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Abstract Biased Normalized Cuts Graph based Image Segmentation with Constraints
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Eigenvectors 1. The solution is a weighted combination of the eigenvectors. The weights

of the eigenvectors are proportional to the correlation with the seed

vector, i.e. eigenvectors that are well correlated get up-weighted. Biased Ncuts for various y. Decreasing y make the cut tighter around the seed v .nn

2. Steps 1-3, are the steps for solving Normalized Cuts. 1= !
Image and its eigenvectors using the intervening contour cue with gPb (M. Maire et.al., CVPR’08) experiments. -

3. Inaninteractive setting, only Steps 4-5 need to be repeated.
Bottom up information alone is insufficient to segment out the cat in this image. 5. Matrix L, D are sparse so, complexity is linear in the number of pixels. Seed vectors using an object detector

)

4. On natural images, eigenvalues grow quickly, so using top k
eigenvectors are enough for a good approximation. We set k=25 in our
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