

# Detecting People Using Mutually Consistent Poselet Activations\*

Lubomir Bourdev<sup>1,2</sup>, Subhransu Maji<sup>1</sup>, Thomas Brox<sup>1</sup> and Jitendra Malik<sup>1</sup> <sup>1</sup>University of California, Berkeley <sup>2</sup> Adobe Systems, Inc.



Frontal face

## Goals and Contributions

- Best person detection/segmentation on PASCAL VOC 07-09
- New poselet selection algorithm to maximize coverage on the training examples
- · Improved detections using neighboring detections of other poselets
- Saliency based agglomerative clustering for generating hypothesis
- Integrating both top down and bottom up information for segmentation
- Large scale 2D annotations done on Amazon Mechanical Turk

#### Comparison to Felzenszwalb et.al.[1]



meaning ("frontal face", "hand next to hip")





resolution parts trained in an unsupervised

### From annotations to poselets

1. Randomly sample patches as seeds









2. Find corresponding patches using keypoint configurations



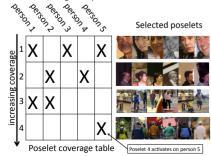








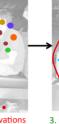
- 3. Train poselets (linear SVMs based on HOG features)
- 4. Select poselets based on maximizing coverage of the training examples



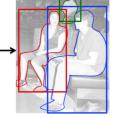




with size proportional to the detection score



3. Clustering activations Each cluster represents a person hypothesis



4. Hypothesis generation Example bounds and segmentation

# 1. Collecting poselet activations

We find all poselet detections above a threshold over multiple scales and locations followed by non-max suppression

### 2. Improved detections using context

· Local detections can often be wrong:



look similar



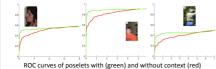




Face false right leg? positive

- Presence and absence of consistent poselet activations is used to disambiguate activations
- In the picture below the presence of a face poselet activation decreases the score of the back-facing-person poselet





# 3. Clustering poselet activations

- We cluster consistent poselet activations into person hypotheses
- We use greedy bottom up clustering sorted by the poselet detection scores







Highest prob. activation Consistent activation creates the first cluster

falls in the same cluster creates a new cluster

#### 4. Scoring and Segmenting the hypotheses . The detection score of the hypothesis is the weighted combination of the

- scores of the poselet detections
- The predicted bounds are the combination of the bounds predicted by each activation weighted by its detection score
- For segmentation we first obtain figure/ground masks for each poselet



Various poselets with their figure/ground masks

- . We obtain an initial segmentation by averaging the masks of individual poselets weighted by their detection scores
- . The initial mask g is aligned to the image boundaries f by estimating a smooth deformation field (u.v):

$$E(u,v) = \int_{\mathbb{R}^2} |f(x,y) - g(x+u,y+v)| + \alpha (|\nabla u|^2 + |\nabla v|^2) \, dx dy.$$

#### Which poselet activations are consistent?

- · Consistent activations refer to the same object
- We measure consistency by thresholding the KL-divergence

noselet activation Its prediction of the shoulders and hips



Not Consistent

# **Detection/Segmentation Results**





Predicted segmentation masks

|   | voc  | POSELETS         | Felzenszwalb et al.[1] | IL | VOC                 | POSELETS | Yang et al.[2] |
|---|------|------------------|------------------------|----|---------------------|----------|----------------|
|   | 2009 | 47.8%            | 43.8%                  |    | 2009                | 40.5%    | 38.9%          |
|   | 2008 | 54.1%            | 43.1%                  |    | 2008                | 43.1%    | 41.3%          |
| L |      | Person detection |                        |    | Person segmentation |          |                |

#### References

1. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.

Object Detection with Discriminatively Trained Part Based Models, PAMI'09 2. Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.: Layered object detection for multi-class segmentation. CVPR (2010)

<sup>\*</sup> This work was supported by Adobe Systems, Inc., a grant from Hewlett Packard and the MICRO program, a Google Graduate Fellowship, a fellowship from the German Academic Exchange Service (DAAD), as well as ONR MURI N00014-06-1-0734