ M , which implies
∣∣η2

x − σ2
x

∣∣ ≤ M2. Also,
∑

x∈x σ2(η2
x) ≤ ∑

x∈x

(
E(η4

x)
) ≤ M2σ2 < ∞.

The desired bound then follows from ‖f̃ − fx,γ‖2H ≤ ‖L‖2‖{ηx}‖2`2(x).

Remark. When x contains m elements, we can take σ2 ≤ mM2 < ∞.

Proposition 1. The sampling operator Sx satisfies

‖(ST
x Sx + γI

)−1‖ ≤ 1
λ2

x + γ
.
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For the operator L, we have

‖L‖ ≤ ‖Sx‖
λ2

x + γ
.

Proof. Let v ∈ H and u =
(
ST

x Sx + γI
)−1

v. Then

(
ST

x Sx + γI
)
u = v.

Taking inner products on both sides with u, we have

< Sxu, Sxu >`2(x) +γ‖u‖2H =< v, u >H≤ ‖v‖H‖u‖H.

The definition of the richness λx tells us that

< Sxu, Sxu >`2(x)= ‖Sxu‖2`2(x) ≥ λ2
x‖u‖2H.

It follows that
(
λ2

x + γ
)‖u‖2H ≤ ‖v‖H‖u‖H.

Hence ‖u‖H ≤
(
λ2

x +γ
)−1‖v‖H. This is true for every v ∈ H. Then the bound for the first

operator follows. The second inequality is trivial.

Corollary 1. If ST
x Sx + γI is invertible and Special Assumption holds, then for every

0 < δ < 1, with probability 1− δ, there holds

‖f̃ − fx,γ‖2H ≤
‖J‖2σ2

(
λ2

x + γ
)2

δ
.

§5. Integration Error

Recall that fx,γ = L
(
Sxf∗

)
=

(
ST

x Sx + γI
)−1

ST
x Sxf∗. Then

fx,γ =
(
ST

x Sx + γI
)−1(

ST
x Sx + γI − γI

)
f∗ = f∗ − γ

(
ST

x Sx + γI
)−1

f∗. (5.1)

This in connection with Proposition 1 proves the following proposition.
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Proposition 2. If ST
x Sx + γI is invertible, then

‖fx,γ − f∗‖H ≤ γ‖f∗‖H
λ2

x + γ
.

Corollary 2. If λx > 0 and γ = 0, then for every 0 < δ < 1, with probability 1− δ, there

holds

‖f̃ − f∗‖H ≤ ‖J‖
√

σ2/δ

λ2
x

.

For the poor data case λx = 0, we need to estimate γ
(
ST

x Sx + γI
)−1

f∗ according to

(5.1).

Recall that for a positive self-adjoint linear operator L on a Hilbert space H, there

holds

‖γ(L+ γI
)−1

f‖H = ‖γ(L+ γI
)−1(f − Lg + Lg)‖H ≤ ‖f − Lg‖H + γ‖g‖H

for every g ∈ H. Taking the infimum over g ∈ H, we have

‖γ(L+ γI
)−1

f‖H ≤ K(f, γ) := inf
g∈H

{‖f − Lg‖H + γ‖g‖H
}
, ∀f ∈ H, γ > 0. (5.2)

This is the K-functional between H and the range of L. Thus, when the range of L is

dense in H, we have limγ→0 ‖γ
(L+ γI

)−1
f‖H = 0 for every f ∈ H. If f is in the range of

Lr for some 0 < r ≤ 1, then ‖γ(L+ γI
)−1

f‖H ≤ 2‖L−rf‖Hγr. See [11].

Using (5.2) for L = ST
x Sx, we can use a K-functional between H and the range of

ST
x Sx to get the convergence rate.

Proposition 3. Define f∗γ as

f∗γ := arg inf
g∈H

{‖f∗ − ST
x Sxg‖H + γ‖g‖H

}
, γ > 0,

then there holds

‖fx,γ − f∗‖H ≤ ‖f∗ − ST
x Sxf∗γ‖H + γ‖f∗γ‖H.

In particular, if f∗ lies in the closure of the range of ST
x Sx, then limγ→0 ‖fx,γ−f∗‖H = 0. If

f∗ is in the range of
(
ST

x Sx

)r
for some 0 < r ≤ 1, then ‖fx,γ−f∗‖H ≤ 2‖(ST

x Sx

)−r
f∗‖Hγr.

