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Abstract

We present a discriminative Hough transform based ob-

ject detector where each local part casts a weighted vote for

the possible locations of the object center. We show that the

weights can be learned in a max-margin framework which

directly optimizes the classification performance. The dis-

criminative training takes into account both the codebook

appearance and the spatial distribution of its position with

respect to the object center to derive its importance. On

various datasets we show that the discriminative training

improves the Hough detector. Combined with a verification

step using a SVM based classifier, our approach achieves

a detection rate of 91.9% at 0.3 false positives per image
on the ETHZ shape dataset, a significant improvement over

the state of the art, while running the verification step on at

least an order of magnitude fewer windows than in a sliding

window approach.

1. Introduction

Various techniques for object detection have been pro-

posed in the literature including sliding window classifiers,

pictorial structures [7], constellation models [8] and im-

plicit shape models [18]. Sliding window classifiers are es-

pecially well suited for rigid objects and have been used

widely for detection of faces [23, 25], pedestrians [5, 20],

cars [24], etc. A binary classifier is evaluated on a uniform

sample of the possible locations and scales and is followed

by postprocessing step like non-max suppression to find the

objects. Some of the popular techniques to alleviate the

complexity issue include looking at salient regions, coarse

to fine search, branch-and-bound [16].

The Hough transform [6] provides yet another way of

dealing with the complexity issue of searching over pose

and has been used for various pose estimation problems in-

cluding shape detection [2]. Of particular interest is the im-
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plicit shape model [18] which is a probabilistic formulation

of the Hough transform where local parts probabilistically

vote for locations of the objects. Combined with verifica-

tion step, this approach has been used successfully for de-

tection of objects [18, 22]. By allowing the local parts to

vote for possible transformations of the object like transla-

tion, scale and aspect variation, one can use the peaks of the

voting space for importance sampling of windows for fur-

ther evaluation. Any technique that causes the voting space

to better reflect the presence of the object has a direct impact

on the speed and accuracy of this two stage classifier.

The main contribution of this paper is to place the Hough

transform in a discriminative framework where each local

part casts a weighted vote for the possible locations of the

object center. The learning framework takes into account

both the appearance of the part and the spatial distribution

of its position with respect to the object center and parts

which are both repeatable and occur at a consistent location

are assigned higher weights. The final formulation turns out

to be convex and one can obtain a globally optimal solu-

tion using off the shelf optimization packages. We call our

approach ’Max-Margin Hough Transform’ or M2HT. The

framework treats the parts (or codewords) and the proba-

bility distribution of the object locations as a blackbox, and

hence it can be used to learn weights for the popular implicit

shape model.

We present experiments on various datasets to show the

power of discriminative training by comparing it with a

Hough transform that uses uniform codeword weights as

well as a simple scheme which we refer to as naive-bayes

weights, that takes into account only the “representative-

ness” of the part and ignores its spatial distribution. On the

ETHZ shape dataset [9] the M2HT detector has a detection

rate of 60.9% at 1.0 false positives per image compared to
52.4% using uniform weights and 54.2% using naive-bayes
weights. On UIUC cars dataset [1] the M2HT detector has

half the false positives per image rate at 90% recall com-
pared to the Hough detector based on both uniform and

naive-bayesweights. The performance of M2HT is also bet-

ter than both on the INRIA horses dataset.



We present further experiments by combining the Hough

detector with a verification step using a standard SVM clas-

sifier, which then finds the location of the objects by per-

forming a local search around the proposed regions. Our

two stage classifier achieves a detection rate of 91.9% at 0.3
false positive per image (FPPI) on the ETHZ shape dataset,

a significant improvement over the state of the art, while

running the verification step on at least an order of mag-

nitude fewer windows than in a sliding window approach.

On UIUC cars we obtain a performace of 97.5% at equal
error rate, while having to run the verification step on only

10 windows per image. On INRIA horse dataset the overall
detector has a recall of 85.27% at 1.0 FPPI, almost the same
as sliding window detector while again considering only a

small set of windows per image.

The rest of the paper is structured as follows: We present

an overview of the probabilistic Hough transform in Sec-

tion 2. In Section 3 we cast the voting process in a dis-

criminative framework and outline the max-margin formu-

lation of the problem. The overall detection strategy is de-

scribed in Section 4. We present our experiments on various

datasets in Section 5 and conclude in Section 6.

