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Abstract

In this paper, we study an online learning algorithm in Reproducing Kernel Hilbert Spaces
(RKHS) and general Hilbert spaces. We present a general form of the stochastic gradient
method to minimize a quadratic potential function by an independent identically distributed
(i.i.d.) sample sequence, and show a probabilistic upper bound for its convergence.

1 Introduction

Consider learning from examples (xt, yt) ∈ X × R (t ∈ N), drawn at random from a probability
measure ρ on X×R. For λ > 0, one wants to approximate the function f∗λ minimizing over f ∈H
the quadratic functional ∫

X×Y
(f(x)− y)2dρ + λ‖f‖2

H ,

whereH is some Hilbert space. In this paper a scheme for doing this is given by using one example
at a time t to update to ft the current hypothesis ft−1 which depends only on the previous examples.

∗The authors were supported by NSF grant 0325113.
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The scheme chosen here is based on the stochastic approximation of the gradient of the quadratic
functional of f displayed above, and takes an especially simple form in the setting of a “Reproducing
Kernel Hilbert Space”. Such a stochastic approximation procedure was firstly proposed in [Robbins
and Monro 1951] and its convergence rate was studied in [Kallianpur 1954]. For more background on
stochastic algorithms see for example [Bertsekas and Tsitsiklis 1996; Duflo 1996]. The main goal
in our development of the algorithm is to give error estimates which characterize in probability
the distance of our updated hypothesis to f∗λ (and eventually the “regression function” of ρ). By
choosing a quadratic functional to optimize one is able to give a deeper understanding of this online
learning phenomenon.

In contrast, in the more common setting for Learning Theory the learner is presented with the
whole set of examples in one batch. One may call this type of work as batch learning.

The organization of this paper is as follows. Section 2 presents an online learning algorithm in
Reproducing Kernel Hilbert Spaces (RKHS) and states Theorem A for a probabilistic upper bound
on initial error and sample error. Section 3 presents a general form of the stochastic gradient
method in Hilbert spaces and Theorem B, together with a derivation of Theorem A from Theorem
B. Section 4 gives the proof of Theorem B and the various bounds appearing in Section 3. Section 5
compares our results with the case of “batch learning”. Section 6 discusses the Adaline or Widrow-
Hoff algorithm and related works. Appendix A collects some estimates used throughout the paper,
Appendix B presents a generalized Bennett’s inequality for independent sums in Hilbert spaces.

The authors would like to acknowledge Peter Bartlett and Pierre Tarres for their suggestions on
stepsize rate; Yifeng Yu and Krishnaswami Alladi for their helpful discussions on proving the Main
Analytic Estimate (Lemma A.1) and Lemma A.2; Yiming Ying for his pointing out the Yurinsky
Lemma. We also thank Ding-Xuan Zhou, David McAllester, Adam Kalai, Gang Liang, Leon Bottou
and especially, Tommy Poggio, for many helpful discussions.

1.1 Notation

Let X be a closed subset of Rn, Y = R and Z = X × Y . Let ρ be a probability measure on Z and
ρX , ρY |x be the induced marginal probability measure on X and conditional probability measure
on Y conditioned on x ∈ X, respectively. Define fρ : X → Y by

fρ(x) =
∫

Y
ydρY |x,

the regression function of ρ. In other words, for each x ∈ X, fρ(x) is the average of y with respect
to ρY |x. Let L 2

ρX
(X) be the Hilbert space of square integrable functions with respect to ρX , and

denoted by L2
ρ(X) for simplicity. In the sequel ‖ ‖ρ denotes the norm in L 2

ρ (X) and ‖ ‖∞ denotes
the supreme norm with respect to ρX (i.e. ‖f‖∞ = ess supρX

|f(x)|). We assume that ‖fρ‖∞ < ∞
and fρ ∈ L 2

ρ (X). Our purpose in this paper is to present a recursive algorithm and show that it
approximates fρ with high probability.
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2 An Online Learning Algorithm in RKHS

Let K : X ×X → R be a Mercer kernel, i.e. a continuous symmetric real function which is positive
semi-definite in the sense that

∑l
i,j=1 cicjK(xi, xj) ≥ 0 for any l ∈ N and any choice of xi ∈ X and

ci ∈ R (i = 1, . . . , l). Note K(x, x) ≥ 0 for all x. In the following ‖ · ‖ and 〈, 〉 denote the Euclidean
norm and the Euclidean inner product in Rn respectively.We give two typical examples of Mercer
kernels. The first is the Gaussian kernel K : Rn×Rn → R defined by K(x, x′) = exp(−‖x−x′‖2/c2)
(c > 0). The second is the linear kernel K : Rn × Rn → R defined by K(x, x′) = 〈x, x′〉 + 1. The
restriction of these functions on X ×X will induce the corresponding kernels on subsets of Rn.

Let HK be the Reproducing Kernel Hilbert Space (RKHS) associated with a Mercer kernel K.
Recall the definition as follows. Consider the vector space VK generated by {Kt : t ∈ X}, i.e. all
the finite linear combinations of Kt, where for each t ∈ X, the function Kt : X → R is defined by
Kt(x) = K(x, t). A semi-definite inner product 〈 , 〉K on this vector space can be defined as the
unique linear extension of 〈Kx,Kx′〉K := K(x, x′). The induced semi-norm is ‖f‖K =

√〈f, f〉K
for each f ∈ VK . Notice that the zero set V0 = {f ∈ VK : ‖f‖K = 0} is a subspace. Then the
semi-definite inner product induces an inner product on the quotient space VK/V0. Let HK be the
completion of this inner product space VK/V0. It follows that for any f ∈ HK , f(x) = 〈f, Kx〉K
(x ∈ X). This is often called as the reproducing property in literature. Define a linear map
LK : L 2

ρ (X) → HK by LK(f)(x) =
∫
X K(x, t)f(t)dρX . The operator LK + λI : HK → HK is

an isomorphism if λ > 0 (endomorphism if λ ≥ 0), where LK : HK → HK is the restriction of
LK : L 2

ρ (X) →HK .

Given a sequence of examples zt = (xt, yt) ∈ X × Y (t ∈ N), our online learning algorithm in
RKHS is

ft+1 = ft − γt((ft(xt)− yt)Kxt + λft), for some f1 ∈HK , e.g. f1 = 0, (1)

where
1) for each t ∈ N, (xt, yt) is drawn identically and independently according to ρ,
2) the regularization parameter λ ≥ 0,
3) the step size γt > 0.