Compared with Corollary 2, Proposition 3 in connection with Corollary 1 gives an

error estimate for the poor data case when f∗ is in the range of
(
ST

x Sx

)r. For every
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0 < δ < 1, with probability 1− δ, there holds

‖f̃ − f∗‖H ≤ ‖J‖
√

σ2

γ
√

δ
+ 2‖(ST

x Sx

)−r
f∗‖Hγr.

§6. More General Setting of Function Reconstruction

From (2.1) we see that the boundedness of Sx is equivalent to the Bessel sequence

property of the family {Ex}x∈x of elements in H, i.e., there is a positive constant B such

that
∑

x∈x

∣∣< f,Ex >H
∣∣2 ≤ B‖f‖2H, ∀f ∈ H. (6.1)

Moreover, x provides rich data if and only if this family forms a frame of H, i.e., there

are two positive constants A ≤ B called frame bounds such that

A‖f‖2H ≤
∑

x∈x

∣∣< f,Ex >H
∣∣2 ≤ B‖f‖2H, ∀f ∈ H.

In this case, the operator ST
x Sx is called the frame operator. Its inverse is usually difficult

to compute, but it satisfies the reconstruction property:

f =
∑

x∈x

< f,
(
ST

x Sx

)−1
Ex >H Ex, ∀f ∈ H.

For these basic facts about frames, see [17].

The function reconstruction algorithm studied in the previous sections can be gener-

alized to a setting with a Bessel sequence {Ex}x∈x in H satisfying (6.1). Here the point

evaluation (2.1) is replaced by the functional < f, Ex >H and the algorithm becomes

f̃ := arg min
f∈H

{∑

x∈x

(
< f,Ex >H −yx

)2 + γ‖f‖2H
}

. (6.2)

The sample values are given by yx =< f∗, Ex >H +ηx. If we replace the sampling operator

Sx by the operator from H to `2(x) mapping f to
(
< f, Ex >H

)
x∈x

, then the algorithm can

be analyzed in the same as above and all the error bounds hold true. Concrete examples

for this generalized setting can be found in the literature of image processing, inverse

problems [6] and sampling theory [1]: the Fredholm integral equation of the first kind, the
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moment problem, and the function reconstruction from weighted-averages. One can even

consider more general function reconstruction schemes: replacing the least-square loss in

(6.2) by some other loss function and ‖·‖H by some other norm. For example, if we choose

Vapnik’s ε-insensitive loss: |t|ε := max{|t| − ε, 0}, and a function space H̃ included in H
(such as a Sobolev space in L2), then a function reconstruction scheme becomes

f̃ := arg min
f∈H̃

{∑

x∈x

∣∣< f, Ex >H −yx

∣∣
ε
+ γ‖f‖2H̃

}
.

The rich data requirement is reasonable for function reconstruction such as sampling

theory [13]. On the other hand, in learning theory, the situation of poor data or poor

frame bounds (A → 0 as the number of points in x increases) often happens. For such

situations, we take x to be random samples of some probability distribution.

§7. Learning Theory

From now on we assume that X is compact. Let ρ be a probability measure on

Z := X × Y with Y := IR. The error for a function f : X → Y is given by E(f) :=
∫

Z

(
f(x) − y

)2
dρ. The function minimizing the error is called the regression function

and is given by

fρ(x) :=
∫

Y

ydρ(y|x), x ∈ X.

Here ρ(y|x) is the conditional distribution at x induced by ρ. The marginal distribution

on X is denoted as ρX . We assume that fρ ∈ L2
ρX

. Denote ‖f‖ρ := ‖f‖L2
ρX

and σ2(ρ) as

the variance of ρ.

The purpose of the regression problem in learning theory [3, 7, 9, 14, 15] is to find good

approximations of the regression function from a set of random samples z :=
{
(xi, yi)

}m

i=1

drawn independently according to ρ. This purpose is achieved in Corollaries 3, 4, and 5

below. Here we consider kernel based learning algorithms.

Let K : X × X → IR be continuous, symmetric and positive semidefinite, i.e., for

any finite set of distinct points {x1, · · · , x`} ⊂ X, the matrix (K(xi, xj))`
i,j=1 is positive

semidefinite. Such a kernel is called a Mercer kernel.

