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Abstract—We show that a class of nonlinear kernel SVMs admits approximate classifiers with runtime and memory complexity that is

independent of the number of support vectors. This class of kernels, which we refer to as additive kernels, includes widely used kernels

for histogram-based image comparison like intersection and chi-squared kernels. Additive kernel SVMs can offer significant

improvements in accuracy over linear SVMs on a wide variety of tasks while having the same runtime, making them practical for large-

scale recognition or real-time detection tasks. We present experiments on a variety of datasets, including the INRIA person, Daimler-

Chrysler pedestrians, UIUC Cars, Caltech-101, MNIST, and USPS digits, to demonstrate the effectiveness of our method for efficient

evaluation of SVMs with additive kernels. Since its introduction, our method has become integral to various state-of-the-art systems for

PASCAL VOC object detection/image classification, ImageNet Challenge, TRECVID, etc. The techniques we propose can also be

applied to settings where evaluation of weighted additive kernels is required, which include kernelized versions of PCA, LDA,

regression, k-means, as well as speeding up the inner loop of SVM classifier training algorithms.

Index Terms—Image classification, support vector machines, efficient classifiers, additive kernels

Ç

1 INTRODUCTION

CONSIDER sliding window detection, one of the leading
approaches for detecting objects in images like faces

[42], [61], pedestrians [42], [10], [16], and cars [44]. In this
approach, first, a classifier is trained to recognize an object
at a fixed “pose”—for example, as shown in Fig. 1, one may
train a classifier to classify 64� 96 pixel pedestrians which
are all centered and scaled to the same size, from
background. In order to detect pedestrians at arbitrary
location and scale in an image, the classifier is evaluated by
varying the location and scale of the classification window.
Finally, detections are obtained by finding peaks of the
classification score over scales and locations, a step
commonly referred to as nonmaximum suppression.
Although this approach is simple—the classifier does not
have to deal with invariance—a key drawback of this
approach is computational complexity. On typical images
these classifiers can be evaluated several tens of thousands
of times. One may also want to search over aspect ratios,
viewpoints, etc., compounding the problem. Therefore,
efficient classifiers are crucial for effective detectors.

Discriminative classifiers based on Support Vector Ma-
chines (SVMs) and variants of boosted decision trees are two
of the leading techniques used in vision tasks ranging from
object detection [42], [61], [10], [16], multicategory object
recognition in Caltech-101 [20], [32], to texture discrimina-
tion [67]. Classifiers based on boosted decision trees such as

[61], have faster classification speed, but are significantly
slower to train. Furthermore, the complexity of training can
grow exponentially with the number of classes [55]. On the
other hand, given the right feature space, SVMs can be more
efficient during training. Part of the appeal of SVMs is that
nonlinear decision boundaries can be learned using the
“kernel trick” [50]. However, the runtime complexity of a
nonlinear SVM classifier can be significantly higher than a
linear SVM. Thus, linear kernel SVMs have become popular
for real-time applications as they enjoy both faster training
and faster classification, with significantly less memory
requirements than nonlinear kernels.

Although linear SVMs are popular for efficiency reasons,
several nonlinear kernels are used in computer vision as they
provide better accuracy. Some of the most popular ones are
based on comparing histograms of low-level features like
color and texture computed over the image and using a
kernel derived from histogram intersection or chi-squared
distance to train a SVM classifier. In order to evaluate the
classification function, a test histogram is compared to a
histogram for each of the support vectors. The number of
support vectors can often be a significant fraction of the
training data, so this step is computationally very expensive
as the test time scales linearly with the number of support
vectors. This paper presents and analyzes a technique to
greatly speed up that process for histogram comparison
functions that are additive—where the comparison is a linear
combination of functions of each coordinate of the histogram.
In particular we show it is possible to evaluate the classifier
to arbitrary precision in time independent of the number of
support vectors—similar to that of a linear SVM.

This more efficient approach makes SVMs with additive
kernels—used in many of the current most successful object
detection/recognition algorithms—efficient enough to ap-
ply much more broadly, even possibly to real-time applica-
tions. The class of kernels includes the pyramid matching or
intersection kernels used in Grauman and Darell [20]; and
Lazebnik et al. [32]; and the chi-squared kernel used by
Varma and Ray [57]; and Chum and Zisserman [8], which
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together represent some of the best results in image and

object recognition on the Caltech [14] and PASCAL VOC

[12] datasets.
Although the results in this paper apply to any additive

kernel, we begin by analyzing the histogram intersection

kernel, Kminðha; hbÞ ¼
P

i minðhaðiÞ; hbðiÞÞ, that is often used

as a measurement of similarity between histograms ha and

hb. Because it is positive definite [54] for nonnegative

features and conditionally positive definite for arbitrary

features [34], it can be used as a kernel for discriminative

classification using SVMs. Recently, intersection kernel

SVMs (henceforth referred to as IKSVMs) have become

popular with the introduction of pyramid match kernel [20]

and spatial pyramid match kernel [32] for object detection

and image classification. Unfortunately, this success typi-

cally comes at great computational expense compared to

simpler linear SVMs because nonlinear kernels require

memory and computation linearly proportional to the

number of support vectors for classification.
In this paper, we show the following:

. SVMs using the histogram intersection kernel can be
exactly evaluated exponentially faster than the
straightforward implementation used in the pre-
vious state of the art, as has been previously shown
in [25] and independently in our own work in [35]
(Section 3).

