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§1. Introduction

This report on learning theory is written in the spirit of:

The best understanding of what one can see comes from theories of what one can’t see.

This thought has been expressed in a number of ways by different scientists, and is

supported everywhere. Obvious choices vary from gravity to economic equilibrium. For

learning theory we see its expression in the focus on the regression function defined by an

unknown measure and through data independent estimates.

This perspective on learning theory is hardly novel with us. Already in the last

century, Niyogi and Girosi [6] wrote in this style.

A basic model we shall take throughout the paper is to assume that samples are drawn

from a (joint) probability measure ρ on Z = X × Y with a compact metric space X and

Y = IR. Our primary objective is the regression function of ρ defined as

fρ(x) =
∫

Y

ydρ(y|x), x ∈ X.

Here ρ(y|x) is the conditional distribution at x induced by ρ.

† The first author is partially supported by NSF grant 0325113. The second author is
supported by the Research Grants Council of Hong Kong [Project No. CityU 103704].
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The regression problem in learning theory (see [2, 6] and the references therein) aims

at good approximations fz of the regression function, constructed by learning algorithms

from a set of random samples z =
{
(xi, yi)

}m

i=1
drawn independently according to ρ.

To understand the approximation, we estimate the error ‖fz − fρ‖∞ or ‖fz − fρ‖Cs or

‖fz− fρ‖ρ, where ‖f‖ρ = ‖f‖L2
ρX

=
{∫

X
|f(x)|2dρX

}1/2 denotes the L2 norm in the space

L2
ρX

and ρX the marginal distribution of ρ on X.

The learning algorithm we investigate in this paper is a Tikhonov regularization

scheme associated with Mercer kernels.

Let K : X × X → IR be continuous, symmetric and positive semidefinite, i.e., for

any finite set of distinct points {x1, · · · , x`} ⊂ X, the matrix (K(xi, xj))`
i,j=1 is positive

semidefinite. Such a kernel is called a Mercer kernel.

The Reproducing Kernel Hilbert Space (RKHS) HK associated with the kernel

K is defined to be the closure [1] of the linear span of the set of functions {Kx = K(x, ·) :

x ∈ X} with the inner product1 denoted as 〈·, ·〉K satisfying 〈Kx,Ky〉K = K(x, y).

The reproducing property takes the form

〈Kx, f〉K = f(x), ∀x ∈ X, f ∈ HK . (1.1)

Denote κ =
√

supx∈X K(x, x). Then (1.1) implies that HK ⊂ C(X) and

‖f‖∞ ≤ κ‖f‖K , ∀f ∈ HK . (1.2)

1 Notice that the matrix (K(xi, xj))`
i,j=1 is only positive semidefinite, it is possible that

for a nonzero vector (ci)`
i=1 there holds

∑`
i,j=1 ciK(xi, xj)cj = 0. However, as a function

on X,
∑`

i=1 ciKxi
≡ 0. To show this [1], take an arbitrary point x`+1 ∈ X. By the

definition of the Mercer kernel, the (` + 1)× (` + 1) matrix (K(xi, xj))`+1
i,j=1 is still positive

semidefinite. It follows that the quadratic function of the real variable t = c`+1

`+1∑
i,j=1

ciK(xi, xj)cj = 0 + 2
∑̀
i=1

ciK(xi, x`+1)t + K(x`+1, x`+1)t2

is nonnegative everywhere. By letting t → ±0, we see that
∑`

i=1 ciK(xi, x`+1) = 0, that

is, the function
∑`

i=1 ciKxi vanishes on the arbitrary point x`+1, hence is zero identically

on X. This shows that ‖ · ‖K is not only a seminorm, but a norm of the Hilbert space HK .
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The learning algorithm we study here is a Tikhonov regularized one as in [5] with

λ > 0:

Learning Scheme fz,λ := arg min
f∈HK

{
1
m

m∑
i=1

(
f(xi)− yi

)2 + λ‖f‖2
K

}
. (1.3)

To understand (1.3), following our previous studies on Shannon sampling [10, 11],

we define the sampling operator Sx : HK → IRm associated with a discrete subset

x = {xi}m
i=1 of X by

Sx(f) =
(
f(xi)

)m

i=1
.

The adjoint of the sampling operator, ST
x : IRm → HK , is given by

ST
x c =

m∑
i=1

ciKxi
, c ∈ IRm.

We know from [2, 11] that a solution fz,λ of (1.3) exists, is unique and given by

fz,λ =
( 1
m

ST
x Sx + λI

)−1 1
m

ST
x y. (1.4)

Our goal is to understand how fz,λ approximates fρ and how the decay of the regular-

ization parameter λ = λ(m) leads to convergence rates. The rates for this approximation

in L2
ρX

have been considered in [3, 4, 16, 11, 14], while the approximation in the space

HK (hence in L∞ρX
by (1.2) and in Cs by [17]) has been shown in [11]. (An early version

of Theorem 1 below appeared in a late version of [11], and was subsequently removed.) In

this paper we provide a simpler approach with stronger convergence rates.

§2. Main Results on the Errors in HK

A data-free limit of (1.3) is

fλ := arg min
f∈HK

{
‖f − fρ‖2

ρ + λ‖f‖2
K

}
. (2.1)

Since λ > 0, a solution of (2.1) exists, is unique and given by [3]

fλ =
(
LK + λI

)−1
LKfρ, (2.2)
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where LK : L2
ρX

→ HK is an integral operator defined by

LK(f)(x) :=
∫

X

K(x, y)f(y)dρX(y), x ∈ X.