The Reproducing Kernel Hilbert Space (RKHS)HK associated with the kernel K

is defined to be the closure [2] of the linear span of the set of functions {Kx := K(x, ·) : x ∈
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X} with the inner product < ·, · >K satisfying < Kx,Ky >K= K(x, y). The reproducing

property takes the form

< Kx, g >K= g(x), ∀x ∈ X, g ∈ HK . (7.1)

The learning algorithm we study here is a regularized one:

Learning Scheme fz,λ := arg min
f∈HK

{
1
m

m∑

i=1

(
f(xi)− yi

)2 + λ‖f‖2K
}

. (7.2)

We shall investigate how fz,λ approximates fρ and how the choice of the regulariza-

tion parameter λ leads to (optimal) convergence rates. The convergence in L2
ρx

has been

considered in [4, 5, 18]. The purpose of this section is to present a simple functional anal-

ysis approach, and to provide the convergence rates in the space HK as weel as sharper,

dimension independent probability estimates in L2
ρX

.

The reproducing kernel property (7.1) tells us that the minimizer of (7.2) lies in

HK,z := span{Kxi}m
i=1 by projection onto this subspace. Thus, the algorithm can be

written in the same way as (3.3). To see this, we denote x = {xi}m
i=1, ρx = ρ(·|x)− fρ(x)

for x ∈ X. Then Ex = Kx for x ∈ x. Special Assumption holds, and (3.1) is true except

that f∗ ∈ H is replaced by f∗ = fρ. Denote y = (yi)m
i=1. The learning scheme (7.2)

becomes

fz,λ := arg min
f∈HK,z

{∑

x∈x

(
f(x)− yx

)2 + γ‖f‖2K
}

, γ = mλ.

Therefore, Theorem 1 still holds and we have

fz,λ =
(
ST

x Sx + mλI
)−1

ST
x y.

This implies the expression (see, e.g. [3]) that fz,λ =
∑m

i=1 ciKxi with c = (ci)m
i=1 satisfying

(
(K(xi, xj)m

i,j=1 + mλI
)
c = y.

Denote κ :=
√

supx∈X K(x, x) and fρ|x :=
(
fρ(x)

)
x∈x

. Define

fx,λ :=
(
ST

x Sx + mλI
)−1

ST
x fρ|x.

Observe that ST
x : IRm → HK,z is given by ST

x c =
∑m

i=1 ciKxi . Then ST
x Sx satisfies

ST
x Sxf =

∑

x∈x

f(x)Kx = mLK,xSx(f), f ∈ HK,z,
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where LK,x : `2(x) → HK is defined as

LK,xc :=
1
m

m∑

i=1

ciKxi
.

It is a good approximation of the integral operator LK : L2
ρX
→ HK defined by

LK(f)(x) :=
∫

X

K(x, y)f(y)dρX(y), x ∈ X.

The operator LK can also be defined as a self-adjoint operator on HK or on L2
ρX

. We shall

use the same notion LK for these operators defined on different domains. As operators

on HK , LK,xSx approximates LK well. In fact, it was shown in [5] that E
(‖LK,xSx −

LK‖HK→HK

) ≤ κ2√
m

. To get sharper error bounds, we need to get estimates for the

operators with domain L2
ρX

.

Lemma 1. Let x ∈ Xm be randomly drawn according to ρX . Then for any f ∈ L2
ρX

,

E
(‖LK,x(f |x)− LKf‖K

)
= E

(‖ 1
m

m∑

i=1

f(xi)Kxi − LKf‖K

) ≤ κ‖f‖ρ√
m

.

Proof. Define ξ to be the HK-valued random variable ξ := f(x)Kx over (X, ρX). Then
1
m

∑m
i=1 f(xi)Kxi − LKf = 1

m

∑m
i=1 ξ(xi)− E(ξ). We know that

{
E

(‖ 1
m

m∑

i=1

ξ(xi)−E(ξ)‖K

)}2

≤ E

(
‖ 1
m

m∑

i=1

ξ(xi)−E(ξ)‖2K
)

=
1
m

(
E

(‖ξ‖2K
)−‖E(ξ)‖2K

)

which is bounded by κ2‖f‖2ρ/m.

The function fx,λ may be considered as an approximation of fλ where fλ is defined

by

fλ :=
(
LK + λI

)−1
LKfρ. (7.3)

In fact, fλ is a minimizer of the optimization problem:

fλ := arg min
f∈HK

{‖f − fρ‖2ρ + λ‖f‖2K
}

= arg min
f∈HK

{E(f)− E(fρ) + λ‖f‖2K
}
. (7.4)

Theorem 3. Let z be randomly drawn according to ρ. Then

Ez∈Zm

(‖fz,λ − fx,λ‖K

) ≤ κ
√

σ2(ρ)√
mλ
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and

Ex∈Xm

(‖fx,λ − fλ‖K

) ≤ 3κ‖fρ‖ρ√
mλ

.

