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Hodge Decomposition and Learning Theory
Steve Smale

(joint work with Nat Smale)

Partial differential equations and Laplacians in Euclidean spaces together with the
Lebesgue measure and its counterpart on manifolds have played a central role in
understanding natural phenomena. In many areas, calculus is obstructed as in
singular spaces, computer vision, learning theory, and quantum field theory. In
vision it would be useful to do analysis on the space of images and an image is a
function on a patch.

The point of view taken in this talk is to benefit from the Hodge theory to
develop pattern analysis on general probability spaces without Lebesgue structure.
This starts with a setX equipped with a distance d (which yields analysis like PDE
and heat equations) as well a probability measure ρ (measuring the distribution
of objects like images in X).

Let ` ∈ Z+. The space L2(X`+1) = L2
ρ(X

`+1) consists of `-forms. The Hodge
operator or co-boundary δ : L2(X`+1) → L2(X`+2) is defined by

δf(x0, . . . , x`+1) =
`+1∑
i=0

(−1)if(x0, . . . , x̂i, . . . , x`+1).

Its dual δ∗ = ∂ : L2(X`+2) → L2(X`+1) is called the boundary operator.
The Laplacian on `-forms is defined to be the operator ∆ : L2(X`+1) →

L2(X`+1) given by ∆ = δ∂ + ∂δ. If we denote Harm to be the space of all
harmonic functions in L2(X`+1) satisfying ∆f = 0, then we have the following
Hodge decomposition (L2 theory) [1].

Theorem 1. L2(X`+1) = Im∂ + Imδ + Harm

The Hodge operator δ can be generalized to a weighted setting with a symmetric
and positive function K on X ×X. To see this, let A`+1 be the weight function
on X`+1 given by A`+1(x0, . . . , x`) = Πi 6=j

(
K(xi, xj)

)1/2 for ` ≥ 1 while A1 ≡ 1.
Then the Hodge operator δ = δK is from the weighted space L2

ρA`+1
(X`+1) to the

weighted space L2
ρA`+2

(X`+2). Its dual δ∗ = ∂ : L2
ρA`+2

(X`+2) → L2
ρA`+1

(X`+1) is
given by

∂f(x0, . . . , x`) =
`+1∑
i=0

(−1)i

∫
X

f(x0, . . . , xi−1, u, xi, . . . , x`)Π`
j=0K(xj , u)dρ(u).

The Hodge operator and induced Laplacian can be used for learning theory.
Consider the case ` = 0 in the weighted setting with K being a Mercer kernel on
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X. Then A1 ≡ 1 and A2(x0, x1) = K(x0, x1). The Laplacian ∆ = ∂δ : L2
ρ(X) →

L2
ρ(X) on 0-forms takes the form

∆f(x) = 2D(x)f(x)− 2LKf(x),

where D(x) =
∫

X
K(x, u)dρ(u) and LK is the integral operator on L2

ρ(X) or the
reproducing kernel Hilbert space HK given by LKf(x) =

∫
X
K(x, u)f(u)dρ(u).

The operator ∆ can also be considered as one on HK . It can be discretized
by a sample {xi}m

i=1 drawn from ρ. The function D ∈ HK can be discretized as
1
m

∑m
i=1Kxi

where Kx = K(·, x) ∈ HK . The operator LK : HK → HK can be
approximated by a finite-rank one 1

mS
T
x Sx (induced by a sample operator Sx as

in [2]) defined as 1
mS

T
x Sxf = 1

m

∑m
i=1〈·,Kxi〉KKxi .

Theorem 2. Assume κ :=
√

supx∈X K(x, x) <∞. With confidence 1− δ,∥∥∥∥ 1
m
ST

x Sx − LK

∥∥∥∥
HK→HK

≤
4κ2 log

(
2/δ
)

√
m

.

Consider another weighted setting (corresponding to adjacency matrix of a
graph X). Let α > 0 and a subset of X`+1 given by U`+1

α = {(x0, . . . , x`) ∈
X`+1 : d(xi, p) ≤ α for some p ∈ X, and all i} (it equals X`+1 when α is large
enough). The Hodge operator δ = δα can be regarded as one from L2

ρ(U`+1
α ) to

L2
ρ(U`+2

α ). Its dual ∂ : L2
ρ(U`+2

α ) → L2
ρ(U`+1

α ) is given by

∂f(x0, . . . , x`) =
`+1∑
i=0

(−1)i

∫
S

x0,··· ,x`

f(x0, . . . , xi−1, u, xi, . . . , x`)dρ(u).

Here Sx0,··· ,x` denotes the slice {t ∈ X : (x0, . . . , x`, t) ∈ U`+2
α }. In this setting

we have the following Hodge decomposition [1] where the space Harm of harmonic
functions is defined by the corresponding Laplacian.

Theorem 3. For any α > 0 and ` ∈ Z+, we have

L2
ρ(U`+1

α ) = Im∂ + Imδ + Harm.

The space of harmonic functions and in general eigenfunctions of the above
Laplacian would lead to some applications in pattern analysis [3] as the graph
Laplacian [4] does.
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