The operator LK can also be defined as a self-adjoint operator on HK or on L2
ρX

. We shall

use the same notion LK for these operators defined on different domains.

Towards estimating fz,λ−fρ in various norms, compare (1.4) with (2.2). First consider

the random variable ξ := yKx on (Z, ρ) with values in the Hilbert space HK . We see that

1
m

m∑
i=1

ξ(zi) =
1
m

m∑
i=1

yiKxi
=

1
m

ST
x y, E(ξ) =

∫
X

Kx

∫
Y

ydρ(y|x)dρX(x) = LKfρ

which shows that 1
mST

x y is a good approximation of LKfρ. Second with a function f ∈ HK ,

look at the random variable ξ := f(x)Kx on (X, ρX) with values in HK . Again we have

1
m

m∑
i=1

ξ(zi) =
1
m

m∑
i=1

f(xi)Kxi =
1
m

ST
x Sxf, E(ξ) =

∫
X

Kxf(x)dρX(x) = LKf

meaning that 1
mST

x Sx is a good approximation of LK . Thus
(

1
mST

x Sx + λI
)−1 should

approximate
(
LK + λI

)−1 well, and one would expect from (1.4) and (2.2) good error

analysis of fz,λ − fλ in the space HK . Such a result following this idea is stated in the

following Theorem 1. The proof will be carried out in detail in Section 3 by applying a

Bennett inequality to the random variable (y − fλ(x))Kx with values in the Hilbert space

HK .

We assume that for some M ≥ 0, |y| ≤ M almost surely, that is, ρ(y|x) is supported

on [−M,M ] for almost every x ∈ X. Then ‖fρ‖ρ ≤ ‖fρ‖∞ ≤ M .

Theorem 1. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.

Then for any 0 < δ < 1, with confidence 1− δ there holds

‖fz,λ − fλ‖K ≤
6κM log

(
2/δ

)
√

mλ
.

Using Theorem 1, we will prove our total error estimates in the ‖ · ‖K norm.
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Theorem 2. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.

Assume that fρ is in the range of Lr
K for some 1

2 < r ≤ 1. Take the regularization

parameter as λ =
(
3κM/‖L−r

K fρ‖ρ

) 2
1+2r m− 1

1+2r . For any 0 < δ < 1, with confidence 1− δ,

‖fz,λ − fρ‖K ≤ 4 log
(
2/δ

)
(3κM)

2r−1
2r+1 ‖L−r

K fρ‖
2

1+2r
ρ

(
1
m

) 2r−1
4r+2

. (2.3)

In the estimate (2.3), ‖L−r
K fρ‖ρ is a key factor, but also perhaps the most elusive

factor. It is finite by the hypothesis that fρ lies in the range of Lr
K . Here Lr

K makes sense

as the rth power of LK since LK : L2
ρX

→ L2
ρX

is self-adjoint and non-negative. In fact,

the image of Lr
K is contained in HK if r ≥ 1/2. Then ‖L−r

K fρ‖ρ measures a complexity of

the regression function. Think of fρ with many oscillations having this measure large.

The convergence in HK implies the convergence in Cs(X) under some conditions on

K. Here Cs(X) is the space of all functions on X ⊂ IRn whose partial derivatives up

to order s are continuous with ‖f‖Cs(X) =
∑
|α|≤s ‖Dαf‖∞, and Cs+ε(X) denotes the

subspace (of Cs(X)) of functions with these partial derivatives to be Hölder ε on X.

It was proved in [17] that when K ∈ C2s+ε(X × X) with 0 < ε < 2 and X is the

closure of a domain in IRn, the inclusion HK ⊂ Cs+ε/2(X) is well defined and bounded.

But the norm of the inclusion, depending on X, was not explicitly given in [17]. Here we

find the norm of the well defined inclusion HK ⊂ Cs(X) as

‖f‖Cs(X) ≤ 4s‖K‖1/2
C2s‖f‖K , ∀f ∈ HK . (2.4)

To see this, let x ∈ X and h ∈ IRn such that x + h, . . . , x + sh ∈ X. Then the reproducing

property (1.1) tells us that∣∣∣∣|h|−s
s∑

j=0

(
s
j

)
(−1)s−jf(x + jh)

∣∣∣∣ =
∣∣∣∣〈f, |h|−s

s∑
j=0

(
s
j

)
(−1)s−jKx+jh〉K

∣∣∣∣
≤ ‖f‖K

∣∣∣∣|h|−s
s∑

i=0

(
s
i

)
(−1)s−i|h|−s

s∑
j=0

(
s
j

)
(−1)s−jK(x + ih, x + jh)

∣∣∣∣1/2

.

Taking h to be vectors along an axis with |h| → 0 gives bounds for the partial derivatives.

For α ∈ ZZn
+ with |α| ≤ s, we have ‖Dαf‖∞ ≤ ‖K‖1/2

C2s‖f‖K . This proves (2.4). Then

Theorem 2 in connection with (2.4) implies the following convergence rate in Cs(X).
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Corollary 1. Under the assumption and the choice of λ in Theorem 2, if X is the closure

of a domain in IRn and K is C2s+ε for some s ∈ IN and ε > 0, then with confidence 1− δ,

‖fz,λ − fρ‖Cs(X) ≤ 41+s log
(
2/δ

)
‖K‖

6r−1
4r+2

C2s (3M)
2r−1
2r+1 ‖L−r

K fρ‖
2

1+2r
ρ

(
1
m

) 2r−1
4r+2

. (2.5)

The extreme situation is when r = 1. In this case, we have

Corollary 2. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.