Proof. The same proof as that of Theorem 2 and Proposition 1 shows that

Ey

(‖fz,λ − fx,λ‖2K
) ≤ κ2

∑m
i=1 σ2

xi(
λ2

x + mλ
)2

But Ex

(∑m
i=1 σ2

xi

)
= mσ2(ρ). Then the first statement follows.

To see the second statement we write fx,λ − fλ as fx,λ − f̃λ + f̃λ − fλ, where f̃λ is

defined by

f̃λ :=
(
LK,xSx + λI

)−1
LKfρ. (7.5)

Since

fx,λ − f̃λ =
(
LK,xSx + λI

)−1(
ST

x fρ|x − LKfρ

)
, (7.6)

Lemma 1 tells us that

E
(‖fx,λ − f̃λ‖K

) ≤ 1
λ

E
(‖ST

x fρ|x − LKfρ‖K

) ≤ κ‖fρ‖ρ√
mλ

.

To estimate f̃λ − fλ, we write LKfρ as (LK + λI)fλ. Then

f̃λ − fλ =
(
LK,xSx + λI

)−1(LK + λI)fλ − fλ =
(
LK,xSx + λI

)−1(
LKfλ − LK,xSxfλ

)
.

Hence

‖f̃λ − fλ‖K ≤ 1
λ
‖LKfλ − LK,xSxfλ‖K . (7.7)

Applying Lemma 1 again, we see that

E
(‖f̃λ − fλ‖K

) ≤ 1
λ

E
(‖LKfλ − LK,xSxfλ‖K

) ≤ κ‖fλ‖ρ√
mλ

.

Note that fλ is a minimizer of (7.4). Taking f = 0 yields ‖fλ − fρ‖2ρ + λ‖fλ‖2K ≤ ‖fρ‖2ρ.
Hence

‖fλ‖ρ ≤ 2‖fρ‖ρ and ‖fλ‖K ≤ ‖fρ‖ρ/
√

λ. (7.8)

Therefore, our second estimate follows.

The last step is to estimate the approximation error ‖fλ − fρ‖.
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Theorem 4. Define fλ by (7.3). If L−r
K fρ ∈ L2

ρX
for some 0 < r ≤ 1, then

‖fλ − fρ‖ρ ≤ λr‖L−r
K fρ‖ρ. (7.9)

When 1
2 < r ≤ 1, we have

‖fλ − fρ‖K ≤ λr− 1
2 ‖L−r

K fρ‖ρ. (7.10)

We follow the same line as we did in [11]. Estimates similar to (7.9) can be found [3,

Theorem 3 (1)]: for a self-adjoint strictly positive compact operator A on a Hilbert space

H, there holds for 0 < r < s,

inf
b∈H

{
‖b− a‖2 + γ‖A−sb‖2

}
≤ γr/s‖A−ra‖2. (7.11)

(A mistake was made in [3] when scaling from s = 1 to general s > 0: r should be < 1 in

the general situation.) A proof of (7.9) was given in [5]. Here we provide a complete proof

because the idea is used for verifying (7.10).

Proof of Theorem 4. If {λi, ψi}i≥1 are the normalized eigenpairs of the integral operator

LK : L2
ρX
→ L2

ρX
, then ‖√λiψi‖K = 1 when λi > 0.

Write fρ = Lr
Kg for some g =

∑
i≥1 diψi with ‖{di}‖`2 = ‖g‖ρ < ∞. Then fρ =

∑
i≥1 λr

i diψi and by (7.3),

fλ − fρ =
(
LK + λI

)−1
LKfρ − fρ = −

∑

i≥1

λ

λi + λ
λr

i diψi.

It follows that

‖fλ − fρ‖ρ =
{∑

i≥1

(
λ

λi + λ
λr

i di

)2}1/2

= λr

{∑

i≥1

(
λ

λi + λ

)2(1−r)(
λi

λ + λi

)2r

d2
i

}1/2

.

This is bounded by λr‖{di}‖`2 = λr‖g‖ρ = λr‖L−r
K fρ‖ρ. Hence (7.9) holds.