2. Probabilistic Hough Transform

Let fi denote the feature observed at a location li, which
could be based on the properties of the local patch around

li. Let S(O, x) denote the score of object O at a loca-
tion x. Here x denotes pose related properties such as
position, scale, and aspect ratio. Let Ci denotes the i’th
codebook entry of the vector quantized space of features f .
The implicit shape model [18] framework obtains the over-

all score S(O, x) by adding up the individual probabilities
p(O, x, fj , lj) over all observations , i.e.

S(O, x) =
∑

j

p(O, x, fj , lj) (1)

=
∑

j

p(fj , lj)p(O, x|fj , lj) (2)

Assuming a uniform prior over features and locations and

marginalizing over the codebook entries we get :

S(O, x) ∝
∑

j

p(O, x|fj , lj) (3)

=
∑

i,j

p(Ci|fj , lj)p(O, x|Ci, fj, lj) (4)

One can simplify this further using the fact that

p(Ci|fj, lj) = p(Ci|fj) because the codebook entries are
matched based on appearance only and the distribution

p(O, x|Ci, lj , fj) depends only on the matched codebook

entry Ci and lj .

S(O, x) ∝
∑

i,j

p(Ci|fj)p(O, x|Ci, lj) (5)

=
∑

i,j

p(Ci|fj)p(x|O, Ci, lj)p(O|Ci, lj)(6)

The first term is the likelihood that the codebook entry Ci

generated the feature fj . We base this on the distance of the

codebook entry to the feature as follows:

p(Ci|f) =

{

1

Z
exp(−γd(Ci, f)) if d(Ci, f) ≤ t

0 otherwise
(7)

Where Z is a constant to make p(Ci|f) a probability distri-
bution and γ, t are positive constants. The second term is
the probabilistic Hough vote for the location of the object,

which can be estimated during training time by observing

the distribution of the locations of the codebook activations

relative to the object center. In our experiments we maintain

a binned estimate of p(x|O, Ci, lj) by discretizing the space
of relative locations of the object. The third term is the

weight of the codebook entry emphasizing how confident

we are that the codebook entryCi at location lj matches the
object as opposed to background. Assuming that the prob-

ability p(O|Ci, l) is independent of the location (location
invariance) we have a simple way of estimating this using

both positive and negative examples as follows :

p(O|Ci, l) = p(O|Ci) ∝
p(Ci|O)

p(Ci)
(8)

Here, p(Ci|O) is the relative frequency of the codebook
entry Ci on the object features , while P (Ci) is the relative
frequency on both negative and positive training images.

We refer to this as naive-bayes weights, as the weight is set

independently for each codebook entry. This takes into ac-

count only the appearance of the codebook and ignores the

spatial distribution of the part relative to the object center.

In the next section we present a way to jointly consider both

for learning weights on codebooks. Figure 1 illustrates the

detection pipeline for the probabilistic Hough Tranform.

3. Max-Margin Hough Transform

The overall procedure in the previous section can be seen

as a weighted vote for object locations over all codebook

entries Ci. In this section we will show how to learn these

weights wi in a discriminative manner which directly op-

timizes the classification performance. The key idea is to

observe that the score of the S(O, x) is a linear function of
p(O|Ci) (making the similar location invariance assump-
tion that p(O|Ci, l) = p(O|Ci)). One can see this readily



Figure 1. Pipeline for the Probabilistic Hough Tranform (PHT).

Given an image local features are extracted which are matched to

codebook entries. Votes are cast over possible locations accord-

ing to a learned distribution over object centers weighted by the

importance of each codeword.

from the following :

S(O, x) ∝
∑

i,j

p(x|O, Ci, lj)p(Ci|fj)p(O|Ci, lj) (9)

=
∑

i,j

p(x|O, Ci, lj)p(Ci|fj)p(O|Ci) (10)

=
∑

i

p(O|Ci)
∑

j

p(x|O, Ci, lj)p(Ci|fj) (11)

=
∑

i

wi × ai(x) = wT A(x) (12)

where AT = [a1a2 . . . aK ] is the activation vector and ai

is given by the following equation:

ai(x) =
∑

j

p(x|O, Ci, lj)p(Ci|fj) (13)

For a given object location and identity, the summation over

j is a constant and is only a function of the observed fea-
tures, locations and the estimated distribution over the cen-

ters for the codebook entry Ci. This suggests a discrimi-

native training algorithm that finds weights that maximize

the score S on correct object locations over incorrect ones.
Unlike the earlier method of estimating wi based just on

codebook activations, we have the ability to additionally use

the conditional distribution of the object centers to learn the

weights. In the next section we formalize our training al-

gorithm as well as present experiments to validate our ap-

proach.