If ‖L−1
K fρ‖ρ < ∞ and λ =

(
3κM/‖L−1

K fρ‖ρ

)2/3
m−1/3, with confidence 1− δ we have

‖fz,λ − fρ‖K ≤ 4 log
(
2/δ

)
(3κM)1/3 ‖L−1

K fρ‖2/3
ρ

(
1
m

)1/6

.

If moreover, X is the closure of a domain in IRn and K ∈ C2s+ε(X ×X), then

‖fz,λ − fρ‖Cs(X) ≤ 41+s log
(
2/δ

)
‖K‖

5
6
C2s (3M)1/3 ‖L−1

K fρ‖2/3
ρ

(
1
m

)1/6

.

Remark. The other extreme is when r → 1/2. In this case, the function fρ lies in an

interpolation space between the range of LK and HK which tends to be arbitrarily close

to HK . The power (2r − 1)/(4r + 2) for the convergence rate becomes arbitrarily small.

§3. Probability Estimates by Vector-Valued Bennett Inequalities

We apply the following Bennett inequality for vector-valued random variables to im-

prove some previous probability estimates of ‖fz,λ − fρ‖. It is derived from [7, Theorem

3.4] and the elementary inequality t log(1 + t) ≥ 2t− 2 log(1 + t) for any t > 0. We thank

Yuan Yao for bringing our attention to this reference.

Lemma 1. Let H be a Hilbert space and {ξi}m
i=1 be m (m < ∞) independent random

variables with values in H. Suppose that for each i, ‖ξi‖ ≤ M̃ < ∞ almost surely. Denote

σ2 =
∑m

i=1 E(‖ξi‖2). Then

Prob

{∥∥∥∥ 1
m

m∑
i=1

[
ξi − E(ξi)

]∥∥∥∥ ≥ ε

}
≤ 2 exp

{
−mε

2M̃
log

(
1 +

mM̃ε

σ2

)}
, ∀ε > 0. (3.1)

In our situation, {ξi} are independent drawers of a random variable.
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Lemma 2. Let H be a Hilbert space and ξ be a random variable on (Z, ρ) with values

in H. Assume ‖ξ‖ ≤ M̃ < ∞ almost surely. Denote σ2(ξ) = E(‖ξ‖2). Let {zi}m
i=1 be

independent random drawers of ρ. For any 0 < δ < 1, with confidence 1− δ,

∥∥∥∥ 1
m

m∑
i=1

[
ξi − E(ξi)

]∥∥∥∥ ≤ 2M̃ log
(
2/δ

)
m

+

√
2σ2(ξ) log

(
2/δ

)
m

. (3.2)

Proof. We apply Lemma 1 to the independent random variables {ξ(zi)}m
i=1, and know

that for any ε > 0

Prob

{∥∥∥∥ 1
m

m∑
i=1

[
ξ(zi)− E(ξ)

]∥∥∥∥ ≥ ε

}
≤ 2 exp

{
−mε

2M̃
log

(
1 +

M̃ε

σ2(ξ)

)}
.

Observe that

log(1 + t) ≥ t/(1 + t), ∀t > 0. (3.3)

It follows by taking t = M̃ε
σ2(ξ) that

Prob

{∥∥∥∥ 1
m

m∑
i=1

[
ξ(zi)− E(ξ)

]∥∥∥∥ ≥ ε

}
≤ 2 exp

{
−mε

2M̃

(
M̃ε

M̃ε + σ2(ξ)

)}
.

The probability on the right side equals 2 exp
{
− mε2

2M̃ε+2σ2(ξ)

}
. Choosing ε > 0 for this

probability equal to δ is the same as solving the quadratic equation

mε2 = log
(
2/δ

)(
2M̃ε + 2σ2(ξ)

)
.

We find that with confidence 1− δ there holds

∥∥∥∥ 1
m

m∑
i=1

[
ξ(zi)− E(ξ)

]∥∥∥∥ ≤ 2M̃ log
(
2/δ

)
m

+

√
2σ2(ξ) log

(
2/δ

)
m

.

This is the desired bound.

Now we can prove our main result.

Proof of Theorem 1. By (1.4), write

fz,λ − fλ =
( 1
m

ST
x Sx + λI

)−1
{

1
m

ST
x y − 1

m
ST

x Sxfλ − λfλ

}
.
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Observe that

1
m

ST
x y − 1

m
ST

x Sxfλ =
1
m

m∑
i=1

(
yi − fλ(xi)

)
Kxi

and by the definition (2.2) of fλ,

λfλ = LK

(
fρ − fλ

)
.

It follows that for all z = {(xi, yi)}m
i=1, and λ > 0,

fz,λ − fλ =
( 1
m

ST
x Sx + λI

)−1

{
1
m

m∑
i=1

(
yi − fλ(xi)

)
Kxi

− LK

(
fρ − fλ

)}
. (3.4)

This gives a bound for the error in the HK-norm

‖fz,λ − fλ‖K ≤ 1
λ

∆, ∆ :=
∥∥∥∥ 1

m

m∑
i=1

(
yi − fλ(xi)

)
Kxi

− LK

(
fρ − fλ

)∥∥∥∥
K

. (3.5)

To estimate ∆, we apply Lemma 2 to the random variable ξ =
(
y − fλ(x)

)
Kx on

(Z, ρ) with values in the Hilbert space HK . It satisfies

E(ξ) =
∫

X

Kx

∫
Y

(
y − fλ(x)

)
dρ(y|x)dρX(x) = LK

(
fρ − fλ

)
and ‖ξ‖K = |y − fλ(x)|

√
K(x, x). Thus σ2(ξ) ≤ κ2

∫
Z
(fλ(x)− y)2dρ and almost surely

‖ξ‖K ≤ κ(M + ‖fλ‖∞) =: M̃.