When r > 1
2 , we have

‖fλ − fρ‖2K =
∑

λi>0

(
λ

λi + λ
λ

r− 1
2

i di

)2

= λ2r−1
∑

i≥1

(
λ

λi + λ

)3−2r(
λi

λ + λi

)2r−1

d2
i .

This is again bounded by λ2r−1‖{di}‖2`2 = λ2r−1‖L−r
K fρ‖2ρ. The second statement (7.10)

has been verified.

Combining Theorems 3 and 4, we find the expected value of the error ‖fz,λ− fρ‖. By

choosing the optimal parameter in this bound, we get the following convergence rates.

13



Corollary 3. Let z be randomly drawn according to ρ. Assume L−r
K fρ ∈ L2

ρX
for some

1
2 < r ≤ 1, then

Ez∈Zm

(‖fz,λ − fρ‖K

) ≤ Cρ,K

{
1√
mλ

+ λr− 1
2

}
, (7.12)

where Cρ,K := κ
√

σ2(ρ) + 3κ‖fρ‖ρ + ‖L−r
K fρ‖ρ is independent of the dimension. Hence

λ = m− 1
1+2r =⇒ Ez∈Zm

(‖fz,λ − fρ‖K

) ≤ 2Cρ,K

( 1
m

) 2r−1
4r+2 . (7.13)

Remark. Corollary 3 provides estimates for the HK-norm error of fz,λ − fρ. So we

require fρ ∈ HK which is equivalent to L
− 1

2
K fρ ∈ L2

ρX
. To get convergence rates we assume

a stronger condition L−r
K fρ ∈ L2

ρX
for some 1

2 < r ≤ 1. The optimal rate derived from

Corollary 3 is achieved by r = 1. In this case, Ez∈Zm

(‖fz,λ − fρ‖K

)
=

(
1
m

) 1
6 . The norm

‖fz,λ − fρ‖K can not be bounded by the error E(fz,λ) − E(fρ), hence our bound for the

HK-norm error is new in learning theory.

Corollary 4. Let z be randomly drawn according to ρ. If L−r
K fρ ∈ L2

ρX
for some 0 < r ≤

1, then

Ez∈Zm

(‖fz,λ − fρ‖ρ

) ≤ C ′ρ,K

{
1√
mλ

+ λr

}
, (7.14)

where C ′ρ,K := κ2
√

σ2(ρ) + 3κ2‖fρ‖ρ + ‖L−r
K fρ‖ρ. Thus,

λ = m− 1
2+2r =⇒ Ez∈Zm

(‖fz,λ − fρ‖ρ

) ≤ 2C ′ρ,K

( 1
m

) r
2r+2 . (7.15)

Remark. The convergence rate (7.15) for the L2
ρX

-norm is obtained by optimizing the

regularization parameter λ in (7.14). The sharp rate derived from Corollary 4 is
(

1
m

) 1
4 ,

which is achieved by r = 1.

In [18], a leave-one-out technique was used to derive the expected value of learning

schemes. For the scheme (7.2), the result can be expressed as

Ez∈Zm

(E(fz,λ)
) ≤

(
1 +

2κ2

mλ

)2

inf
f∈HK

{
E(f) +

λ

2
‖f‖2K

}
. (7.16)

Notice that E(f)− E(fρ) = ‖f − fρ‖2ρ. If we denote the regularization error (see [12]) as

D(λ) := inf
f∈HK

{E(f)− E(fρ) + λ‖f‖2K
}

= inf
f∈HK

{‖f − fρ‖2ρ + λ‖f‖2K
}
, (7.17)

14



then the bound (7.16) can be restated as

Ez∈Zm

(∥∥fz,λ − fρ

∥∥2

ρ

) ≤ D(
λ/2

)
+

(
E(fρ) +D(

λ/2
))(

4κ2

mλ
+

4κ4

(
mλ

)2

)
.

One can then derive the convergence rate
(

1
m

) 1
4 in expectation when fρ ∈ HK and E(fρ) >

0. In fact, (7.11) with H = L2
ρX

, A = LK holds for r = s = 1/2, which yields the

best rate for the regularization error D(λ) ≤ ‖fρ‖2Kλ. One can thus get Ez∈Zm

(∥∥fz,λ −
fρ

∥∥2

ρ

)
=

(
1
m

) 1
2 by taking λ = 1/

√
m. Applying (3.2), one can have the probability estimate

∥∥fz,λ − fρ

∥∥
ρ
≤ C

δ

(
1
m

) 1
4 for the confidence 1− δ.