3.1. Discriminative Training

Let {(yi, xi)}
N
i=1
be set of training examples, where

yi ∈ {+1,−1} is the label and xi is the location of the

i’th training instance. Typically we are given the positive
instances and pick the “hard” negative instances by find-

ing the peaks in the voting space (using uniform weights)

negative training images. The first stage is to compute the

activations Ai = A(xi) for each example by carrying for-
ward the voting process and adding up the votes for each

feature fj found at location lj according to the Equation 13.
Thus the score assigned by the model to the instance i is

Figure 2. Training pipeline for the “Max-Margin Hough Trans-

form”. Given positive and negative training examples with true

locations (X±), we obtain the activations A(X±) (Equation 3) for
each example, from which weights are learned by using the M2HT

learning framework.

wT Ai. Weights are learned by maximizing this score on

correct locations of the object over incorrect ones. In order

to be robust to outliers and avoid overfitting, we propose a

max-margin formulation leading to the following optimiza-

tion problem :

min
w,b,ξ

1

2
wT w + C

T
∑

i=1

ξi (14)

s.t. : yi(w
T Ai + b) ≥ 1 − ξi (15)

w ≥ 0, ξi ≥ 0, ∀i = 1, 2, . . . , N (16)

This optimization is similar to the optimization problem

of a linear Support Vector Machine [4], with an additional

positivity constraint on the weights. We use a standard off

the shelf optimization package called CVX [13] for solving

this problem. Figure 2 shows the training pipeline and Fig-

ure 3 shows a toy example which illustrates the differences

between the uniform, naive-bayes and M2HT weights.

4. Overall Detection Strategy

The overall detector works in two stages; First theM2HT

detector is run on the image and a small set of regions most

likely to contain the object of interest is found. Next a ver-

ification classifier based on a SVM finds the true location

and score of the object by doing a local search around each

region by sampling nearby scales and translations. Instead

of densely sampling windows all over the image, the Hough

step lets us concentrate around the regions most likely to

contain the object and at the same time allows us to implic-

itly sample a wider set of transforms including aspect ratio.

We briefly describe the details of both the steps in the next

two sections.

4.1. M2HT Detector

Weights are learned on codebooks generated using k-
means clustering of Geometric Blur (GB) features [3] sam-

pled uniformly along the edges in an image. We choose four



(-) neg example

(+) pos example

(a)

CodebookWeights

Type Codebook(C) p(C|−) p(C|+) A(X−) A(X+) UNIF NB M2HT

tip 1/3 0 1 0 1 0 0

v-edge 1/3 1/4 1/5 1/5 1 6/7 0

h-edge 0 1/4 0 1/5 1 2 1/5

corner 0 1/8 0 1 1 2 1
(b)

Scores UNIF NB M2HT

S(+) = wT A(X+)/|w| 22/40 300/380 101/105
S(-) = wT A(X−)/|w| 11/40 6/380 0
∆(S) = S(+) − S(-) 11/40 ≈ 0.28 294/380 ≈ 0.77 101/105 ≈ 0.96

(c)

Figure 3. Toy Example. (a) Consider the case when we want to detect squares vs. parallel lines. The codebook C, consists of four types of
local features: tip, v-edge, h-edge and corner. Assume that the tips and corners can localized reliably, but the v/h-edges have an ambiguity

in localization as shown by the blue dots in (a). Furthermore for simplicity assume that the a v/h-edge feature can be found in one of

five discrete locations along the edge, i.e. p(X + | v/h-edge) = 1/5. Table (b) shows various steps in the Hough voting. p(C|±) is the
probability of each codebook type in the ± example. A(X±) are the codebook activations obtained using Equation 3. Naive Bayes(NB)

weights ∝ 2p(C|+)
p(C|+)+p(C|−)

correctly ignores the tip features and downweighs the v-edge features, but the h-edge and corner features are

weighted equally. M2HT on the other hand downweighs the h-edge features as they do not localize well. In addition it completely ignores

the v-edge features as they contribute equally to the + and − example. Table (c) shows the scores according to the weights for various
schemes. Notice how M2HT weights assigns a score of 0 on the negative example while at the same time achieving a high separation
between the + and − example. It finds the corners as the most important feature type.