. A generalization allows arbitrary additive kernel
SVMs to be evaluated with the same “big O”
computational cost as linear SVMs (Section 4), as
well as significantly reducing the memory overhead,
making them practical for detection and real-time
applications.

. We show that additive kernels arise naturally in
many computer vision applications (Section 5) and
are already being used in many state-of-the-art
recognition systems.

. Additive kernels such as histogram intersection are
sufficiently general, i.e., the corresponding kernel
SVM classifier can represent arbitrary additive classi-
fiers. The difference between additive kernels can be
analyzed mainly in terms of the implied regulariza-
tion for a particular kernel. This helps us to under-
stand both the potential benefit and the inherent
limitations of any additive classifier, in addition to

shedding some light on the tradeoffs between choices
of additive kernels for SVMs (Section 6).

. Our approach can be computationally more efficient
compared to some of the recently proposed methods
and the previous state of the art in kernel classifier
evaluation (Section 7).

. Combining these efficient additive classifiers with a
novel descriptor provides an improvement over the
state-of-the-art linear classifiers for pedestrian detec-
tion, as well for many other datasets (Section 8).

. These techniques can be applied generally to settings
where evaluation of weighted additive kernels is
required, including kernel PCA, kernel LDA, and
kernelized regression, kernelized k-means, as well as
efficient training (Section 9).

2 SUPPORT VECTOR MACHINES

We begin with a review of support vector machines for

classification. Given labeled training data of the form

fðyi;xiÞgNi¼1, with yi 2 f�1;þ1g, xi 2 IRn, we use a C-SVM

formulation [9]. For the linear case, the algorithm finds a

hyperplane which best separates the data by minimizing:

�ðw; �Þ ¼ 1

2
kwk2 þ C

XN
i¼i

�i; ð1Þ

subject to yiðw � xi þ bÞ � 1� �i and �i � 0, where C > 0, is

the tradeoff between regularization and constraint viola-

tion. For a kernel on data points, Kðx; zÞ : IRn � IRn ! IR,

that is the inner product, �ðxÞ � �ðzÞ, in an unrealized,

possibly high-dimensional, feature space, one can obtain the

same by maximizing the dual formulation:

Wð�Þ ¼
XN
i¼i

�i �
1

2

X
ij

�i�jyiyjKðxi;xjÞ ð2Þ

subject to: 0 � �i � C and
X

�iyi ¼ 0: ð3Þ

The decision function is signðhðxÞÞ, where:

hðxÞ ¼
Xm
l¼1

�lylKðx;xlÞ þ b: ð4Þ

Notice that the dual formulation only requires access to

the kernel function and not the features �ð:Þ, allowing one

to solve the formulation in very high-dimensional feature

spaces efficiently—also called the kernel trick. For clarity, in

a slight abuse of notation, the features, xl: l 2 f1; 2; . . . ;mg,
will be referred to as support vectors. Thus, in general,

m kernel computations are needed to classify a point with a

kernelized SVM and all m support vectors must be stored.

Assuming these kernels can be computed in OðnÞ time, the

overall complexity of the classifier is OðmnÞ. For linear

kernels we can do better because Kðx; zÞ ¼ x � z, so hðxÞ can

be written as hðxÞ ¼ w � xþ b, where w ¼
Pm

l¼1 �lylxl. As a

result, classifying with a linear SVM only requires

OðnÞ operations and OðnÞ memory.
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Fig. 1. A typical “sliding window” detection pipeline.



3 FAST EXACT IKSVMs

We motivate our discussion using the histogram intersec-
tion or the min kernel. Often, similarity between images is
obtained by comparing their distribution over low-level
features like edge orientations, pixel color values, codebook
entries, etc. These distributions could be represented as
histograms and a similarity measure like the histogram
intersection can be used. The histogram intersection kernel
is known to be positive definite [54] for histogram-based
features and hence can be used with the standard SVM
machinery. This representation is popular for the “bag-of-
words” approaches which have led to state-of-the-art
results in many object detection and classification tasks.

We first show that it is possible to speed up classification
for intersection kernel SVMs. This analysis was first
presented in [25] and later independently in our own work
[35]. For histogram-based feature vectors x; z 2 IRn

þ, the
intersection kernel Kminðx; zÞ is defined as:

Kminðx; zÞ ¼
Xn
i¼1

min xi; zið Þ ð5Þ

and classification is based on evaluating:

hðzÞ ¼
Xm
l¼1

�lylKminðz;xlÞ þ b ð6Þ

¼
Xm
l¼1

�lyl
Xn
i¼1

min zi; xl;i
� � !

þ b: ð7Þ

The nonlinearity of min prevents us from “collapsing” the
weight vector in a similar manner for linear kernels. Thus,
the complexity of evaluating hðxÞ in the standard way is
OðmnÞ. The key property of intersection kernels is that we
can exchange the summations in (7) to obtain:

hðzÞ ¼
Xm
l¼1

�lyl
Xn
i¼1

min zi; xl;i
� � !

þ b ð8Þ

¼
Xn
i¼1

Xm
l¼1

�lyl min zi; xl;i
� � !

þ b ð9Þ

¼
Xn
i¼1

hiðziÞ þ b: ð10Þ

Thus, the overall function hð�Þ can be rewritten as the sum
of 1D functions hið�Þ, where:

hiðsÞ ¼
Xm
l¼1

�lyl min s; xl;i
� �

: ð11Þ

The complexity of computing each hiðsÞ in the naive way is
still OðmÞ with an overall complexity of computing hðxÞ
still OðmnÞ. We now show how to compute each hi in
OðlogmÞ time.