In [5], a functional analysis approach was employed for the error analysis of the scheme

(7.2). The main result asserts that for any 0 < δ < 1, with confidence 1− δ,

∣∣E(fz,λ)− E(fλ)
∣∣ ≤ Mκ2

√
mλ

(
1 +

κ√
λ

)(
1 +

√
2 log

(
2/δ

))
. (7.18)

Convergence rates were also derived in [5, Corollary 1] by combining (7.18) with (7.9):

when fρ lies in the range of LK , for any 0 < δ < 1, with confidence 1− δ, there holds

∥∥fz,λ − fρ

∥∥
ρ
≤ C

( log
(
2/δ

)

m

) 1
5 , if λ =

( log
(
2/δ

)

m

) 1
5 .

Thus the confidence is improved from 1/δ to log(2/δ), while the rate is weakened to
(

1
m

) 1
5 .

In the next section we shall verify the same confidence estimate while the sharp rate is kept.

Our approach is short and neat, without involving the leave-one-out technique. Moreover,

we can derive convergence rates in the space HK .

§8. Probability Estimates by McDiarmid Inequalities

In this section we apply some McDiarmid inequalities to improve the probability

estimates derived from expected values by the Markov inequality.

Let (Ω, ρ) be a probability space. For t = (t1, · · · , tm) ∈ Ωm and t′i ∈ Ω, we denote

ti := (t1, · · · , ti−1, t
′
i, ti+1, · · · , tm).

Lemma 2. Let {ti, t′i}m
i=1 be i.i.d. drawers of the probability distribution ρ on Ω, and

F : Ωm → IR be a measurable function.

15



(1) If for each i there is ci such that supt∈Ωm,ti∈Ω

∣∣F (t)− F (ti)
∣∣ ≤ ci, then

Probt∈Ωm

{
F (t)− Et

(
F (t)

) ≥ ε

}
≤ exp

{
− 2ε2

∑m
i=1 c2

i

}
, ∀ε > 0. (8.1)

(2) If there is B ≥ 0 such that supt∈Ωm,1≤i≤m

∣∣F (t)− Eti

(
F (t)

)∣∣ ≤ B, then

Probt∈Ωm

{
F (t)− Et

(
F (t)

) ≥ ε

}
≤ exp

{
− ε2

2
(
Bε/3 +

∑m
i=1 σ2

i (F )
)
}

, ∀ε > 0,

(8.2)

where σ2
i (F ) := supz\{ti}∈Ωm−1 Eti

{(
F (t)− Eti

(
F (t)

))2}
.

The first inequality is the McDiarmid inequality, see [8]. The second inequality is its

Bernstein form which is presented in [16].

First, we show how the probability estimate for function reconstruction stated in

Theorem 2 can be improved.

Theorem 5. If ST
x Sx + γI is invertible and Special Assumption holds, then under the

condition that |yx − f∗(x)| ≤ M for each x ∈ x, we have for every 0 < δ < 1, with

probability 1− δ,

‖f̃ − fx,γ‖H ≤ ‖(ST
x Sx + γI

)−1‖ ‖J‖
(√

8σ2 log
1
δ

+
4
3
M log

1
δ

)

≤ ‖J‖
λ2

x + γ

(√
8σ2 log

1
δ

+
4
3
M log

1
δ

)
.

Proof. Write ‖f̃ − fx,γ‖H as

‖L(
y − Sxf∗

)‖H ≤ ‖(ST
x Sx + γI

)−1‖‖ST
x

(
y − Sxf∗

)‖H.

Consider the function F : `2(x) → IR defined by

F (y) = ‖ST
x

(
y − Sxf∗

)‖H.

Recall from the proof of Theorem 2 that F (y) = ‖∑
x∈x

(
yx − f∗(x)

)
Ex‖H and

Ey(F ) ≤
√

Ey

(
F 2

)
=

√∑

x∈x

σ2
x < Ex, Ex >H ≤ ‖J‖

√
σ2. (8.3)
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Then we can apply the McDiarmid inequality. Let x0 ∈ x and y′x0
be a new sample at x0.

We have

∣∣F (y)− F (yx0)
∣∣ =

∣∣‖ST
x

(
y − Sxf∗

)‖H − ‖ST
x

(
yx0 − Sxf∗

)‖H
∣∣ ≤ ‖ST

x

(
y − yx0

)‖H.