Note that for each f , the map X × Y → R given by (x, y) 7→ f(x)− y is a real valued random
variable and Kx : X →HK is a HK-valued random variable. Thus ft+1 is a random variable with
values in HK depending on (zi)t

i=1. Moreover we see that ft+1 ∈ span{f1,Kxi : 1 ≤ i ≤ t}, a finite
dimensional subspace of HK . The derivation of (1) is given in the next section from a stochastic
gradient algorithm in general Hilbert spaces.

In the sequel we assume that

CK := sup
x∈X

√
K(x, x) < ∞. (2)

For example, the following typical kernels have CK = 1.
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Remark 2.1. 1) Gaussian kernel: K : Rn × Rn → R such that K(x, x′) = e−‖x−x′‖2/c2 .
2) Homogeneous polynomial kernel: K : Rn×Rn → R such that K(x, x′) = 〈x, x′〉d. By the scaling
property, we can restrict K to the sphere Sn−1 × Sn−1.
3) Translation invariant kernels: any K : X×X → R such that K(x, x′) = K(x−x′) and K(0) = 1.

In the sequel, we decompose ‖ft − fρ‖ρ into several parts and give upper bounds for each of
them. Before that, we introduce several important quantities.

First consider the minimization of the regularized least square problem in HK ,

min
f∈HK

∫

Z
(f(x)− y)2dρ + λ‖f‖2

K , λ > 0,

The existence and uniqueness of a minimizer is guaranteed by [Proposition 7 in Chapter III, Cucker
and Smale 2002b] which exhibits it as

f∗λ = (LK + λI)−1LKfρ, (3)

where fρ ∈ L 2
ρ (X) is the regression function. In fact, f∗λ defined in this way is also the equilibrium

of the averaged update equation of (1)

E[ft+1] = E[ft]− γt(E[(ft(xt)− yt)Kxt + λft]), (4)

In other words, f∗λ satisfies
E[(f∗λ(x)− y)Kx + λf∗λ ] = 0. (5)

To see this, it is enough to notice that by LK(f)(x) =
∫
X K(x, t)f(t)dρX , we have

LK(f∗λ) = Ex[f∗λ(x)Kx],

and
LK(fρ) = Ex[[Ey|xy]Kx],

whence the equation (5) turns out to be LK(f∗λ) + λf∗λ = LK(fρ), which leads to the definition of
f∗λ in (3).

Notice that the map (x, y) 7→ (f∗λ(x)− y)Kx + λf∗λ is a HK-valued random variable, with zero
mean. Thus the following variance

σ2 = Ez[‖(f∗λ(x)− y)Kx + λf∗λ‖2
K ], (6)

characterizes the fluctuation about the equilibrium caused by the random sample z = (x, y). If
σ2 = 0, we have the deterministic gradient method (see Section 2). If Mρ > 0 is a constant such
that supp(ρ) ⊆ X × [−Mρ,Mρ], then Proposition 3.4 in the next section implies

σ2 ≤
(

2CKMρ(λ + C2
K)

λ

)2

.

The main purpose in this paper is to obtain a probabilistic upper bound for

‖ft − fρ‖ρ.
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By the triangle inequality we may write

‖ft − fρ‖ρ ≤ ‖ft − f∗λ‖ρ + ‖f∗λ − fρ‖ρ. (7)

The second part of the right hand side in (7), ‖f∗λ − fρ‖ρ, is called as the approximation error. An
upper bound will be given in the end of this section. In the following we will give a probabilistic
upper bound on ‖ft − f∗λ‖K . Before the statement of the theorem, we define

α =
λ

λ + C2
K

, (8)

whose meaning as the inverse condition number, will be discussed in the next section.

Theorem A. Let θ ∈ (1/2, 1). For all t ∈ N, let γt =
1

(λ + C2
K)tθ

. Then for each t ≥ 2, we may

write
‖ft − f∗λ‖K ≤ Einit(t) + Esamp(t), (9)

where
Einit(t) ≤ e

2α
1−θ

(1−t1−θ)‖f1 − f∗λ‖K ;

and with probability at least 1− δ (δ ∈ (0, 1)) in the space Zt−1,

E 2
samp(t) ≤

Cθσ
2

δ(λ + C2
K)2

(
1
α

) θ
1−θ

(
1
t

)θ

.

Here σ2 is the variance in (6) and the positive constant Cθ satisfies

Cθ = 4 +
2

2θ − 1

(
θ

e(2− 2θ)

) θ
1−θ

.

The proof will be deferred to later sections.

Remark 2.2. Assume λ ≤ 1 and consider the upper bound σ2 ≤
(

2CKMρ(λ+C2
K)

λ

)2
. Then the

following holds with probability at least 1− δ (δ ∈ (0, 1)),

‖ft − f∗λ‖K ≤ eC1λ(1−t1−θ)‖f1 − f∗λ‖K +
C2√

δ

(
1
λ

) 2−θ
2(1−θ)

(
1
t

) θ
2

, (10)

where
C1 =

2
(1− θ)(1 + C2

K)
and C2 = 2CKMρ

√
Cθ

(
1 + C2

K

) θ
2(1−θ) .

Remark 2.3. In the decomposition (9) in Theorem A, Einit(t) has a deterministic bound and char-
acterizes the accumulated effect from the initial choice, which is called as the initial error. Esamp(t)
depends on the random sample and thus has a probabilistic bound, which is called as the sample
error. We can also give upper bounds on the approximation error, ‖f∗λ − fρ‖ρ.

The approximation error can be bounded if we put some regularity assumptions on the regression
function fρ. For example, the following result appears in [Theorem 4, Smale and Zhou 2004b].
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Theorem 2.4. 1) Suppose L−r
K fρ ∈ L2

ρ(X) for some r ∈ (0, 1]. Then

‖f∗λ − fρ‖ρ ≤ λr‖L−r
K fρ‖ρ.

2) Suppose L−r
K fρ ∈ L2

ρ(X) for some r ∈ (1/2, 1].

‖f∗λ − fρ‖K ≤ λr− 1
2 ‖L−r

K fρ‖ρ.

Notice that since L
−1/2
K is an isomorphism, HK → L2

ρ(X), the second condition assumes fρ ∈
HK .