orientation directions and the outer radius of the GB fea-

ture typically as 20% of the object height, giving us a good
tradeoff between the repeatability and discriminativeness of

the features. In our simple implementation we found that

voting over scales is not as reliable, so instead we run the

M2HT detector at a small set of scales and vote for the rest

of the pose parameters. The choice of local features is arbi-

trary and we choose local features based on patches of fixed

size for simplicity, while taking note that [15] has recently

proposed a Hough transform based detector using regions

as local features. On the positive set of training images, the

relative pose of the center of the object is recorded during

training time and a binned approximation of this distribu-

tion is maintained. Negative examples are obtained by first

running the Hough detector using uniformweights on nega-

tive images and finding the peaks in the voting space above

a threshold. Negative images are typically ones not con-

taining the category of interest. Activations (Ai) are then

computed on the set of positive and negative locations and

are used to learn the weights of the codebook entries using

our max-margin formulation.

4.2. Verification Classifier

We train a SVM classifier using the pyramid match ker-

nel [14, 17] on histograms of oriented gradients as features.

Responses to [−1 0 1] and [−1 0 1]T filters define the gradi-

ents from which histograms in 9 orientations are computed.
The image is divided into grids of increasing resolutions for

4 levels, and histograms from each level are weighted ac-
cording to the equationwl = 2l−1 , l = 1 being the coarsest
scale, and concatenated together to from one long feature

vector. A SVM is trained using the histogram intersection

kernel on these features. We refer to this as the IKSVM

classifier. On all datasets training is done by resizing the

positive instances of the category to the median aspect ratio

and a number of windows sampled from negative training

images serve as negative examples. To detect an instance of

an object in the sliding window mode the classifier is run at

various locations and scales by keeping the aspect ratio of

the image fixed. Search over aspect ratio adds another fac-

tor to the run time, so we do not do it. A simpler baseline

would have been to use a linear kernel, but others [9] have

noticed that on the ETHZ shape dataset, linear SVM does

not give full recall. We use the speedup method for IKSVM

classification proposed in [19] which makes the runtime of

the classifier essentially equivalent to a linear SVM.

5. Experimental Results

In all our experiments we would like to verify two

things: (1) The M2HT detector should have a better per-

formance compared to Hough transform detector using



uniform weights or naive-bayes weights. Quantitatively

this means a lower false positive rate for the same recall.

(2) The performance of the two stage M2HT + IKSVM de-

tector should be comparable to the IKSVM detector in the

sliding window mode, while having to evaluate the IKSVM

detector on a significantly fewer locations. Additionally, if

the Hough transform votes for pose parameters like aspect

ratio we would like to see that the two stage detector is ro-

bust to these pose changes. Finally the overall approach

should compare favorably to other approaches in the litera-

ture both in terms of accuracy and space-time complexity.

To validate our claims we present our experiments on the

ETHZ shape, UIUC cars and INRIA horses dataset.

5.1. ETHZ Shape Dataset

We first report our results on the ETHZ Shape Dataset.

It contains 255 test images and features five shape-based
classes (apple logos, bottles, giraffes, mugs, and swans).

For training we use half the positive examples and an equal

number of negative examples equally distributed among the

rest of the categories. All the remaining examples are used

for testing. We use the same training and test splits used by

authors of [9] for a fair comparison.

M2HT Detector Training : For the Hough training step

all ground truth bounding boxes of a particular category are

scaled to a height of 96 pixels, while keeping the aspect ra-
tio fixed. A separate codebook is learned for each category

using k-means clustering with k = 400 centers. For cate-
gories like mugs and giraffes the aspect ratio varies widely

so we train the Hough detector to vote for both the center

and aspect ratio of the object. We maintain a binned ap-

proximation of distribution of the location of the center with

bin width=10px, bin height=10px and aspect width=0.1.
We then run the max-margin training procedure described

in Section 4.1 to learn the weights for the codebook en-

tries. Figure 4(a), shows the learned weights for various

categories. The learning framework assigns high weights

to parts of the object which are both characteristic and are

good predictors of the object location, while simultaneously

ignoring the background clutter in images. Notice that we

only use the groundtruth bounding box for training, which

includes a significant amount of background clutter for cat-

egories like giraffes and swans. The naive-bayes weights

are strongly affected by rarely occurring structures in the

background. Table 1 shows the detection rates for various

weights. The learned weights do better than both uniform

and naive-bayes weights.