Consider the functions hiðsÞ for a fixed value of i. Let �xl;i
denote the sorted values of xl;i in increasing order with
corresponding �s and labels as ��l and �yl. If s < �x1;i then
hiðsÞ ¼ s

P
l ��l ¼ 0 since

P
l ��l ¼ 0. Otherwise, let r be the

largest integer such that �xr;i � s. Then, we have

hiðsÞ ¼
Xm
l¼1

��l�yl min s; �xl;i
� �

ð12Þ

¼
X

1�l�r
��l�yl�xl;i þ s

X
r<l�m

��l�yl ð13Þ

¼ AiðrÞ þ sBiðrÞ; ð14Þ

where we have defined

AiðrÞ ¼
X

1�l�r
��l�yl�xl;i; ð15Þ

BiðrÞ ¼
X
r<l�m

��l�yl: ð16Þ

Equation (14) shows that hi is piecewise linear. Further-

more, hi is continuous because

hið�xrþ1Þ ¼ AiðrÞ þ �xrþ1BiðrÞ
¼ Aiðrþ 1Þ þ �xrþ1Biðrþ 1Þ:

Notice that the functionsAi andBi are independent of the

input data and depend only on the support vectors and �.

Thus, if we precompute them, then hiðsÞ can be computed by

first finding r, the position of s in the sorted list �xl;i using

binary search and linearly interpolating between hið�xrÞ and

hið�xrþ1Þ. This requires storing the �xl as well as the hið�xlÞ or

twice the storage of the standard implementation. Thus, the

runtime complexity of computing hðxÞ is Oðn logmÞ as

opposed to OðnmÞ, a speedup of Oðm= logmÞ. This can be

significant if the number of support vectors is large.

4 APPROXIMATE ADDITIVE KERNEL SVMs

It is possible to compute approximate versions of the

classifier even faster. Traditional function approximation

quickly breaks down as the number of dimension increase.

However, for the intersection kernel SVMs we have shown

that the final classifier can be represented as a sum of 1D

functions. As long as the kernel is “additive,” i.e., the overall

kernel Kðx;yÞ can be written as

Kðx;yÞ ¼
Xn
i¼1

Kiðxi; yiÞ; ð17Þ

the resulting kernel SVM classifier is also additive, i.e., hðsÞ
can be written as

hðsÞ ¼
Xn
i¼1

hiðsiÞ þ b; ð18Þ

where

hiðsiÞ ¼
Xm
l¼1

�lylKiðsi; xl;iÞ ð19Þ

and xl;i denotes the ith dimension of the lth support vector.
This decomposition allows us to approximate the final

classifier by approximating each dimension independently.

The simplest of these is a piecewise polynomial approxima-

tion in which we represent the function in each dimension
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as a piecewise polynomial function using b sections, each of
degree k. This requires b� ðkþ 1Þ floating points per
dimension. Classification requires table lookup followed
by the evaluation of a k degree polynomial, which requires
2ðkþ 1Þ floating-point operations using Euler’s method.
Two special cases are the piecewise constant and piecewise
linear approximations corresponding to degree k ¼ 0 and
k ¼ 1, respectively. In our experiments we restrict ourselves
to these cases as one can approximate any function arbitrary
well. The final classifier corresponds to a lookup table of
size m� ðbþ 1Þ. The overall complexity of the classifier
then is Oð2ðkþ 1ÞnÞ—essentially the same as that of a
linear SVM classifier.

In our MATLAB/C++ implementation the speed of the
piecewise linear approximations is about 5:5� slower than
the linear classifier. The more expensive table lookups can
be avoided by rewriting the piecewise linear interpolation
as a dot product of a dense vector of function values and a
sparse vector indicating the bin indices, for e.g., see [34] or
[45]. These implementations are essentially as fast as the
linear classification method, especially when there are a
large number of classes and the encoding time can be
amortized over the number of classes.

Although these 1D functions can be precomputed once
for each classifier—this could become a bottleneck if the
number of classes are large or if the classifier needs to be
updated often, for example, during training. To approx-
imate these 1D functions using a piecewise linear approx-
imation, one has to sample these functions at a fixed set of
points. The complexity of evaluating these 1D functions
hiðsiÞ ¼

Pm
l¼1 �lylKiðsi; xl;iÞ at b locations is OðbmÞ. When b

is large, i.e., b� logm, for the intersection kernel one can
sample these functions faster using the exact IKSVM
evaluation presented in Section 3 in Oððmþ bÞ logmÞ time,
making it the approach of choice for certain applications.

5 ADDITIVE KERNELS IN COMPUTER VISION

We identify several naturally arising additive kernels in
computer vision applications, though we note that variants
of these kernels also arise in natural language processing,
such as text classification, etc. There are two important
classes of additive kernels used in the computer vision,
which we describe next.

5.1 Comparing Histograms

Often similarity between images is obtained by comparing
their distribution over low-level features like edge orienta-
tions, pixel color values, codebook entries, textures, etc.
These distributions are typically represented as histograms
and a similarity measure like the histogram intersection or
the negative �2 or l2 distance is used. Both the histogram
intersection kernel [54, and the �2 kernels are known to be
positive definite for histogram-based features and hence can
be used with the standard SVM machinery. See [3], [41] for a
proof that the histogram intersection kernel and its variants
are positive definite and [2] for a proof for the �2 kernel.