The bound equals ‖(yx0 − y′x0

)
Ex0‖H ≤ ∣∣yx0 − y′x0

∣∣‖J‖. Since |yx − f∗(x)| ≤ M for each

x ∈ x, it can be bounded by 2M‖J‖, which can be taken as B in Lemma 2 (2). Also,

Eyx0

(∣∣F (y)− Ey0

(
F (y)

)∣∣2
)
≤

∫ (∫ ∣∣yx0 − y′x0

∣∣‖J‖dρx0(y
′
x0

)
)2

dρx0(yx0)

≤
∫ ∫ (

yx0 − y′x0

)2

‖J‖2dρx0(y
′
x0

)dρx0(yx0) ≤ 4‖J‖2σ2
x0

.

This yields
∑

x0∈x σ2
x0

(F ) ≤ 4‖J‖2σ2. Thus Lemma 2 (2) tells us that for every ε > 0,

Proby∈Y x

{
F (y)− Ey

(
F (y)

) ≥ ε

}
≤ exp

{
− ε2

2
(
2M‖J‖ε/3 + 4‖J‖2σ2

)
}

.

Solving the quadratic equation

ε2

2
(
2M‖J‖ε/3 + 4‖J‖2σ2

) = log
1
δ

gives the probability estimate

F (y) ≤ Ey(F ) + ‖J‖
(√

8σ2 log
1
δ

+
4
3
M log

1
δ

)

with confidence 1− δ. This in connection with (8.3) proves Theorem 5.

Then we turn to the learning theory estimates. The purpose is to improve the bound

in Theorem 3 by applying the McDiarmid inequality. To this end, we refine Lemma 1 to

a probability estimate form.

Lemma 3. Let x ∈ Xm be randomly drawn according to ρX . Then for any f ∈ L∞ρX
and

0 < δ < 1, with confidence 1− δ, there holds

∥∥∥∥
1
m

m∑

i=1

f(xi)Kxi − LKf

∥∥∥∥
K

≤ 4κ‖f‖∞
3m

log
1
δ

+
κ‖f‖ρ√

m

(
1 +

√
8 log

1
δ

)
.

17



Proof. Define a function F : Xm → IR as

F (x) = F (x1, · · · , xm) = ‖ 1
m

m∑

i=1

f(xi)Kxi
− LKf‖K .

For j ∈ {1, · · · ,m}, we have

∣∣F (x)− F (xj)
∣∣ ≤ ‖ 1

m

(
f(xj)− f(x′j)

)
Kxj

‖K ≤ κ

m

∣∣f(xj)− f(x′j)
∣∣.

It follows that
∣∣F (x)− Exj

(
F (x)

)∣∣ ≤ 2κ‖f‖∞
m =: B. Moreover,

Exj

(
F (x)− Exj

(
F (x)

))2

≤
∫

X

(∫

X

κ

m

∣∣f(xj)− f(x′j)
∣∣dρX(x′j)

)2

dρX(xj)

≤ κ2

m2

∫

X

∫

X

2
∣∣f(xj)

∣∣2 + 2
∣∣f(x′j)

∣∣2dρX(x′j)dρX(xj) ≤
4κ2‖f‖2ρ

m2
.

Then we have
∑m

j=1 σ2
j (F ) ≤ 4κ2‖f‖2ρ

m .

Thus we can apply Lemma 2 (2) to the function F and find that

Probx∈Xm

{
F (x)− Ex(F (x)) ≥ ε

}
≤ exp

{
− ε2

2
( 2κ‖f‖∞ε

3m + 4κ2‖f‖2ρ
m

)
}

.

Solving a quadratic equation again, we see that with confidence 1− δ, we have

F (x) ≤ Ex(F (x)) +
4κ‖f‖∞

3m
log

1
δ

+
κ‖f‖ρ√

m

√
8 log

1
δ
.

Lemma 1 says that Ex(F (x)) ≤ κ‖f‖ρ√
m

. Then our conclusion follows.

Theorem 6. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost every-

where. Then for any 0 < δ < 1, with confidence 1− δ we have

‖fz,λ − fλ‖K ≤ κM log
(
4/δ

)
√

mλ

(
30 +

4κ

3
√

mλ

)
.

Proof. Since |y| ≤ M almost everywhere, we know that ‖fρ‖ρ ≤ ‖fρ‖∞ ≤ M .