It follows from (3.2) that with confidence 1− δ there holds

∆ ≤
2κ(M + ‖fλ‖∞) log

(
2/δ

)
m

+ κ

√
2

∫
Z
(fλ(x)− y)2dρ log

(
2/δ

)
m

. (3.6)

Note that the definition of the regression function yields∫
Z

(f(x)− y)2dρ−
∫

Z

(fρ(x)− y)2dρ = ‖f − fρ‖2
ρ, ∀f : X → Y. (3.7)

Recall the definition (2.1) of fλ. Taking f = 0 yields ‖fλ − fρ‖2
ρ + λ‖fλ‖2

K ≤ ‖fρ‖2
ρ.

Hence

‖fλ − fρ‖ρ ≤ ‖fρ‖ρ and ‖fλ‖K ≤ ‖fρ‖ρ/
√

λ. (3.8)
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By (3.8), we have ‖fλ − fρ‖ρ ≤ M and ‖fλ‖K ≤ M√
λ
. It follows from (3.7) with f = 0 and

f = fλ that
∫

Z
(fρ(x)−y)2dρ ≤

∫
Z
(0−y)2dρ ≤ M2, thereby

∫
Z
(fλ(x)−y)2dρ ≤ 2M2; and

from (1.2) that ‖fλ‖∞ ≤ κ‖fλ‖K ≤ κM/
√

λ. Therefore, with confidence 1− δ we have

∆ ≤
2κM(1 + κ/

√
λ) log

(
2/δ

)
m

+ 2κM

√
log(2/δ)

m
. (3.9)

If κ√
mλ

≤ 1
3 log(2/δ) , the above estimate can be bounded further as

∆ ≤
2κM log

(
2/δ

)
m

+
2κM log

(
2/δ

)
√

m

κ√
mλ

+
2κM log

(
2/δ

)
√

m

1√
log(2/δ)

≤
6κM log

(
2/δ

)
√

m
.

This yields the desired bound when κ√
mλ

≤ 1
3 log(2/δ) .

When κ√
mλ

> 1
3 log(2/δ) , we have 6κM log(2/δ)√

mλ
≥ 2M√

λ
. In this case, we use (3.8) and

the trivial bound ‖fz,λ‖K ≤ M/
√

λ seen from (1.3) by taking f = 0. Then there holds

‖fz,λ − fλ‖K ≤ 2M/
√

λ with probability 1. So the desired inequality also holds in the

second case. This proves Theorem 1.

To get the total error estimates stated in Theorem 2, we need bounds for the approx-

imation error ‖fλ − fρ‖. Recall [11, Theorem 4 and equation (7.10)].

Lemma 3. Define fλ by (2.2). If L−r
K fρ ∈ L2

ρX
, then

‖fλ − fρ‖2
ρ + λ‖fλ‖2

K ≤ λ2r‖L−r
K fρ‖2

ρ, if 0 < r ≤ 1
2

(3.10)

and

‖fλ − fρ‖K ≤ λr− 1
2 ‖L−r

K fρ‖ρ, if
1
2

< r ≤ 1. (3.11)

Moreover, for 0 < r ≤ 1, there holds

‖fλ − fρ‖ρ ≤ λr‖L−r
K fρ‖ρ. (3.12)

The bound (3.10) estimates the regularization error [10]. It is only used for the proof

of Corollary 3 below.

Proof of Theorem 2. Combining Theorem 1 with (3.11), we find that with confidence

1− δ, the total error satisfies

‖fz,λ − fρ‖K ≤ ‖fz,λ − fλ‖K + ‖fλ − fρ‖K ≤ 2 log
(
2/δ

){ 3κM√
mλ

+ λr− 1
2 ‖L−r

K fρ‖ρ

}
.
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Minimize the right hand side over λ > 0 to obtain

λ =
(
3κM/‖L−r

K fρ‖ρ

) 2
1+2r

(
1
m

) 1
1+2r

.

With this choice of λ, the bound becomes (2.3). This proves Theorem 2.

§4. Distributions with Small Variances

In Theorem 1, we only assume that |y| ≤ M almost surely. That is, for almost every

x ∈ X, the conditional distribution ρ(·|x) is supported on [−M,M ]. Notice that the mean

of ρ(·|x) is fρ(x) and the variance is
∫

Y
(fρ(x) − y)2dρ(y|x). It is natural to define the

variance of ρ as the average variance of the conditional distributions.

Definition 1. The variance of ρ is defined to be

σ2
ρ =

∫
Z

(fρ(x)− y)2dρ =
∫

X

∫
Y

(fρ(x)− y)2dρ(y|x)dρX(x).

If some conditions are assumed on the variance (not only boundedness), Theorem 1

can be improved, as follows.

Theorem 3. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.

Then for any 0 < δ < 1, with confidence 1− δ we have

‖fz,λ − fλ‖K ≤ 2κ log
(
2/δ

){√
σ2

ρ + ‖fλ − fρ‖ρ

√
mλ

+
M + κ‖fλ‖K

mλ

}
.