The histogram intersection kernel,Kmin, and the�2 kernel,
K�2 , for normalized histograms are defined as follows:

Kminðx; zÞ ¼
Xn
i¼1

min xi; zið Þ; K�2ðx; zÞ ¼
Xn
i¼1

2xizi
xi þ zi

: ð20Þ

Fig. 2 visualizes these additive kernels. We also note that
the intersection kernel is conditionally positive definite for
all features and hence can be used with SVMs even when
the features are not histograms, i.e., they need not be
positive or normalized. For proof, see paper [34]. A special
case worth mentioning is the generalized histogram
intersection kernel [3] defined by:

Kðx; zÞ ¼
Xn
i¼1

min
�
jxij�; jzij�

�
: ð21Þ

This is known to be positive definite for all � > 0. Chappelle
et al. [7] observe that this remapping of the histogram bin
values by x! x� improves the performance of linear kernel
SVMs to become comparable to RBF kernels on an image
classification task over the Corel Stock Photo Collection.
Simply square-rooting the features with linear kernel, which
is also called the Bhattacharyya kernel, has also been shown
to provide significant improvements when used with “bag-
of-words” style features for various image classification and
detection tasks [59], [45]. This representation also arises in a
text classification setting where the histograms represent
counts of words in a document.

5.2 Approximate Correspondences

Another class of additive kernels is based on the matching
sets of features between images. Two popular variants are
the pyramid match and the spatial pyramid match kernels. We
describe each of them briefly.

Pyramid match kernel. Introduced by Grauman and
Darell [20], [22], who proposed a way to measure similarity
between sets of features using partial correspondences
between the elements in the sets. The similarity measure
reduces to a weighted histogram intersection of features
computed in a multiresolution histogram pyramid; hence
the name. This approach builds on Indyk and Thaper’s [27]
approximation to matching costs using l1 embeddings. An
attractive feature of this method is that the matching has
linear time complexity in the feature dimension and
naturally forms a Mercer kernel, which enables it to be
used with discriminative learning frameworks like kernel
SVMs. This kernel has been used in various vision tasks like
content-based image retrieval, pose estimation, unsuper-
vised category discovery [21], and image classification. This
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Fig. 2. Visualization of linear, intersection, and �2 kernels for 1D

features. One can see that the �2 kernel is a smoother version of the

intersection kernel and is twice differentiable on the interior.



kernel is additive because the overall kernel is simply a
weighted histogram intersection.

Spatial pyramid match kernel. Lazebnik et al. [32]
introduced a similarity based on approximate global
geometric correspondence of local features of images.
Instead of a global histogram of features one creates
histograms of features over increasingly fine subregions of
the image in a “spatial pyramid” representation. Like the
pyramid match kernel, the spatial matching is now
approximated by the weighted histogram intersection of
the multiresolution spatial pyramid. This remarkably
simple and computationally efficient extension of an
orderless bag-of-features has proven to be extremely useful,
and has become a standard baseline for various tasks which
require image to image similarity like object detection,
image classification, pose estimation, action recognition, etc.
Many state-of-the-art object detection and image classifica-
tion results on the PASCAL Visual Object Challenge [12],
ImageNet [28], and TRECVID [53] challenge are based on
variants of the kernel where the underlying features change.
Nevertheless, this kernel is also additive as the overall
kernel is once again a weighted histogram intersection of
the underlying features.

6 LEARNING ADDITIVE CLASSIFIERS

Additive classifiers are based on functions of the form:

fðxÞ ¼
X
i¼1

fiðxiÞ; ð22Þ

i.e., the overall function f is a sum of 1D functions. Additive
functions were popularized by Hastie and Tibshirani [23]
for fitting statistics of data. Linear classifiers are the
simplest additive classifiers, where each fiðxiÞ ¼ wixi. By
allowing arbitrary fi, additive models can provide better
fits to the training data than linear models. Our key insight
in Section 4, was to observe that if the kernel K is additive,
then the learned SVM classifier is also additive. Thus, the
standard SVM training machinery provides an efficient way
to train additive classifiers compared to the traditional
backfitting algorithm [18]. Additive classifiers also arise in
boosting when the weak-learners are functions of one
dimension, for example, decision stumps, ðxi > cÞ. Hence,
the standard AdaBoost algorithm [48] is yet another way of
training additive classifiers.

We now show that the additive classifiers based on
histogram intersection kernel are general, i.e., can represent
any additive function on the input features as a linear

combination of intersection kernel of the features, as shown
by the next theorem.

Theorem 6.1. Let x1;x2; . . . ;xn be points in IRd � 0 and
fðxiÞ ¼ f1ðxi;1Þ þ f2ðxi;2Þ þ � � � þ fdðxi;dÞ be an additive
function, where xi;j denotes the value of the jth dimension of
the ith point. Then, there exists �1; �2; . . . ; �n such that
fðxiÞ ¼

P
j �jKminðxi;xjÞ, 8i ¼ 1; 2 . . . ; n.

Proof. We prove this by showing that there exists a weight
vector w, in the Reproducing Kernel Hilbert Space
(RKHS) of the intersection kernel, Kmin, such that
w � �ðxiÞ ¼ fðxiÞ. First we show that there is a weight
vector wk for each fk such that wk � �ðxj;kÞ ¼ fkðxj;kÞ. This
follows immediately from the fact that the gram matrix
Gk consisting of entries Gk

ij ¼ minðxi;k; xj;kÞ is full rank
for unique xi;k, and the system of equations �Gk ¼ fk has
a solution (if the values are not unique, one can remove
the repeated entries). Since the overall function is
additive, we can obtain the weight vector w with the
required property by stacking the weight vectors, wk,
from each dimension. Thus, by representer theorem,
there exists � such that

w � �ðxiÞ ¼
X
j

�jKminðxi;xjÞ ¼ fðxiÞ:

ut

Note that the � is shared across dimensions and this
proof may be applied to any additive kernel which satisfies
the property that the kernel in each dimension is full rank,
for example, the �2 kernel.