3 A Stochastic Gradient Algorithm in Hilbert Spaces

In this section, we extend the setting in the first section to general Hilbert spaces. Let W be a
Hilbert space with inner product 〈 , 〉. Consider the quadratic potential map V : W → R given by

V (w) =
1
2
〈Aw, w〉+ 〈B,w〉+ C (11)

where A : W → W is a positive definite bounded linear operator whose inverse is bounded, i.e.
‖A−1‖ < ∞, B ∈ W and C ∈ R. Then the gradient gradV : W → W is given by

gradV (w) = Aw + B.

V has a unique minimal point w∗ ∈ W such that gradV (w∗) = Aw∗ + B = 0, i.e.

w∗ = −A−1B.

Our concern is to find an approximation of this point, when A, B and C are random variables
on a space Z. We give a sample complexity analysis (i.e. the sample size sufficient to achieve an
approximate minimizer with high probability) of the so-called stochastic gradient method given by
the update formula

wt+1 = wt − γtgradV (wt), for t = 1, 2, 3, . . . (12)

with γt a positive step size. For each example z, the stochastic gradient of Vz, gradVz : W → W is
given by the affine map gradVz(w) = A(z)w+B(z), with A(z), B(z) denoting the values of random
variables A,B at z ∈ Z. Our analysis will benefit from this affine structure and independent
sampling. Thus (12) becomes:

For t = 1, 2, 3, . . . , let zt be a sample sequence and define an update by

wt+1 = wt − γt(Atwt + Bt), for some w1 ∈ W (13)

where
1) zt ∈ Z (t ∈ N) are drawn independently and identically according to ρ;
2) the step size γt > 0;
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3) the map A : Z → SL(W ) is a random variable depending on z with values in SL(W ), the vector
space of symmetric bounded linear operators on W , and B : Z → W is a W -valued random variable
depending on z. For each t ∈ N, let At = A(zt) and Bt = B(zt).

From the stochastic gradient method in equation (12), we derive the equation (1) for our online
algorithm in Reproducing Kernel Hilbert Spaces. Consider the Hilbert space W = HK . For fixed
z = (x, y) ∈ Z, take the following quadratic potential map V :HK → R defined by

Vz(f) =
1
2

{
(f(x)− y)2 + λ‖f‖2

K

}
.

Recall that the gradient of Vz is a map gradVz :HK →HK such that for all g ∈HK ,

〈gradVz(f), g〉K = DVz(f)(g)

where the Frechet derivative at f , DVz(f) :HK → R is the linear functional such that for g ∈HK ,

lim
‖g‖→0

|Vz(f + g)− Vz(f)−DVz(f)(g)|
‖g‖ = 0.

Hence
DVz(f)(g) = (f(x)− y)g(x) + λ〈f, g〉K = 〈(f(x)− y)Kx + λf, g〉K ,

where the last step is due to the reproducing property g(x) = 〈g,Kx〉K . This gives the following
proposition.

Proposition 3.1. gradVz(f) = (f(x)− y)Kx + λf .

Taking f = ft and (x, y) = (xt, yt), by ft+1 = ft − γtgradVzt(ft), we have

ft+1 = ft − γt((ft(xt)− yt)Kxt + λft),

which establishes the equation (1).

In the sequel we assume that

Finiteness Condition.
1) For almost all z ∈ Z, µminI ≤ A(z) ≤ µmaxI (0 < µmin ≤ µmax < ∞);
2) ‖B(z)‖ ≤ β < ∞ for almost all z ∈ Z.

Consider the following averaging of the equation (13) by taking the expectation over the trun-
cated history (zi)t

i=1,

Ez1,...,zt [wt+1] = Ez1,...,zt−1 [wt]− γt(Ezt [At]wt + Ezt [Bt]) (14)

where wt depends on the truncated sample up to time t− 1, (zi)t−1
i=1. Then the equilibrium for this

averaged equation (14) will satisfy

Ezt [At]wt + Ezt [Bt] = 0 ⇔ wt = −Ezt [At]−1Ezt [Bt], (15)

This motivates the following definitions.
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Definition A. 1) The equilibrium w∗ = −Â−1B̂ where Â = Ez[A(z)] and B̂ = Ez[B(z)].
2) The inverse condition number for the family {A(z) : z ∈ Z}, α = µmin/µmax ∈ (0, 1].

For each w ∈ W , the stochastic gradient at w as a map gradVz(w) : Z → W such that
z 7→ A(z)w + B(z), is a W -valued random variable depending on z. In particular, gradVz(w∗) has
zero mean, with variance defined by

σ2 = E[‖gradVz(w∗)‖2] = Ez[‖Azw
∗ + Bz‖2],

which reflects the fluctuations of gradVz(w∗) caused by the randomness of sample z. Observe that
when σ2 = 0, we have the following deterministic gradient algorithm to minimize V ,

wt+1 = wt − γtgradV (wt)

where gradV (w) = Âw + B̂.

Now we are ready to state the general version of the main theorem for Hilbert spaces. Here
ProbZt−1 denotes the product probability measure on Zt−1, which makes sense since zi (1 ≤ i ≤
t−1) are i.i.d. random variables. As in the first section, we will decompose and give a deterministic
bound on Einit and a probabilistic bound on Esamp, respectively.

Theorem B. Assume (13) and the finiteness condition. Let γt = 1/µmaxt
θ (θ ∈ (1/2, 1)) for all

t ∈ N. Then for each t ≥ 2, we have

‖wt − w∗‖ ≤ Einit(t) + Esamp(t) (16)

where
Einit(t) ≤ e

2α
1−θ

(1−t1−θ)‖w1 − w∗‖,
and with probability at least 1− δ (δ ∈ (0, 1))

E 2
samp(t) ≤

σ2

µmax
2δ

ψθ(t, α).

Here

ψθ(t, α) =
t−2∑

k=1

1
k2θ

t−1∏

i=k+1

(
1− α

iθ

)2
.

Remark 3.2. As in the first section, Einit(t) has a deterministic upper bound and characterizes the
accumulated effect from the initial choice, which is called as the initial error, Esamp(t) depends on
the random sample and thus has a probabilistic bound, which is called as the sample error.

Remark 3.3. In summary, wt in equation (13) satisfies that for arbitrary integer t ≥ 2, the following
holds with probability at least 1− δ in the space of all samples of length t− 1, i.e. Zt−1.