Proof. Applying (3.7) and (1.2) to (3.6), we get

∆ ≤
2κ(M + κ‖fλ‖K) log

(
2/δ

)
m

+ κ

√
2 log

(
2/δ

)(
σ2

ρ + ‖fλ − fρ‖ρ

)2

m
.

Since
√

2 log(2/δ) < 2 log
(
2/δ

)
, our conclusion follows.

Notice the similarity between the first term 2κ log
(
2/δ

)√
σ2

ρ/(
√

mλ) of the bound in

Theorem 3 and the error estimate 6κM log
(
2/δ

)
/(
√

mλ) of Theorem 1 when the variance

σ2
ρ is not small.

When the variance vanishes (i.e., when the distribution is noise-free), Theorem 3

provides better error analysis than Theorem 1: ‖fλ − fρ‖ρ → 0 if fρ can be approximated

by HK in L2
ρX

, and the second term of the bound in Theorem 3 is of higher order. One

example of noise-free situation is the PAC learning (Probably Approximately Correct).
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Corollary 3. Let z be randomly drawn according to ρ satisfying y = fρ(x) (i.e., σ2
ρ = 0)

and |y| ≤ M almost everywhere. Assume that fρ is in the range of Lr
K for some 1

2 < r < 1.

Take λ =
(

2κM
m‖L−r

K
fρ‖ρ

) 2
1+2r . For any 0 < δ < 1, with confidence 1− δ we have

‖fz,λ − fρ‖K ≤ 4 log
(
2/δ

)(
2κM

) 2r−1
2r+1 ‖L−r

K fρ‖
2

2r+1
ρ

(
1
m

) 2r−1
2r+1

,

provided that m is large enough in the following sense

m ≥
(
2κM

) 4r
2r−1

(
M + κ‖L−1/2

K fρ‖ρ

) 2+4r
2r−1 ‖L−r

K fρ‖
2

1−2r
ρ . (4.1)

Proof. Since r > 1
2 , the range of Lr

K is a subset of the range of L
1/2
K . By (3.10) with r

replaced by 1/2, we find that

λ‖fλ‖2
K ≤ λ‖L−1/2

K fρ‖2
ρ.

This implies that

‖fλ‖K ≤ ‖L−1/2
K fρ‖ρ.

Using the assumption y = fρ(x) almost surely and (3.12), we know from Theorem 3 that

for any 0 < δ < 1, with confidence 1− δ

‖fz,λ − fλ‖K ≤
2κ log

(
2/δ

)
√

mλ

{
λr‖L−r

K fρ‖ρ +
M√
m

+
κ‖L−1/2

K fρ‖ρ√
m

}
.

Balancing the two terms λr‖L−r
K fρ‖ρ and

(
M + κ‖L−1/2

K fρ‖ρ

)
/
√

m, we see that for

λ ≤
{(

M + κ‖L−1/2
K fρ‖ρ

)
/‖L−r

K fρ‖ρ

}1/r(1/m
)1/(2r) (4.2)

there holds with confidence 1− δ

‖fz,λ − fλ‖K ≤
4κM log

(
2/δ

)
mλ

.

This in connection with (3.11) tells us that with confidence 1− δ

‖fz,λ − fρ‖K ≤ 2 log
(
2/δ

){
λr− 1

2 ‖L−r
K fρ‖ρ +

2κM

mλ

}
.

Again, balancing the above two terms, we know that for λ =
(

2κM
m‖L−r

K
fρ‖ρ

) 2
1+2r , the error

‖fz,λ − fρ‖K is bounded by 8 log
(
2/δ

)
κM/(mλ) with confidence 1 − δ. With this choice

of λ, when m satisfies the restriction (4.1), we know that (4.2) holds. This verifies the

desired bound for ‖fz,λ − fρ‖K .

In the case that fρ lies in the range of LK , we have for noise-free distributions the

convergence rate of O(m−1/3) for ‖fz,λ − fρ‖K .
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§5. Application to Classification Algorithms

One application of our error analysis in HK is for binary classification algorithms2.

If we label the two classes by {1,−1}, we can consider ρ as a distribution supported on

X×{1,−1}. A binary classifier f is a function from X to {1,−1}, and it assigns a label

f(x) ∈ {1,−1} for each point x ∈ X. Since ρ(·|x) is supported only on two points {1,−1},

we have fρ(x) =
∫
IR

ydρ(y|x) = P (y = 1|x)− P (y = −1|x). It follows that

P (y = sgn(fρ(x))|x) ≥ P (y 6= sgn(fρ(x))|x).

Note that for y ∈ {1,−1}, y 6= sgn(fρ(x)) is the same as |y − sgn(fρ(x))| = 2. Thus, for

each x ∈ X, the class y = sgn(fρ(x)) has larger probability. This shows that the best

classifier, called the Bayes rule, is given by

sgn(fρ(x)) =
{

1, if P (y = 1|x) ≥ P (y = −1|x),
−1, if P (y = 1|x) < P (y = −1|x). (5.1)

The distance between a classifier f and the Bayes rule is measured in L2 by

‖f − sgn(fρ)‖ρ =
(∫

X

(
f(x)− sgn(fρ)(x)

)2
dρX

)1/2

.

If f : X → IR is a real-valued function, it generates a classifier sgn(f) : X → {1,−1}

by taking sgn(f)(x) = sgn(f(x)) which equals 1 if f(x) ≥ 0 and −1 otherwise. Denote the

misclassification set of the classifier sgn(f) as

Xf = X \ X̂f , where X̂f = {x ∈ X : sgn(f)(x) = sgn(fρ)(x)}.