Thus, the SVM classifier represents the overall function as
a linear combination of kernel functions in each dimension.
The 1D functions Kiðsi; xl;iÞ for a fixed value of xl;i can
be thought of as a basis function for each dimension of the
classifier. Fig. 3 shows these basis functions for the
intersection and �2 kernels. Fig. 4 shows several 1D functions
approximated by a linear combination of 10 basis functions
centered at 0:1; 0:2; . . . ; 1:0 and a constant. The linear
combination coefficients were found using linear least-
squares regression. The decision stumps ðxi > cÞ give us a
piecewise constant approximation, while the histogram
intersection gives a piecewise linear approximation and
�2 kernel gives smoother polynomial-like approximation.
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Fig. 3. Visualization of the basis functions of linear, intersection,
�2 kernels, and decision stumps for 1D features.

Fig. 4. Approximations of various 1D functions by linear, intersection,

�2 kernels, and decision stumps as the basis functions.



Compared to the linear case, kernels like the intersection,
�2 kernel, and decision stumps are able to approximate these
functions much better.

7 PREVIOUS WORK

There are several approaches for speeding up classification
using kernel SVM classifiers, which we briefly discuss next.

7.1 Approximate Kernel SVMs

For the histogram intersection kernel, Herbster [25] first
proposed the fast evaluation algorithm we presented in
Section 3. In our earlier work [35] we independently proposed
the same method for exact classification along with the
approximate method described in Section 4, which is more
general and applies to arbitrary additive kernels. Recently,
Rahimi and Recht [46] proposed embeddings that approx-
imate shift-invariant kernels, i.e.,Kðx;yÞ ¼ fðjx� yjÞ, using
a feature map � such that Kðx;yÞ � �ðxÞ � �ðyÞ. Based on
this analysis and our own work [34], [35], Vedaldi and
Zisserman [59] proposed embeddings which approximate a
class of additive kernels that are “homogeneous.” This allows
one to use the explicit form of the classifier fðxÞ ¼ w � �ðxÞ
instead of the kernelized version, which can be more efficient
in some settings. We discuss some of these methods in
Section 9.

However, during classification for additive kernels, the
piecewise linear approximation we proposed can be much
faster. To see this, observe that the piecewise linear
approximation can be written as a dot product of a weight
vector corresponding to the values of the function sampled
at uniformly spaced points, with a sparse vector corre-
sponding to the projection of the data onto a uniformly
spaced linear B-Spline basis centered at these points (also
see [34]). In this representation, evaluating the classifier
requires only two multiplications and one addition per
dimension, which can be much smaller compared to the
approximate embeddings of [59].

Another line of approach applicable to Gaussian kernels
is the work of Yang et al. [66] who use the fast Gauss
transform to build efficient classifiers—however, this is
applicable when the feature dimension is very small,
typically less than 10.

7.2 Reduced Set Methods

For general kernels, a class of methods known as “reduced
set methods” approximates the classifier by constructing
representations using a small subset of data points, typically
much smaller than the number of support vectors. These sets
of points can be the set of input points themselves, as in the
work of Burges [6], Osuna and Girosi [43], where the most
representative support vectors are kept as a postprocessing
step. Instead of having a single approximation, one can have
a series of approximations with more and more points to
obtain a cascade of classifiers, an idea which has been used in
[47] to build fast face detectors. Another class of methods
builds classifiers by having a regularizer in the optimization
function which encourages sparseness, (e.g., l1-norm on the
alphas) or picks support vectors in a greedy manner till a
stopping criterion is met [30]. These methods may be able to
reduce the number of support vectors by an order of
magnitude, but are still significantly slower than a linear
SVM. Often this come at the expense of classification

accuracy. Thus, these approaches are not competitive when
the kernel is additive compared to our approach.

7.3 Coarse to Fine Methods

The coarse to fine approach for speeding up the classification
is popular in many real-time vision applications. Simpler
features and classifiers are used to reject easy examples
quickly in a cascade. This idea has been applied to face [24],
[4] and pedestrian detection [64] to achieve an order of
magnitude speedup in the overall detection time. Methods
like branch and bound [31], context [26], bottom-up regions
[56], Hough transformation [37], [33], etc., improve efficiency
by reducing the number of classifier evaluations. This paper
improves the efficiency of the underlying discriminative
classifier, allowing more powerful classifiers to be evaluated
exponentially faster—in practice up to several thousand
times faster than naive implementations and entirely
complementary to the techniques mentioned for reducing
the number of classifier evaluations.

8 EXPERIMENTAL RESULTS

Since its introduction, our ideas for efficiently computing
weighted combination for additive kernels has been
applied to many applications like image-classification on
the Caltech-101 [15], PASCAL Visual Object Challenge [12],
handwritten digits [36], video retrieval (TRECVID [53]),
near-duplicate image detection [52], pedestrian detection
frameworks combining static image features and optical
flow [62], efficient classifiers for training large scale data
[34], [59], [63], etc. We summarize some of these applica-
tions in Section 10.