‖wt − w∗‖ ≤ e
2α
1−θ

(1−t1−θ)‖w1 − w∗‖+

√
σ2

µmax

√
δ
ψθ(t, α).

When σ2 = 0, we have the following convergence rate for the deterministic gradient algorithm

‖wt − w∗‖ ≤ e
2α
1−θ

(1−t1−θ)‖w1 − w∗‖,
which is faster than any polynomial rate.
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Proposition 3.4. Let α ∈ (0, 1] and θ ∈ (1/2, 1). The following upper bounds hold for σ and
ψθ(t, α).
(1) σ2 ≤ (2β/α)2;

(2) ψθ(t, α) ≤ Cθ

(
1
α

) θ
1−θ

(
1
t

)θ

, where

Cθ = 4 +
2

2θ − 1

(
θ

e(2− 2θ)

) θ
1−θ

.

Remark 3.5. In the setting of equation (1) in reproducing kernel Hilbert space, we have

β = CKMρ and α =
λ

λ + C2
K

,

whence

σ2 ≤
(

2CKMρ(λ + C2
K)

λ

)2

.

Remark 3.6. Choose the initialization w1 = 0 for simplicity. Notice that ‖w∗‖ = ‖Â−1B̂‖ ≤ β/µmin.
Then we have the following bound with probability at least 1− δ,

‖wt − w∗‖ ≤ β

µmin

(
1
t

) θ
2

(
tθ/2e

2α
1−θ

(1−t1−θ) + 2

√
Cθ

δ

)
.

Remark 3.7. Consider the case that θ = 1 and α ∈ (0, 1/2). Then by Lemma 2, we obtain that

Einit(t) ≤ t−α‖w1 − w∗‖

and

Esamp(t) ≤
√

σ2

µmax

√
δ
ψ1(t, α) ≤ 2β

µmin
t−α

√
2

δ(1− 2α)
.

Choosing w1 = 0 and using ‖w∗‖ ≤ β/µmin, we obtain that

‖wt − w∗‖ ≤ β

µmin

(
1
t

)α
(

1 + 2

√
2

δ(1− 2α)

)
.

The proof of Theorem B and Proposition 3.4 will be given in Section 4. Here is the proof of
Theorem A from Theorem B.

Proof. (Theorem A.) In this case W = HK . Before applying Theorem B, we need to rewrite the
equation (1) by the notations used in Theorem B.

For any f ∈ HK , let the evaluation functional at x ∈ X be Ex : HK → R such that Ex(f) =
f(x) (∀x ∈ X). Denote by E∗

x : R → HK the adjoint operator of Ex such that 〈Ex(f), y〉R =
〈f, E∗

x(y)〉K (y ∈ R). From this definition, we see that E∗
x(y) = yKx.
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Define the linear operator Ax : HK → HK by Ax = E∗
xEx + λI, i.e. Ax(f) = f(x)Kx + λf ,

whence Ax is a random variable depending on x. Taking the expectation of Ax, we have Â =
Ex[Ax] = LK + λI.

Moreover, define Bz = E∗
x(−y) = −yKx ∈ HK , which is a random variable depending on

z = (x, y). Notice that the expectation of Bz, B̂ = Ez[Bz] = Ex[Ey[−y]Kx] = −LKfρ. For
simplicity below we denote At = Axt and Bt = Bzt .

With these notations, the equation (1) can be rewritten as

ft+1 = ft − γt(Atft + Bt).

Clearly f∗λ = (LK + λI)−1LKfρ satisfies 0 = Ez[A(z)f∗λ + B(z)] = Âf∗λ + B̂. Thus f∗λ is the
equilibrium of the averaged equation (4).

Notice that the positive operator LK satisfies ‖LK‖ = supx∈X K(x, x) = C2
K . Therefore µmax =

λ + C2
K , µmin = λ, and β = CKMρ.

Finally by identifying wt = ft and w∗ = f∗λ , the upper bound on the initial error Einit(t) follows
from Theorem B and the upper bound on the sample error Esamp(t) follows from Theorem B and
Proposition 3.4.

Remark 3.8. If θ = 1 and λ < C2
K (whence α ∈ (0, 1/2)), by Remark 3.7, we have

‖ft − f∗λ‖K ≤
(

1
t

)α
(
‖f∗λ‖K +

√
σ2

√
δ(λ + C2

K)
ψ1(t, α)

)
.

By Lemma A 2, we have an upper bound for ψ1(t, α),

ψ1(t, α) ≤ t−α

√
2

1− 2α
.

With this upper bound and σ2 ≤ (2β/α)2 = 4C2
KM2

ρ (λ + C2
K)2/λ2, we obtain that

‖ft − f∗λ‖K ≤
(

1
t

)α
(
‖f∗λ‖K +

2CKMρ

λ

√
2

δ(1− 2α)

)
,

which holds with probability at least 1− δ. Notice that this upper bound has a polynomial decay
O(t−α).

4 Proof of Theorem B

In this section we shall use Ez[·] to denote the expectation with respect to z. When the underlying
random variable in expectation is clear from the context, we will simply write E[·].

Define the remainder vector at time t, rt = wt − w∗, which is a random variable depending on
(zi)t−1

i=1 ∈ Zt−1 when t ≥ 2. The following lemma gives a formula to compute rt+1.
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Lemma 4.1.

rt+1 =
t∏

i=1

(I − γiAi)r1 −
t−1∑

k=1

γk

(
t∏

i=k+1

(I − γiAi)

)
(Akw

∗ + Bk).

Proof. Since wt+1 = wt + γt(Atwt + Bt), then

rt+1 = wt+1 − w∗

= wt − γt(Atwt + Bt)− (I − γtAt)w∗ − γtAtw
∗

= (I − γtAt)rt − γt(Atw
∗ + Bt).

The result then follows from induction on t ∈ N.

For simplicity we introduce the following notations, a symmetric linear operator Xt
k+1 : W → W

which depends on zk+1, . . . , zt,

Xt
k+1(zk+1, . . . , zt) =

t∏

i=k+1

(I − γiAi),

and a vector Yk ∈ W which depends on zk only,

Yk(zk) = Akw
∗ + Bk.