It is easy to see that

‖sgn(f)− sgn(fρ)‖2
ρ = 4ρX(Xf ).

In the following, we show that sgn(f) approximates the Bayes rule sgn(fρ) well if f

is a good approximation of fρ in L∞. To this end, we introduce a function motivated by

the Tsybakov condition [12] with noise exponent q(0 < q ≤ ∞): for some constant cq > 0,

ρX

(
{x ∈ X : 0 < |fρ(x)| ≤ cqt}

)
≤ tq, ∀t > 0. (5.2)

2 Conversations in Genova with Caponnetto, De Vito, Rosasco, and Verri were helpful

in developing this section.
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Definition 2. The Tsybakov function associated with the probability distribution ρ

on X × {1,−1} is defined to be the function T = Tρ : [0, 1] → [0, 1] given by

T (L) = measρf
−1
ρ ([−L,L]) = ρX

(
{x ∈ X : fρ(x) ∈ [−L,L]}

)
, L ∈ [0, 1]. (5.3)

The Tsybakov function Tρ measures different qualities of the condition of the binary

classification problem defined by ρ on X ×{1,−1}. The following list of properties follows

immediately from the definition.

Proposition 1. Let ρ be a probability distribution on X×{1,−1}, and T given by (5.3).

(1) T (1) = 1.

(2) limL→0+ T (L) = T (0) = ρX

(
f−1

ρ (0)
)
.

(3) For 0 < q < ∞, (5.2) holds only and only if T (L)− T (0) = O(Lq).

(4) (5.2) with q = ∞ holds only and only if T (L) ≡ T (0) on [0, c∞).

The set f−1
ρ (0) is called the decision boundary, which is a submanifold in general

if fρ is smooth.

We say that ρ has (hard) margin τ > 0 if T (L) ≡ 0 on [0, τ).

Proposition 2. For any measurable function f : X → IR, we have

‖sgn(f)− sgn(fρ)‖2
ρ ≤ 4T

(
‖f − fρ‖∞

)
(5.4)

and

‖sgn(f)− sgn(fρ)‖2
ρ ≤ 4T

(
‖f − fρ‖ρ/

√
δ
)

+ 4δ, ∀ 0 < δ < 1. (5.5)

Proof. The left side of (5.4) equals 4ρX

(
Xf

)
. But for each x ∈ Xf , we have

|fρ(x)| ≤ |f(x)− fρ(x)| ≤ ‖f − fρ‖∞. (5.6)

It means that the set Xf is a subset of (or equal to) {x ∈ X : |fρ(x)| ≤ ‖f − fρ‖∞}. The

ρX -measure of the latter equals T
(
‖f − fρ‖∞

)
according to the definition of the Tsybakov

function. Hence our first statement holds true.

To prove the second statement, we apply the Markov inequality Prob{ξ > ε} ≤ E(ξ)/ε

for the nonnegative random variable ξ = (f(x) − fρ(x))2 on (X, ρX). For any 0 < δ < 1

13



there is some subset U ⊂ X with ρX(U) ≥ 1−δ such that ‖f−fρ‖L∞ρX
(U) ≤ ‖f−fρ‖ρ/

√
δ.

Then

|fρ(x)| ≤ |f(x)− fρ(x)| ≤ ‖f − fρ‖L∞ρX
(U) ≤ ‖f − fρ‖ρ/

√
δ, ∀x ∈ Xf ∩ U.

Thus ρX

(
Xf ∩ U

)
≤ ρX

(
{x ∈ X : |fρ(x)| ≤ ‖f − fρ‖ρ/

√
δ}

)
= T

(
‖f − fρ‖ρ/

√
δ
)
. But

ρX

(
Xf \ U

)
≤ δ. So ‖sgn(f)− sgn(fρ)‖2

ρ = 4ρX

(
Xf

)
can be bounded as in (5.5).

Remark. When ρ has hard margin τ > 0, T (L) = 0 for L < τ . So it is sufficient to

consider the case ‖f − fρ‖∞ ≥ τ in Proposition 2.

Applying Corollary 2 to Proposition 2 yields the following result.

Theorem 4. Let z be randomly drawn from a probability distribution ρ on X ×{1,−1}.

If ‖L−1
K fρ‖ρ < ∞ and λ =

(
3κ/‖L−1

K fρ‖ρ

)2/3
m−1/3, then with confidence 1− δ,

‖sgn(fz,λ)− sgn(fρ)‖2
ρ ≤ 4T

(
6 log

(
2/δ

)
κ4/3‖L−1

K fρ‖2/3
ρ

(
1/m

)1/6
)

.

Definition 3. Let 0 < q < ∞ and ρ be a probability distribution on X × {1,−1}. We

define the q-coefficient as follows (if it is finite)

aq = aq,ρ = sup
0<L<1

T (L)
Lq

. (5.7)

The Tsybakov condition (5.2) is the same as aq < ∞ if T (0) = 0.

Applying our error analysis in HK , we get from Theorem 2 with M = 1 and Propo-

sition 2 the following error bound for the classifier sgn(fz,λ).

Corollary 4. Let z be randomly drawn according to a probability distribution ρ on

X×{1,−1} having aq < ∞ for some 0 < q < ∞ . Assume that fρ is in the range of Lr
K for

some 1
2 < r ≤ 1. Take the regularization parameter as λ =

(
3κ/‖L−r

K fρ‖ρ

) 2
1+2r m− 1

1+2r .