We present experiments on several image classification
and detection datasets and compare the performance of
linear intersection as well as a nonlinear kernel, such as
radial basis or polynomial kernel. We also report the
speedup obtained by the piecewise linear approximation
compared to the naive method of evaluating the classifier.
Table 1 contains a summary of our results. The piecewise
linear approximations are as accurate as the exact additive
classifier, with about 100 pieces on all datasets. On various
datasets, the intersection kernel SVM is significantly
better than the linear SVM and often comparable to rbf-
kernel SVM while offering up to three orders of
magnitude speedup. The details of each dataset and the
features are presented below.

8.1 Toy Example: Learning a Circle

We illustrate the additive kernel approximation using a toy
example. The data are generated by sampling points from a
2D Gaussian and all points within a certain radius of the
center belong to one class and the points outside belong to
the other class, as seen in Fig. 5 (top-left).

A linear classifier works poorly in this case as no 2D line
can separate the points well. However, the intersection
kernel SVM is able to achieve an accuracy of 99.10 percent
on this data. This is because it is able to approximate the
circle, which is an additive function (x2 þ y2 � r), using two
1D curves, x2 and y2. Fig. 5 shows the learned classifier
represented with varying number of bins using a piecewise
linear approximation, as well as the classification accuracy
as a function of the number of approximation bins. The
accuracy saturates with 10 bins. On more realistic datasets,

MAJI ET AL.: EFFICIENT CLASSIFICATION FOR ADDITIVE KERNEL SVMS 71



the number of bins required for a good approximation
depends on the smoothness of the underlying function, but
empirically, 100 bins were sufficient in all our experiments.

8.2 MNIST and USPS Digits

The MNIST dataset1 was introduced by LeCun and Cortes
and contains 60,000 examples of digits 0-9 for training and
10,000 examples for testing. As before, we construct features
based on histograms over oriented responses computed by
convolving the image with a Gaussian derivative filter with
� ¼ 2 and bin the response in 12 orientations. The images in
this dataset are 28� 28 pixels and we collect histograms over
blocks of sizes 28� 28, 14� 14, 7� 7, and 4� 4 pixels. We
also found that adding overlapping blocks which overlap the
block size by half improves performance at the expense of
increasing the feature vector dimension by a factor of about
four. This is similar in spirit to the overlapping blocks in the
HOG descriptor in the pedestrian detector of [10]. These
features with an IKSVM classifier achieve an error rate of
0.79 percent, compared to an error rate of 1.44 percent using
linear and 0.56 percent using polynomial kernel. Similar
features and IKSVM achieves an error rate of 3.4 percent on
the much harder USPS dataset. We refer the readers to [36] for
a complete set of experiments for the task of handwritten
digit classification. Fig. 6 shows the errors made by our digit
recognition system on the MNIST dataset.

A key advantage is that the resulting IKSVM classifier is
very fast. The estimated number of multiply-add operations
required by the linear SVM is about 40K, while the
intersection kernel requires about 125K operations, including
the time to compute the features. This is significantly less than
the about 14 million operations required by a polynomial
kernel SVM reported in the work of Decoste and Schölkopf
[11]. The reduced set methods [5] (1.0 percent error) require
approximately 650K operations, while the neural network
methods like LeNet5 (0.9 percent error) requires 350K and the
boosted LeNet4 (0.7 percent error) requires 450K operations.
For a small cost for computing features we are able to achieve
competitive performance while at the same time being faster
at both training and test time.

8.3 INRIA Pedestrians

The INRIA pedestrian dataset [10] was introduced as an
alternate to the existing pedestrian datasets (e.g., MIT
Pedestrian Data set) and is significantly harder because of
the wide variety of articulated poses, variable appearance/
clothing, illumination changes, and complex backgrounds.
Linear kernel SVMs with Histograms of Oriented Gradients
(HOG) features achieve high accuracy and speed on this
dataset [10]. We use the multiscale HOG features intro-
duced in [35] and train a intersection kernel SVM on these
features. The single scale HOG used in the original paper
[10] when used with IKSVM provides small improvements
over the linear kernel, similar to those observed by using
the rbf-kernel. We also found that the HOG with
l1-normalization of the gradient-based features works better
with the intersection kernel. The multiscale HOG, however,
outperforms l1-normalized HOG. Results are shown in
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TABLE 1
Summary of Our Results

We show the performance using a linear, intersection, and nonlinear kernel as well as the speedup obtained by a piecewise linear approximation of
the intersection kernel classifier on each dataset. The rbf kernel is defined as Kðx;yÞ ¼ expð�	ðx� yÞ2Þ and the poly kernel of degree d, is defined
as Kðx;yÞ ¼ ð1þ 	ðx � yÞÞd. All the kernel hyperparameters were set using cross validation.

Fig. 5. Toy example. Top left: The training data. Bottom left: Accuracy of
the learned classifier approximated by a piecewise linear function of
varying number of bins. Top right and top left: Learned functions on the x
and y dimensions, respectively, as well as the piecewise linear
approximations using a varying number of bins.1. http://yann.lecun.com/exdb/mnist/.



Table 2 using 100 bin approximation. Fig. 7 shows sample
detections on this dataset.