Overall Detector Results : Table 1 shows the results

for both the IKSVM detector used in the sliding window

mode at a fixed aspect ratio and the M2HT + IKSVM

detector. Precision/Recall and Detection Rate/FPPI plots

for the M2HT + IKSVM detector are in Figure 5. The

IKSVM baseline is quite good and achieves a detection rate

(a) ETHZ Shape Dataset

(b) UIUC Cars

(c) INRIA Horses

Figure 4. Naive Bayes / Learned weights using M2HT, on

various categories of the ETHZ shape (a top / bottom),

UIUC cars (b left / right) and INRIA horses dataset (c left / right)

respectively. For each category the colors represent the strength of

the weights (dark red is highest) and are on the same scale for both

naive-bayes and M2HT. In each image, the most important part is

circled with radius equal to the outer radius of the GB descriptor.

Notice how the salient parts like the handles on mugs, the neck

and leg regions of the giraffe are assigned high weights, while

the background clutter is ignored. The naive-bayes weights are

strongly affected by rare structures in the background. On UIUC

cars features at the bottom of the car like shadows and wheels are

emphasized which are both repeatable and good predictors of the

object center, while on INRIA horses regions near the head and

tail are found to be most important.

of 87.7% (0.3 FPPI) and 88.48%(0.4 FPPI). Sampling the
nearby scales and locations around the regions proposed by

the Hough transform leads to an improved detection rate of

91.9%(0.3 FPPI) and 93.2%(0.4 FPPI). Including the win-
dows of the local search is still at least two orders of mag-

nitude fewer than a sliding window detector for a similar

dense sampling. Additionally we implicitly sample over as-

pect ratios because the Hough detector proposes regions of

various aspect ratios. This leads to a significant improve-

ment over the baseline IKSVM detector for the giraffe and

mugs category, where the aspect ratio varies widely. Our

results are significant improvement over previous best re-

sults 61.4% of KAS [9] and 67.1% of TPS-RPM [10] at
0.3 FPPI. While the results of TPS-RPM are not directly



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Pos Per Image

D
e
te

c
ti
o
n
 R

a
te

ETHZ Shape Dataset [M
2
HT + IKSVM]

 

 

Applelogos

Bottles

Giraffes

Mugs

Swans

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

ETHZ Shape Dataset [M
2
HT + IKSVM]

 

 

Applelogos

Bottles

Giraffes

Mugs

Swans

Figure 5. Detection plots using the M2HT + IKSVM on ETHZ

shape dataset. (Left) Detection Rate vs. FPPI ; (Right) Precision

vs. Recall. All results are reported using the PASCAL criterion.

Figure 6. (Rows 1-2) Example detections on the ETHZ shape

dataset using M2HT+IKSVM detector (blue), IKSVM de-

tector used in sliding window mode (green) overlaid with

groundtruth (red). (Row 3) Example images where at least one

of the two detectors fails.

comparable as the authors report numbers using a five-fold

cross validation, ours are still better considering that the av-

erage standard deviation in accuracy over trials is about 9%.
However [10] has the additional ability to localize the object

boundaries. The only other approach that achieves compa-

rable results on this dataset is the contemporaneouswork of

recognition using regions [15]. Figure 6 shows examples of

detections and misses for various categories.

5.2. UIUC Cars

This database was collected at UIUC [1] and contains

images of side views of cars. The training set consists of

550 car and 500 non-car images. We test our methods on
the single scale image test set which contains 170 images
with 200 cars. The images are of different sizes themselves
but contain cars of approximately the same scale as in the

training images.

M2HT Detector Training : Similar to the ETHZ

dataset we compute GB features on both the positive and

negative windows by uniformly sampling points on the

edges and learn a codebook using k-means with k = 100.
For every cluster the conditional distribution of the center

of the object is maintained as binned approximation with a

bin width=4px and bin height=4px. This is a fairly dense
sampling given that the training images are 100 × 40, so
we spatially smooth the bins to avoid any artifacts. A sec-

ond loop over the training images is done and activations

are computed and codebook weights are learned using the

M2HT framework. Figure 4(b) shows the learned weights

using max-margin training and naive bayes. Notice how the

features near the bottom of the car are emphasized, which

are both repeatable and good predictors of the object center.