For any 0 < δ < 1, with confidence 1− δ,

‖sgn(fz,λ)− sgn(fρ)‖ρ ≤ C̃
√

aq

(
log

(
2/δ

))q/2
(

1
m

) q(2r−1)
8r+4

.

where C̃ = 2
q
2+13q(2r−1)/(4r+2)κ2qr/(2r+1)‖L−r

K fρ‖
q

1+2r
ρ .

For a fixed q, the above error bound is proportional to√aq. So we see that aq describes

well the behavior of the distribution ρ for the classification purpose.
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Another way to measure the error of a classifier sgn(f) is the misclassification error

defined by

R(sgn(f)) = Prob{sgn(f)(x) 6= y} =
1
4

∫
Z

(y − sgn(f)(x))2dρ.

One can easily see that the excess misclassification error R(sgn(f))−R(sgn(fρ)) equals

R(sgn(f))−R(sgn(fρ)) =
∫

Xf

|fρ(x)|dρX .

Hence it can be bounded as

R(sgn(f))−R(sgn(fρ)) ≤
∫

Xf

|f(x)− fρ(x)|dρX ≤ ‖f − fρ‖ρ.

This estimate may give very small excess misclassification error, even if the distribution is

badly posed (T (0) ≈ 1, or T (L) is large even for reasonably small L).

§6. Error Analysis in L2
ρX

One might estimate the error of fz,λ−fρ in L2
ρX

by bounds inHK (given in Theorem 1)

and the relation (1.2). In this way, one obtains ‖fz,λ−fλ‖ρ ≤
6κ2M log

(
2/δ

)
√

mλ
with confidence

1 − δ. However, better error bounds of type O(1/
√

mλ) are in a preliminary draft of a

paper of Andrea Caponnetto and Ernesto de Vito entitled ”Fast rates for regularized least-

squares algorithm”. We are indebted to Lorenzo Rosasco for pointing this out to us and

indicating how our (3.4) leads to the same rate.

The detailed results and analysis follow.

Theorem 5. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.

Then for any 0 < δ < 1, with confidence 1− δ there holds

‖fz,λ − fλ‖ρ ≤
12κM log

(
4/δ

)
√

mλ

provided that

λ ≥
8κ2 log

(
4/δ

)
√

m
. (6.1)

Before proving Theorem 5, we explain some ideas.
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The main observation for the improvement of error bounds in L2 is to apply the

relation ‖g‖ρ = ‖L1/2
K g‖K to the proof of Theorem 1. With that (3.4) yields

‖fz,λ − fλ‖ρ =
∥∥∥∥L

1/2
K

( 1
m

ST
x Sx + λI

)−1
{

1
m

m∑
i=1

(
yi − fλ(xi)

)
Kxi

− LK

(
fρ − fλ

)}∥∥∥∥
K

and

‖fz,λ − fλ‖ρ ≤
∥∥∥∥L

1/2
K

( 1
m

ST
x Sx + λI

)−1
∥∥∥∥∆, (6.2)

where the norm is the operator norm of the operator L
1/2
K

(
1
mST

x Sx + λI
)−1 from HK to

HK . In addition to the estimate of ∆ given by (3.9) in the proof of Theorem 1, we need

to bound this operator norm. Since 1
mST

x Sx is a good approximation of LK , one expects

to bound this norm with confidence, similar to

‖L1/2
K

(
LK + λI

)−1‖ = ‖L1/2
K

(
LK + λI

)−1/2(
LK + λI

)−1/2‖ ≤ 1/
√

λ. (6.3)

To realize the above expectation, we write 1
mST

x Sx + λI as

LK + λI −
(
LK − 1

m
ST

x Sx

)
=

{
I −

(
LK − 1

m
ST

x Sx

)(
LK + λI

)−1
}(

LK + λI
)
.

It follows that

L
1/2
K

( 1
m

ST
x Sx + λI

)−1 = L
1/2
K

(
LK + λI

)−1
{

I −
(
LK − 1

m
ST

x Sx

)(
LK + λI

)−1
}−1

(6.4)

if the last inverse exists. To verify the invertibility and estimate the norm, we use the

identity ST
x Sx =

∑m
i=1 Kxi〈·,Kxi〉K and find that

1
m

ST
x Sx

(
LK + λI

)−1 =
1
m

m∑
i=1

ξ(xi).

Here ξ is the random variable on (X, ρX) given by

ξ(x) = Kx〈·,Kx〉K
(
LK + λI

)−1
, x ∈ X. (6.5)

The values of ξ are rank-one operators onHK . To apply probability inequalities for random

variables with values in Hilbert spaces for estimating ‖ 1
m

∑m
i=1 ξ(xi)−E(ξ)‖, as in [4] we
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consider ξ to be a random variable with values in HS(HK), the Hilbert space of Hilbert-

Schmidt operators on HK , with inner product 〈A,B〉HS = Tr(BT A). Here Tr denotes the

trace of a (trace-class) linear operator. The space HS(HK) is a subspace of the space of

bounded linear operators on HK , denoted as (L(HK), ‖ · ‖), with the norm relations

‖A‖ ≤ ‖A‖HS , ‖AB‖HS ≤ ‖A‖HS‖B‖. (6.6)

Lemma 4. Let x be a sample drawn from (X, ρX). With confidence 1− δ, we have∥∥∥∥(
LK − 1

m
ST

x Sx

)(
LK + λI

)−1
∥∥∥∥

HS

≤
4κ2 log

(
2/δ

)
√

mλ
.