Clearly E[Yk] = 0 and E[‖Yk‖2] = σ2 for every 1 ≤ k ≤ t. With this notation Lemma 4.1 can be
written as

rt+1 = Xt
1r1 −

t−1∑

k=1

γkX
t
k+1Yk, (17)

where the first term Xt
1r1 reflects the accumulated error caused by the initial choice; the second

term
∑t−1

k=1 γkX
t
k+1Yk is of zero mean and reflects the fluctuation caused by the random sample.

Based on this observation we define the initial error

Einit(t + 1) = ‖Xt
1r1‖ (18)

and the sample error

Esamp(t + 1) =

∥∥∥∥∥
t−1∑

k=1

γkX
t
k+1Yk

∥∥∥∥∥ . (19)

The main concern in this section is to obtain upper bounds on the initial error and the sample
error. The following estimates are crucial in the proofs of Theorem B and Proposition 3.4.

Proposition 4.2. Let γt = 1/µmaxt
θ for some θ ∈ (1/2, 1]. For all α = µmin/µmax ∈ (0, 1], the

following holds.

(1) Let α′ = α/(1− θ). Then

‖Xt
1r1‖ ≤

{
e−2α′(1−(t+1)1−θ)‖r1‖, θ ∈ (1/2, 1);
(t + 1)−α‖r1‖, θ = 1.
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(2) ‖Yk‖ ≤ 2β/α;

(3) E




∥∥∥∥∥
t−1∑

k=1

γkX
t
k+1Yk

∥∥∥∥∥

2

 ≤ σ2

µmax
2
ψθ(t + 1, α).

From this proposition and the following Markov’s inequality, we give the proof of Theorem B.

Lemma 4.3. (Markov’s Inequality) Let X be a nonnegative random variable. Then for any
real number ε > 0, we have

Prob{X ≥ ε} ≤ E[X]
ε

.

Proof. (Theorem B.) By (18) and the estimation (1) in Proposition 4.2 where θ ∈ (1/2, 1), we
have

Einit(t) ≤ e−
2α
1−θ

(1−t1−θ)‖w1 − w∗‖.
By (19) and the estimation (3) in Proposition 4.2 and Markov’s inequality with X = E 2

samp(t), we
obtain

Prob{E 2
samp(t) ≤ ε2} ≤ σ2

ε2µmax
2
ψθ(t, α).

Setting the right hand side to be δ ∈ (0, 1), we get the probabilistic upper bound on the sample
error.

Next we give the proof of Proposition 4.2.

Proof. (Proposition 4.2)

(1) By µminI ≤ A ≤ µmaxI and γt = 1/µmaxt
θ (θ ∈ (1/2, 1]), then

‖Xt
k+1r1‖ ≤

t∏

i=k+1

‖I − γiAi‖‖r1‖ ≤
t∏

i=k+1

(
1− α

iθ

)
‖r1‖, α = µmin/µmax; (20)

Setting k = 0 and by (1) in Lemma A.2, we obtain the result.

(2) Note that ‖w∗‖ ≤ β/µmin. Thus we have

‖Yk‖ = ‖Akw
∗ + Bk‖ ≤ ‖Ak‖‖w∗‖+ ‖Bk‖ ≤ µmaxβ/µmin + β = β(α−1 + 1) ≤ 2β/α,

since α ∈ (0, 1]. This gives part 2.

(3) Note that

E[‖
t−1∑

k=1

γkX
t
k+1Yk‖2] = E〈

t−1∑

k=1

γkX
t
k+1Yk,

t−1∑

k=1

γkX
t
k+1Yk〉,

=
t−1∑

k,l=1

γkγlE〈Xt
k+1Yk, X

t
l+1Yl〉,

12



where if k 6= l, say k < l,

γkγlEzk,...,zt〈Xt
k+1Yk, X

t
l+1Yl〉 = γkγlEzk+1,...,zt [Ezk|zk+1,...,zt

[Yk]T Xt
k+1X

t
l+1Yl] = 0,

by E[Yk] = 0. Thus we have

t−1∑

k,l=1

γkγlE〈Xt
k+1Yk, X

t
l+1Yl〉 =

t−1∑

k=1

γ2
kE〈Xt

k+1Yk, X
t
k+1Yk〉 ≤

t−1∑

k=1

γ2
kE[‖Xt

k+1‖2‖Yk‖2]

≤ σ2

µmax
2
ψ2

θ(t + 1, α),

where the last inequality is due to E‖Yk‖ = σ2 for all k and

γ2
k‖Xt

k+1‖2 ≤ 1
µmax

2k2θ

t∏

i=k+1

(
1− α

iθ

)2
=

1
µmax

2
ψ2

θ(t + 1, α).

Finally we derive the upper bounds for σ2 and ψ(t, α) as in Proposition 3.4.

Proof. (Proposition 3.4) The first upper bound follows from the estimation (2) in Proposition
4.2,

σ2 ≤ (‖Yk‖)2 ≤
(

2β

α

)2

for all 1 ≤ k ≤ t.

The second upper bound is an immediate result from the estimation (3) in Lemma A 2.

5 Comparison with “Batch Learning” Results

The name, “batch learning” is coined for the purpose of emphasizing the case when the sample of
size t ∈ N is exposed to the learner in one batch, instead of one-by-one as in “online learning” in
this paper. In the context of RKHS, given a sample z = {zi : i = 1, . . . , t}, “batch learning” means
solving the regularized least square problem [Evgeniou, Pontil, and Poggio 1999; Cucker and Smale
2002b]

fλ,z = arg min
f∈HK

1
t

t∑

i=1

(f(xi)− yi)2 + λ〈f, f〉K , λ > 0.

The existence and uniqueness of fλ,z given as in [Section 6, Cucker and Smale 2002b] says

fλ,z(x) =
t∑

i=1

aiK(x, xi)

13



where a = (a1, . . . , at) is the unique solution of the well-posed linear system in Rt

(λtI + Kz)a = y,

with t×t identity matrix I, t×t matrix Kz whose (i, j) entry is K(xi, xj) and y = (y1, . . . , yt) ∈ Rt.

A probabilistic upper bound for ‖fλ,z − f∗λ‖ρ is given in [Cucker and Smale 2002a], and this
has been substantially improved by [De Vito, Caponnetto, and Rosasco 2004] using also some ideas
from [Bousquet and Elisseeff 2002]. Moreover, error bounds expressed in a different form were given
in [Zhang 2003]. A recent result, shown in [June version, Smale and Zhou 2004b], is:

Theorem 5.1.