Recall the function f̃λ defined by (7.5). It satisfies (7.6). Hence

‖fx,λ − f̃λ‖K ≤ 1
λ
‖ 1
m

m∑

i=1

fρ(xi)Kxi − LKfρ‖K .
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Applying Lemma 3 to the function fρ, we have with confidence 1− δ,

‖fx,λ − f̃λ‖K ≤ 4κM

3mλ
log

1
δ

+
κM√
mλ

(
1 +

√
8 log

1
δ

)
.

In the same way, by Lemma 3 with the function fλ and (7.7), we find

Probx∈Xm

{
‖f̃λ − fλ‖K ≤ 4κ‖fλ‖∞

3mλ
log

1
δ

+
κ‖fλ‖ρ√

mλ

(
1 +

√
8 log

1
δ

)}
≥ 1− δ.

By (7.8), we have ‖fλ‖ρ ≤ 2M and

‖fλ‖∞ ≤ κ‖fλ‖K ≤ κM√
λ

.

Therefore, with confidence 1− δ, there holds

‖f̃λ − fλ‖K ≤ 4κ2M

3mλ
√

λ
log

1
δ

+
2κM√

mλ

(
1 +

√
8 log

1
δ

)
.

Finally, we apply Theorem 5. For each x ∈ Xm, there holds with confidence 1− δ,

‖fz,λ − fx,λ‖K ≤ κ

mλ

(√
8σ2 log

1
δ

+
4
3
M log

1
δ

)
. (8.4)

Here σ2 =
∑m

i=1 σ2
xi

. Apply the Bernstein inequality

Probx∈Xm

{
1
m

m∑

i=1

ξ(xi)− E(ξ) ≥ ε

}
≤ exp

{
− mε2

2
(
Bε/3 + σ2(ξ)

)
}

to the random variable ξ(x) =
∫

Y

(
y − fρ(x)

)2
dρ(y|x). It satisfies 0 ≤ ξ ≤ 4M2, E(ξ) =

σ2(ρ), and σ2(ξ) ≤ 4M2σ2(ρ). Then we see that

Probx∈Xm

{
1
m

m∑

i=1

σ2
xi
≤ σ2(ρ) +

8M2 log
(
1/δ

)

3m
+

√
8M2σ2(ρ) log

(
1/δ

)

m

}
≥ 1− δ.

Hence
√

σ2 ≤
√

mσ2(ρ) + M
√

3 log
(
1/δ

)
+

(
8mM2σ2(ρ) log

(
1/δ

))1/4

which is bounded by 2
√

mσ2(ρ) + 2M
√

3 log
(
1/δ

)
. Together with (8.4), we see that with

probability 1− 2δ in Zm, we have the bound

‖fz,λ − fx,λ‖K ≤
4κ

√
2σ2(ρ) log

(
1/δ

)
√

mλ
+

34κM log
(
1/δ

)

3mλ
.
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Combining the above three bounds, we know that for 0 < δ < 1/4, with confidence

1− 4δ, ‖fz,λ − fλ‖K is bounded by

κM√
mλ

{
13 log

(
1/δ

)
√

m
+ 3 + 3

√
8 log

(
1/δ

)
+

4
√

2σ2(ρ) log
(
1/δ

)

M
+

4κ log
(
1/δ

)

3
√

mλ

}

≤ κM√
mλ

√
log

(
1/δ

){
13

√
log

(
1/δ

)

m
+

3
log 2

+ 6
√

2 +
4
√

2σ2(ρ)
M

+
4κ

3

√
log

(
1/δ

)

mλ

}
.

But σ2(ρ) ≤ M2. Then our conclusion follows.

We are in a position to state our convergence rates in both ‖ · ‖K and ‖ · ‖ρ norms.

Corollary 5. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost every-

where. If fρ is in the range of LK , then for any 0 < δ < 1, with confidence 1 − δ we

have

‖fz,λ − fρ‖K ≤ C̃

((
log

(
4/δ

)2

m

) 1
6

by taking λ =
((

log
(
4/δ

)2

m

) 1
3

(8.5)

and

‖fz,λ − fρ‖ρ ≤ C̃

((
log

(
4/δ

)2

m

) 1
4

by taking λ =
((

log
(
4/δ

)2

m

) 1
4

, (8.6)

where C̃ is a constant independent of the dimension:

C̃ := 30κM + 2κ2M + ‖L−1
K fρ‖ρ.
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