Proof. Consider the random variable ξ defined by (6.5) with values in HS(HK). For

x ∈ X and f ∈ HK , the reproducing property (1.1) ensures

(
ξ(x)

)(
f
)

= Kx〈
(
LK + λI

)−1(f),Kx〉K = Kx

(
LK + λI

)−1(f)(x).

Hence

E
(
ξ
)
(f) = Ex

(
ξ(x)(f)

)
= Ex

(
Kx

(
LK + λI

)−1(f)(x)
)

=
(

LK

(
LK + λI

)−1
)

(f).

This means E(ξ) = LK

(
LK + λI

)−1 and thereby

(
LK − 1

m
ST

x Sx

)(
LK + λI

)−1 = E(ξ)− 1
m

m∑
i=1

ξ(xi). (6.7)

Now we apply Lemma 2 to ξ with H = HS(HK). For x ∈ X, (6.6) tells us that

‖ξ(x)‖HS ≤ ‖Ax‖HS/λ,

where Ax is the self-adjoint rank-one linear operator Ax = Kx〈·,Kx〉K . An intermediate

step in the proof of Lemma 2 of [4] shows that ‖Ax‖HS = K(x, x) ≤ κ2. Therefore,

‖ξ‖HS ≤ κ2/λ, σ2(ξ) ≤ κ4/λ2 and our conclusion follows from Lemma 2 and (6.7).

We are in a position to prove the error bound in L2, stated in Theorem 5.
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Proof of Theorem 5. Applying Lemma 4 with δ replaced by δ/2, we know that there is

a subset U1 of Zm, with measure at least 1− δ/2, such that∥∥∥∥(
LK − 1

m
ST

x Sx

)(
LK + λI

)−1
∥∥∥∥

HS

≤ 4κ2 log(4/δ)√
mλ

, ∀z ∈ U1.

This in connection with (6.6) implies that for λ satisfying (6.1) and z ∈ U1,∥∥∥∥(
LK − 1

m
ST

x Sx

)(
LK + λI

)−1
∥∥∥∥ ≤ 1

2
.

It follows that the last inverse in (6.4) exists, and combining (6.4) with (6.3) gives∥∥∥∥L
1/2
K

( 1
m

ST
x Sx + λI

)−1
∥∥∥∥ ≤ 2

∥∥∥∥L
1/2
K

(
LK + λI

)−1
∥∥∥∥ ≤ 2√

λ
, ∀z ∈ U1. (6.8)

Recall (3.9) in the proof of Theorem 1. Replacing δ by δ/2, we see that there is

another subset U2 of Zm, with measure at least 1− δ/2, such that for z ∈ U2,

∆ ≤ 2κM(1 + κ/
√

λ) log(4/δ)
m

+ 2κM

√
log(4/δ)

m
.

Under the restriction (6.1), we have

∆ ≤ 6κM log(4/δ)√
m

, ∀z ∈ U2. (6.9)

Finally, we combine (6.2) with (6.8) and (6.9), and find that for z ∈ U1 ∩U2, a subset

of measure at least 1− δ, the desired error bound holds true.

To get rates for the total error in L2, we take the regularization parameter

λ = λ(m) =

{
log

(
4/δ

)(
12κM/‖L−r

K fρ‖ρ

)2/(1+2r)(1/m
)1/(1+2r)

, if r > 1/2,
8κ2 log

(
4/δ

)
/
√

m, if r ≤ 1/2.

Corollary 5. Let z be randomly drawn according to ρ satisfying |y| ≤ M almost surely.

Assume that fρ is in the range of Lr
K for some 0 < r ≤ 1. For m ≥ Cr and any 0 < δ < 1,

with confidence 1− δ,

‖fz,λ − fρ‖ρ ≤

 2 log
(
4/δ

)(
12κM

)2r/(1+2r)‖L−r
K fρ‖1/(1+2r)

ρ

(
1
m

)r/(1+2r)
, if r > 1/2,

log
(
4/δ

)(
8M + 8rκ2r‖L−r

K fρ‖ρ

)(
1
m

)r/2
, if r ≤ 1/2.
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where λ is chosen as above, Cr = 1 for r ≤ 1/2 and

Cr =
(
‖L−r

K fρ‖ρ/(12κM)
)4/(2r−1)(8κ2)(2+4r)/(2r−1), if r > 1/2.

Proof. Take λ = t log
(
4/δ

)
with t > 0 satisfying t ≥ 8κ2/

√
m. Then (6.1) is valid. By

Theorem 5 and Lemma 3, with confidence 1− δ,

‖fz,λ − fρ‖ρ ≤
12κM log

(
4/δ

)
√

mλ
+ λr‖L−r

K fρ‖ρ ≤ log
(
4/δ

){12κM√
mt

+ tr‖L−r
K fρ‖ρ

}
.

The bound on the right side is optimized by minimizing over t

t =
(
12κM/‖L−r

K fρ‖ρ

)2/(1+2r)
(

1
m

)1/(1+2r)

.

Choose this value for t when r > 1/2. For r ≤ 1/2, we choose t = 8κ2/
√

m. The error

bounds are verified.

The above error bounds are kernel independent, except the requirement ‖L−r
K fρ‖ρ <

∞. They may be improved when some extra information about the kernel such as its

regularity is available. See [14].
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