‖fλ,z − f∗λ‖K ≤ Cρ,K√
δ

(
1

λ
√

t

)
,

where Cρ,K = C2
K

√
σ2

ρ + 3C2
K‖fρ‖ρ and

σ2
ρ =

∫

X×Y
(y − fρ(x))2dρ.

Remark 5.2. Notice that if λ ≤ 1 without loss of generality, the equation (10) in Remark 2.2 shows
the following convergence rate

‖ft − f∗λ‖K ≤ O

((
1
λ

) 2−θ
2(1−θ)

(
1
t

) θ
2

)
,

where θ ∈ (1/2, 1). Since the function τ(θ) =
2− θ

2(1− θ)
=

1
2(1− θ)

+
1
2
, is an increasing function

of θ, then τ(θ) ∈ (3/4,∞) as θ ∈ (1/2, 1). For small λ, when θ is close to 1/2, the upper bound is
close to O(λ−3/4t−1/4) which is tighter in λ but looser in t in comparison with the theorem above;
on the other hand, when θ increases, the upper bound becomes tighter in t but much looser in λ.

6 Adaline

Example 6.1. (Adaline or Widrow-Hoff Algorithm) The Adaline or Widrow-Hoff algorithm [p.
23, Cristianini and Shawe-Taylor 2000] is a special case of the online learning algorithm (1) where
the step size γt is a constant η, the regularization parameter λ = 0, and the reproducing kernel is
the linear kernel such that K(x, x′) = 〈x, x′〉+1 for x, x′ ∈ X = Rn. To see that, define two kernels
by K0(x, x′) = 〈x, x′〉 and K1(x, x′) = 1. Then HK = HK0 ⊕HK1 . Notice that HK0 w Rn and
HK1 w R, whence HK w Rn+1. In fact, for w ∈ Rn and b ∈ R, a function in HK can be written as
f(x) =

∑n
i=1 wixi + b for x ∈ X. By the use of the Euclidean inner product in Rn+1, we can write

f(x) = 〈(w, b), (x, 1)〉. Therefore the Adaline update formula

(wt+1, bt+1) = (wt, bt) + η(〈w, xt〉+ b− yt)(xt, 1), t ∈ N,

can be written as the following formula, by taking the Euclidean inner product of both sides with
the vector (x, 1) ∈ Rn+1,

ft+1 = ft + η(ft(xt)− yt)Kxt .

This is equivalent to set γt = η and λ = 0 in the online learning algorithm (1).
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The case for fixed step size and zero regularization parameter is not included in Theorem A or
B. In the case of non-stochastic samples, [Cesa-Bianchi, Long, and Warmuth 1996] has some worst
case analysis on the upper bounds for the following quantity,

T∑

t=1

(〈wt, xt〉 − yt)2 − min
‖w‖≤W

T∑

t=1

(〈w, xt〉 − yt)2.

Adam Kalai has shown us how one might convert these results of Cesa-Bianchi et al. to a form
comparable to Theorem A. Beyond the square loss function above, some related works include
[Kivinen, Smola, and Williamson 2004] which presents a general gradient descent method in RKHS
for bounded differentiable functions, and [Zinkevich 2003] which studies the gradient method with
arbitrary differentiable convex loss functions. These works suggest different schemes on choosing
the step size parameter and how these choices might affect the convergence rate under various
conditions.

Appendix A: Some Estimates

The following Lemma gives an upper bound for

ψθ(t, α) =
t−2∑

k=1

1
k2θ

t−1∏

i=k+1

(
1− α

iθ

)2
.

Lemma A 1. (Main Analytic Estimate.) For α ∈ (0, 1] and if θ ∈ (1/2, 1),

ψθ(t + 1, α) ≤ Cθ

(
1
α

) θ
1−θ

(
1

t + 1

)θ

,

where

Cθ = 4 +
2

2θ − 1

(
θ

e(2− 2θ)

) θ
1−θ

.

Proof. The following fact will be used repeatedly in this section,

ln(1 + x) ≤ x, for all x > −1. (21)

Thus we have

t∑

i=k+1

ln
(
1− α

iθ

)2
≤ −2α

t∑

i=k+1

1
iθ
≤ −2α

∫ t+1

k+1

1
xθ

dx,

which equals
2α

1− θ

(
(k + 1)1−θ − (t + 1)1−θ

)
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if θ ∈ (1/2, 1).

From this estimate follows,

ψθ(t + 1, α) ≤ e−2α′(t+1)1−θ
t−1∑

k=1

1
k2θ

e2α′(k+1)1−θ
= S1 + S2

where α′ =
α

1− θ
and

S1 = e−2α′(t+1)1−θ

b t−1
2
c∑

k=1

1
k2θ

e2α′(k+1)1−θ
,

S2 = e−2α′(t+1)1−θ
t−1∑

k=b t+1
2
c

1
k2θ

e2α′(k+1)1−θ
,

where bxc denotes the largest integer no bigger than x.

Next we give upper bounds on S1 and S2. First,

S1 ≤ e−2α′(1−2θ−1)(t+1)1−θ

b t−1
2
c∑

k=1

1
k2θ

≤ e−2α′(1−2θ−1)(t+1)1−θ

∫ t/2

1/2

1
x2θ

dx

= e−2α′(1−2θ−1)(t+1)1−θ 1
1− 2θ

((
t

2

)1−2θ

−
(

1
2

)1−2θ
)
≤ 2

2θ − 1
e−2α′(1−2θ−1)(t+1)1−θ

as θ ∈ (1/2, 1). To give a polynomial upper bound for exp{−2α′(1 − 2θ−1)(t + 1)1−θ}, we use the
fact that for any c > 0, a > 0, and x ∈ (0,∞),

e−cx ≤
( a

ec

)a
x−a.