8.4 Daimler Chrysler Pedestrians

We use the Daimler Chrysler pedestrian benchmark
dataset, created by Munder and Gavrila [39]. The dataset
is split into five disjoint sets, three for training and two for
testing. Each training set has 5,000 positive and negative
examples each, while each test set has 4,900 positive and
negative examples each. We report results by training on
two out of three training sets at a time and testing on each of
the test sets to obtain six train-test splits. Due to the small
size of the images (18� 36), we compute the multilevel
features with only three levels (L ¼ 3) of pyramid with

cell sizes 18� 18, 6� 6, and 3� 3 at levels 1, 2, and 3,
respectively. The block normalization is done with a cell
size of wn � hn ¼ 18� 18. The features at level l are
weighted by a factor cl ¼ 1=4ðL�lÞ to obtain a 656-dimen-
sional vector which is used to train an IKSVM classifier.

The classification results using the exact methods and
approximations are shown in Table 3. Our results are
comparable to the best results for this task [39]. The IKSVM
classifier is comparable in accuracy to the rbf-kernel SVM,
and significantly better than the linear SVM. The speedups
obtained for this task are significant due to large number of
support vectors in each classifier. The piecewise linear with
30 bins is about 2;000� faster and requires 200� less
memory, with no loss in classification accuracy. The piece-
wise constant approximation, on the other hand, requires
about 100 bins for similar accuracies and is even faster.

Our unoptimized MATLAB implementation for com-
puting the features takes about 17 ms per image and the
time for classification (0.02 ms) is negligible compared to
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Fig. 6. All the errors made by the classifier on the MNIST dataset. On
each image, a! b means that the digit a was misclassified as b.

TABLE 2
Detection Rate at 2 FPPI on the INRIA Person Dataset

The last run of [10] is obtained by running the detector using a finer
“scaleratio” of 1.05 between successive layers of the image pyramid
instead of the default 1.1.

TABLE 3
Accuracy on the Daimler-Crysler Pedestrian Dataset

Fig. 7. Sample pedestrian detections on the INRIA person dataset using the spHOG + IKSVM classifier.



this. Compared to the 250 ms required by the cascaded
SVM-based classifiers of Munder and Gavrila [39], our
pipeline is 15� faster. Fig. 8 shows some of the errors made
by our classifier.

8.5 Caltech 101

Our next set of experiments are on Caltech-101 [15]. The aim
here is to show that existing methods can be made
significantly faster, even when the number of support
vectors in each classifier is small. We use the framework of
Lazebnik et al.[32] and use our own implementation of their
“weak features” and achieve an accuracy of 56.49 percent
(compared to their 54 percent), with 30 training and test
examples per class and one-versus-all classifiers based on
IKSVM. The performance of a linear SVM using the same
features is about 44.33 percent, while that of an rbf kernel is
50.13 percent. The IKSVM classifiers on average have
185 support vectors and a piecewise linear approximation
with 60 bins is 62� faster and the piecewise constant
approximation is 76� faster than a standard implementa-
tion, with no loss in accuracy (see Table 4).

It is interesting to note the performance of one-versus-
one classifiers as they are faster to train. With 15 training
and 50 test examples per category, one-versus-one
classifiers give an accuracy of 47:43	 0:37 for intersection,
compared to 39:58	 0:78 for linear kernel, with five-fold
cross validation. Increasing with number of training
examples to 30 improves the performance to 53:80	 2:43
for intersection kernel compared to 45:66	 2:63 for linear
kernel.

8.6 UIUC Cars

This dataset was collected at UIUC [1] and contains
images of side views of cars. The training set consists of

550 car and 500 noncar images. We test our methods on
the single scale image test set, which contains 170 images
with 200 cars. The images are of different sizes themselves
but contain cars of approximately the same scale as in the
training images. Results are shown in Table 5. Once again
the IKSVM classifier outperforms both the linear and the
rbf kernel SVM and is comparable to the state of the art.
Fig. 9 shows some of the detections and misdetections on
this dataset.

8.7 Comparison to the “Square-Root” Kernel

As has been noted earlier [7] and recently by several others
[45], [60], simply square-rooting the features, also known as
the “Bhattacharyya” kernel, can improve the performance
of linear classifiers significantly. This method has the
advantage that it requires no special machinery on top of
linear training and testing algorithms. For example, on the
Caltech-101 dataset, Vedaldi and Zisserman [60] observe a
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Fig. 8. Top row, False negatives and, bottom row, false positives on the Daimler-Chrysler pedestrian dataset.

TABLE 4
Classification Accuracy of Various Methods on the Caltech-101 Dataset Using 15 and 30 Training Examples per Category

The piecewise linear classifiers are up to 60� faster without loss in accuracy over the exact method.

Fig. 9. Example detections (green) and misdetections (red) of the detector on the UIUC cars dataset.

TABLE 5
Performance at Equal Error Rate on the UIUC Cars Dataset



12 percent improvement over linear SVM by square-rooting
the features and an additional 3 percent improvement using
an additive kernel. On the PASCAL VOC 2007 dataset, [45]
observe a 4.8 percent improvement using “square-root”
kernel compared to linear, and an additional 1.6 percent
improvement using the intersection kernel and a similar
trend on the ImageNet dataset.

9 EXTENSIONS AND APPLICATIONS

The techniques and analysis we propose can be applied
generally to settings where evaluation of weighted additive
kernels is required. This includes kernelized versions of
PCA, LDA, regression, and k-means. In addition one can
use our method to speed up the inner loop of training SVM
classifiers. We describe some of these extensions next.

9.1 Efficient Training Algorithms

Though the focus of this paper is on efficient evaluation of
the classifier, our method can be used for training the
classifier itself. Although, for an application classification,
speed is the most important factor, training these classifiers
can become a bottleneck. Several training algorithms use
classification as an inner loop to identify misclassified
examples to update the classifier. When the number of
training examples is very large, for example while training
object detectors, one often employs bootstrapping to train
successive classifiers and collect “hard” examples by
running the classifiers on large amounts of data. In such
scenarios, the overall pipeline can be sped up using the
techniques proposed in this paper.

Recent advancements in the learning community has
lead to training algorithms for linear SVMs which scale
linearly with the training data (LIBLINEAR [13], PEGASOS
[51], SVMperf [29]). However, for general kernel SVMs the
training times can still be very high. Often the implicit
RKHS, denoted by �ðxÞ, such that Kðx;yÞ ¼ �ðxÞ � �ðyÞ, of
the kernel is very high dimensional (possibly infinite),
which makes it impractical to use the linear SVM
techniques directly in the RKHS.

It is possible to construct low-dimensional or sparse
embeddings which preserve the dot products in kernel
space approximately (Kðx;yÞ � �ðxÞ � �ðyÞ) to leverage fast
linear SVM training algorithms. For shift invariant kernels
this has been addressed in [46]. These kernels have a special
form Kðx;yÞ ¼ fðjx� yjÞ. The histogram intersection and
�2 kernels are not shift invariant, but the approximate
versions of the classifier, namely, the piecewise constant/
linear classifiers, can be thought of as embeddings that
preserve the kernel dot product approximately. In parti-
cular, [34] describes a sparse embedding which has at most
twice the number of nonzero entires as the original feature
space, which allows efficient linear training techniques to
be used. More recently, Vedaldi and Zisserman [59]
proposed alternate embeddings which are low dimensional
for additive kernels.

Another approach is to use the efficient classification
techniques internally to speed up the training process [63].
The performance of these approximate classifiers are often
identical to that of the trained kernel SVMs while taking a
fraction of the training time, as shown by the experiments in
[34], [59]. On several benchmark datasets related to image
classification and object detection, these techniques provide
a significant improvement in accuracy over linear SVMs

while paying only a small cost in training and test time,
which renders this paradigm of practical importance.

9.2 Classifier Cascades

One can order the class of kernels based on the representation
power, Linear 
 Additive 
 General, to create a cascade of
detectors where a linear classifier is used to first discard the
easy examples and the rest are then passed on to an additive
kernel classifier and so on. This idea has been used for object
detection by Vedaldi et al. [58] to build cascades of object
detectors based on multiple kernels derived from color,
texture, and shape features and was the top performing
method on the PASCAL 2008 VOC object detection challenge.

9.3 Additive Kernel Methods

Finally, the additive kernel approximation ideas apply
generally to various other tasks like regression, clustering,
ranking, principal components, etc. Methods like kernel
PCA, LDA, Gaussian processes, etc., can benefit from our
analysis to vastly speed up the computation times as well as
reduce the runtime memory and storage requirements. We
describe some of these in this section.

9.3.1 Kernel Regression/Gaussian Processes

This is analogous to the classification case, except the outputs
yi are real valued instead of fþ1;�1g for the classification
case. The optimization problem often involves minimizing
something like the squared-error between the prediction and
the true value [50]. Similarly to the classification case, the
final regression function is of the form:

fðxÞ ¼
Xn
i¼1

�ikðxi;xÞ þ b: ð23Þ

9.3.2 Kernel PCA/LDA

Dimensionality reduction techniques like Principal Compo-
nent Analysis (PCA) have been extended to arbitrary Hilbert
spaces using the kernel trick [49]. These, however, come at a
great increase in computational and memory cost. For an
arbitrary kernelK, the projection of a new data point x to the
nth principal component takes the form [50]:

cnðxÞ ¼
Xm
i¼1

�ni Kðxi;xÞ; ð24Þ

where �n is the nth eigenvector of the kernel matrix
Kij :¼ Kðxi;xjÞ. For additive kernels one can use our
proposed techniques to both represent these principal
components compactly as well as compute the projections
of a new data point onto the principal components efficiently.
This idea has been used in [45] to compute low-dimensional
representations of features for image classification.

Fisher Discriminant Analysis or Linear Discriminant
Analysis (LDA) in the kernel space has a similar form as
one of the projection vectors in PCA, i.e.,

Pm
i¼1 �iKðxi;xÞ.

The � vector is the solution to the kernelized version of the
optimization problem in LDA. We refer the reader to [38]
for details.

9.3.3 Kernel Codebooks

Kernelized similarity can be used for unsupervised cluster-
ing to construct codebooks used bag-of-words models for
visual recognition. Methods like k-means or Gaussian
mixture models represent cluster centers as a weighted
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combination of the points within the cluster and evaluating
the similarity to a point involves the weighted combination
of kernel similarity to points within the cluster, a step which
can benefit from our analysis. In [65], the authors
demonstrate that histogram intersection kernel-based code-
books offer better accuracies on several image classification
tasks over traditional clustering based on linear kernel.

10 CONCLUSION

In this paper, we showed that a class of nonlinear kernels
called additive kernels leads to SVM classifiers which can be
approximately evaluated very efficiently. Additive kernels
are strictly more general than linear kernels and often lead
to significant improvements and our technique brings
down the memory and time complexity of classification
using additive kernels to only a small constant multiple of
that of a linear SVM. Additive kernels are widely used in
computer vision and our technique has found widespread
applications in many classification/detection tasks.

In addition, our technique has led to efficient training
algorithms for additive classifiers and has sped up many
applications involving histogram-based comparison, like
near duplicate image detection and kernel k-means/PCA/
LDA/regression.
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