To see this, it is enough to observe that the function f(x) = xa/ecx is maximized at x = a/c. Let
a = (1/θ − 1)−1, c = 2α′(1− 2θ−1), and x = (t + 1)1−θ = (t + 1)θ(1/θ−1), then,

e−2α′(1−2θ−1)(t+1)1−θ ≤
(

θ

eα(2− 2θ)

) θ
1−θ

(t + 1)−θ,

Thus for θ ∈ (1/2, 1) and α ∈ (0, 1),

S1 ≤ 2
2θ − 1

(
θ

eα(2− 2θ)

) θ
1−θ

(t + 1)−θ.
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Second, notice that
1

b(t + 1)/2c ≤
2

t− 1
≤ 4

t + 1
, then

S2 ≤ e−2α′(t+1)1−θ 4θ

(t + 1)θ

t−1∑

k=b t+1
2
c

1
kθ

e2α′(k+1)1−θ ≤ 22θe−2α′(t+1)1−θ
(t + 1)−θ

∫ t

t/2−1

1
xθ

e2α′(x+1)1−θ
dx

≤ 22θe−2α′(t+1)1−θ
(t + 1)−θ

∫ t

t/2−1

2θ

(x + 1)θ
e2α′(x+1)1−θ

dx, by
1
x
≤ 2

x + 1

=
23θ

1− θ
e−2α′(t+1)1−θ

(t + 1)−θ

∫ (t+1)1−θ

(t/2)1−θ

e2α′ydy, by y = (x + 1)1−θ

=
23θ−1

α′(1− θ)
(t + 1)−θ

(
1− e2α′((t/2)1−θ−(t+1)1−θ)

)
≤ 4

α
(t + 1)−θ.

Therefore for θ ∈ (1/2, 1),

ψθ(t + 1, α) ≤
(

2
2θ − 1

(
θ

eα(2− 2θ)

) θ
1−θ

+
4
α

)
(t + 1)−θ

=

(
2

2θ − 1

(
θ

e(2− 2θ)

) θ
1−θ

+ 4α
2θ−1
1−θ

)(
1
α

) θ
1−θ

(t + 1)−θ

≤
(

2
2θ − 1

(
θ

e(2− 2θ)

) θ
1−θ

+ 4

)(
1
α

) θ
1−θ

(t + 1)−θ,

where the last step is due to α
2θ−1
1−θ < 1 as α ∈ (0, 1).

The following lemma is also useful in the various upper bound estimations in Proposition 4.2.

Lemma A 2. (1) For α ∈ (0, 1] and θ ∈ [0, 1],

t∏

i=k+1

(
1− α

iθ

)
≤





exp
(

2α

1− θ

(
(k + 1)1−θ − (t + 1)1−θ

))
, θ ∈ [0, 1)

(
k + 1
t + 1

)α

, θ = 1

(2) For α ∈ (0, 1] and θ ∈ [0, 1],

t−1∑

k=1

1
kθ

t∏

i=k+1

(
1− α

iθ

)
≤ 2

α
;
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(3) If θ = 1 and for α ∈ (0, 1],

ψ2
1(t + 1, α) =

t−1∑

k=1

1
k2

t∏

i=k+1

(
1− α

i

)2

≤





2
1− 2α

(t + 1)−2α, α ∈ (0, 1/2);

2(t + 1)−1 ln(t + 1), α = 1/2;
4

2α− 1
(t + 1)−1, α ∈ (1/2, 1);

4(t + 1)−1, α = 1.

Proof. (1) By the inequality (21), we have for θ ∈ [0, 1],

ln
(
1− α

iθ

)
≤ −α

iθ
.

Thus
t∑

i=k+1

ln
(
1− α

iθ

)
≤ −α

t∑

i=k+1

1
iθ
≤ −α

∫ t+1

k+1

1
xθ

dx (22)

which equals
α

1− θ

(
(k + 1)1−θ − (t + 1)1−θ

)
,

if θ ∈ [0, 1), and

ln
(

k + 1
t + 1

)α

,

if θ = 1. Taking the exponential gives the inequality.

(2) If θ ∈ [0, 1), from (1) we have

1
kθ

t∏

i=k+1

(
1− α

iθ

)
≤ e−

2α
1−θ

(t+1)1−θ 1
kθ

e
2α
1−θ

(k+1)1−θ

,

whence

t−1∑

k=1

1
kθ

t∏

i=k+1

(
1− α

iθ

)
≤ e−

2α
1−θ

(t+1)1−θ
t−1∑

k=1

1
kθ

e
2α
1−θ

(k+1)1−θ

where

t−1∑

k=1

1
kθ

e
2α
1−θ

(k+1)1−θ ≤ 2θ
t−1∑

k=1

(
1

k + 1

)θ

e
2α
1−θ

(k+1)1−θ

≤ 2
∫ t+1

2
e

2α
1−θ

x1−θ

x−θdx ≤ 1
α

e
2α
1−θ

(t+1)1−θ

.
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Therefore

e−
2α
1−θ

(t+1)1−θ
t−1∑

k=1

1
kθ

e
2α
1−θ

(k+1)1−θ ≤ 1
α

<
2
α

.

If θ = 1, from the inequality (22),

t−1∑

k=1

1
k

t∏

i=k+1

(
1− α

i

)
≤

t−1∑

k=1

1
k

(
k + 1
t + 1

)α

≤ 2
tα

t−1∑

k=1

(k + 1)α

k + 1
=

2
tα

t−1∑

k=1

(k + 1)α−1

≤ 2
tα

∫ t

1
xα−1dx,

where if α = 1,
2
tα

∫ t

1
xα−1dx = 2;

and if 0 < α < 1,
2
tα

∫ t

1
xα−1dx =

2
α

(
tα − 1

tα

)
≤ 2

α
,

which completes the proof of part 2.

(3) If θ = 1, using the inequality (21), we have

t∑

i=k+1

ln
(
1− α

i

)2
≤ −2α

t∑

i=k+1

1
i
≤ −2α

∫ t+1

k+1

1
x

dx = ln
(

k + 1
t + 1

)2α

.

Thus

ψ2
1(t + 1, α) ≤

t−1∑

k=1

1
k2

(
k + 1
t + 1

)2α

≤ 22α

(t + 1)2α

t−1∑

k=1

k2α−2

≤ 22α

(t + 1)2α

∫ t−1/2

1/2
x2α−2dx,

where if α ∈ (0, 1/2),

r.h.s. =
22α

1− 2α
(t + 1)−2α

(
21−2α − (t− 1/2)2α−1

) ≤ 2
1− 2α

(t + 1)−2α;

if α = 1/2,

r.h.s. =
2

t + 1
(ln(t− 1/2)− ln 1/2) ≤ 2

t + 1
ln(t + 1);

if α ∈ (1/2, 1),

r.h.s. =
22α

2α− 1
(t + 1)−2α

(
(t− 1/2)2α−1 − (1/2)2α−1

) ≤ 4
1− 2α

(t + 1)−1;

and if α = 1,

r.h.s. =
4

(t + 1)2
(t− 1) ≤ 4(t + 1)−1.

This finishes the proof of the fourth part.
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Appendix B: Generalized Bennett’s Inequality

In the direction of proving an exponential version of the main theorems with 1/δ replaced by log 1/δ,
it has seemed useful for us to consider Bennett’s inequality for random variables in a Hilbert space.
In the mean time, such a theorem was found useful in other work to appear. Thus we include
Appendix B.

The following theorem might be considered as a generalization of Bennett’s inequality for inde-
pendent sums in Hilbert spaces, whose counterpart in real random variables is given in [Theorem
3, Smale and Zhou 2004a].

Theorem B 1. (Generalized Bennett) Let H be a Hilbert space, ξi ∈ H (i = 1, . . . , n) be
independent random variables and Ti :H →H be deterministic linear operators. Define τi = ‖Ti‖
and τ∞ = supi τi. Suppose that for all i almost surely ‖ξi‖ ≤ M < ∞. Define σ2

i = E‖ξi‖2 and
σ2

τ =
∑n

i=1 τiσ
2
i . Then

P

{∥∥∥∥∥
n∑

i=1

Ti(ξi − Eξi)

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− σ2

τ

τ∞M2
g

(
Mε

σ2
τ

)}

where g(t) = (1 + t) log(1 + t)− t for all t ≥ 0. Considering that g(t) ≥ t

2
log(1 + t), then

P

{∥∥∥∥∥
n∑

i=1

Ti(ξi − Eξi)

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− ε

2τ∞M
log

(
1 +

Mε

σ2
τ

)}

The proof needs the following lemma due to Y. Yurinsky [see Theorem 3.3.4(a) in Yurinsky
1995].

Lemma B 1. (Yurinsky) Let ξi ∈H (i = 1, . . . , n) be a sequence of independent random variables
with values in a Hilbert space H and E[ξi] = 0. Then for any t > 0,

E

[
cosh

(
t‖

n∑

i=1

ξi‖
)]

≤
n∏

j=1

E
(
et‖ξj‖ − t‖ξj‖

)
.

Proof. (Theorem B 1.) Without loss of generality we assume E[ξi] = 0. For arbitrary s > 0, by
Markov’s inequality,

P

{
‖

n∑

i=1

Tiξi‖ ≥ ε

}
= P

{
exp

(
s‖

n∑

i=1

Tiξi‖
)
≥ esε

}

≤ e−sεE exp

(
s‖

n∑

i=1

Tiξi‖
)

≤ 2e−sεE cosh

(
s‖

n∑

i=1

Tiξi‖
)
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where the last inequality is due to ex ≤ ex + e−x = 2 cosh(x). Then by Yurinsky’s Lemma,

P

{
‖

n∑

i=1

Tiξi‖ ≥ ε

}
≤ 2e−sε

n∏

j=1

E
(
es‖Tjξj‖ − s‖Tjξj‖

)
.

Denote

I = 2e−sε
n∏

j=1

E
(
es‖Tjξj‖ − s‖Tjξj‖

)
.

For each 1 ≤ j ≤ n, considering E‖ξj‖2 = σ2
j and ‖ξj‖ ≤ M almost surely,

E
(
es‖Tjξj‖ − s‖Tjξj‖

)
= 1 +

n∑

k=2

skE‖Tjξj‖k

k

≤ 1 +
n∑

k=2

skτk−1∞ Mk−2

k
τjσ

2
j

≤ exp

(
n∑

k=2

skτk−1∞ Mk−2

k
τjσ

2
j

)

= exp
(

esτ∞M − 1− sτ∞M

τ∞M2
τjσ

2
j

)

where the second last inequality is due to 1 + x ≤ ex for all x. Therefore

I ≤ exp



−sε +

esτ∞M − 1− sτ∞M

τ∞M2

n∑

j=1

τjσ
2
j



 ,

where the right hand side is minimized at

s0 =
1

τ∞M
log

(
1 +

Mε∑n
j=1 τjσ2

j

)
.

Notice that σ2
τ =

∑n
j=1 τjσ

2
j , then with this choice we arrive at

I ≤ exp
{
− σ2

τ

τ∞M2
g

(
Mε

σ2
τ

)}
,

where the function g(t) = (1 + t) log(1 + t)− t for all t ≥ 0. This is the first inequality.

Moreover, we can check the lower bound of g,

g(t) ≥ t

2
log(1 + t),

which leads to the second inequality.

By taking Ti =
1
n

I, the following corollary gives a form of Bennett’s inequality for random
variables in Hilbert spaces.
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Corollary B 2. (Bennett) Let H be a Hilbert space and ξi ∈ H (i = 1, . . . , n) be independent
random variables such that ‖ξi‖ ≤ M and E‖ξi‖2 ≤ σ2 for all i. Then

P

{∥∥∥∥∥
1
n

n∑

i=1

[ξi − Eξi]

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
−nσ2

M2
g

(
Mε

σ2

)}
.

Noticing that g(t) ≥ t2

2(1 + t/3)
, the corollary leads to the following Bernstein’s inequality for

independent sums in Hilbert spaces.

Corollary B 3. (Bernstein) Let H be a Hilbert space and ξi ∈H (i = 1, . . . , n) be independent
random variables such that ‖ξi‖ ≤ M and E‖ξi‖2 ≤ σ2 for all i. Then

P

{∥∥∥∥∥
1
n

n∑

i=1

[ξi − Eξi]

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− nε2

2(σ2 + Mε/3)

}
.

[Yurinsky 1995] also gives Bernstein’s inequalities for independent sums in Hilbert spaces and
Banach spaces. The following result is a varied form of Theorem 3.3.4(b) in [Yurinsky 1995]. Note
that it is weaker than the form above in that the constant 1/3 changes to 1.

Theorem B 4. Let ξi be independent random variables with values in a Hilbert space H . Suppose
that for all i almost surely ‖ξi‖ ≤ M < ∞ and E‖ξi‖2 ≤ σ2 < ∞. Then for n ≥ 0

P

{∥∥∥∥∥
1
n

n∑

i=1

(ξi − E[ξi])

∥∥∥∥∥ ≥ ε

}
≤ 2 exp

{
− n2ε2

2(σ2 + Mε)

}
.
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