M2HT/Overall Detector Results : Figure 7(Left)

shows the recall as a function of false positives per image

for various learning schemes. At 90% recall the M2HT de-

tector has about half as many false positives per image than

the Hough detector using uniform weights or naive bayes

weights. Considering only the top 10 windows per im-
age and running the IKSVM verification step leads to re-

call of 97.5% at equal error rate an improvement of 1.74%
over IKSVM detector used in the sliding window mode,

while having to consider 10× fewer regions per image (Fig-
ure 7(Middle)). The increased precision is because the

IKSVM classifier densely samples windows near the most

likely locations of the object, while being able to discard a

large fraction of the regions in the image not containing an

object. Our method compares favorably to other methods in

the literature as shown in Figure 7(Right).

5.3. INRIA Horses

The INRIA horse dataset collected by Jurie and Fer-

rari, consists of 170 images with one or more side-views
of horses and 170 images without horses. Horses appear at
several scales, and against cluttered backgrounds. We use

the same training and test split of [9] consisting of 50 pos-
itive and 50 negative examples for training and the rest for
testing.

M2HT Detector Training : We learn a codebook using

k-means with k = 500 and learn weights for each clus-
ter center. Figure 4(c) shows the weights learned for vari-

ous features using the max-margin training and naive-bayes

scheme. The IKSVM classifier is trained by resizing all the

ground truth bounding boxes to the median aspect ratio of

all horses in this dataset.

M2HT/Overall Detector Results : Figure 9 shows the

performance of the M2HT detector and the overall detec-

tor. The M2HT detector outperforms both the naive-bayes

and the uniform weights. The overall performance of the

M2HT + IKSVM detector is same as the IKSVM detec-

tor while having to consider only 25 windows per image,
which is up to two orders of magnitude fewer than the slid-

ing window classifier. At 1.0 false positive per image we
have a detection rate of 85.27% for M2HT + IKSVM and

86% for IKSVM compared to previously published results
of 80.77%[9, 11] and 73.75% [10]. The results of [10] are
however not directly comparable as the authors report re-

sults using 5-fold cross validation. Figure 9(Right) shows
some detections and misses on this dataset.



Hough Detector Overall Detector

Recall @ 1.0 FPPI Recall @ 0.3/0.4 FPPI

Category UNIF NB M2HT IKSVM M2HT + IKSVM KAS[9] TPS-RPM [10]*

Applelogos 70.0 70.0 85.0 90.0/90.0 95.0/95.0 50.0/60.0 77.7/83.2

Bottles 62.5 71.4 67.0 96.4/96.4 92.9/96.4 92.9/92.9 79.9/81.6

Giraffes 47.1 47.1 55.0 79.1/83.3 89.6/89.6 49.0/51.1 40.0/44.5

Mugs 35.5 35.5 55.0 83.9/83.9 93.6/96.7 67.8/77.4 75.1/80.0

Swans 47.1 47.1 42.5 88.2/88.2 88.2/88.2 47.1/52.4 63.2/70.5

Average 52.4 54.2 60.9 87.5/88.4 91.9/93.2 61.4/66.9 67.1/71.9

Table 1. Performance of various algorithms on the ETHZ shape dataset. All the results are reported using the PASCAL criterion (Intersec-

tion/Union≥ 0.5). The Hough detector based on discriminatively learned weights (M2HT) alone has a detection rate of 60.9% at 1.0 FPPI,
an improvement of 6.7% over the naive bayes weights (NB) and 8.5% over uniform weights (UNIF). The IKSVM classifier when used in
sliding window mode has a average detection rate of 87.5% at 0.3 FPPI. By combining with the Hough detector, the performance improves
to 91.9% at 0.3 FPPI. There are significant improvements in the giraffe and mugs category, which have high variation in aspect ratio. This
is a significant improvement over previous best results 61.4% of KAS [9, 11] and 67.1% of TPS-RPM [10] at 0.3 FPPI. (The results of
TPS-RPM are not directly comparable as the authors report numbers using a 5-fold cross validation.)*
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Figure 7. (Left) Detection plots on UIUC car dataset for various values of the learning parameter C using the max-margin Hough training.
At 90% recall the false positive rate is only about half compared to both uniform weights and naive bayes weights. (Middle) Combining
with the verification step using the IKSVM classifier. Only the top 10 windows per image are considered, which is at least 10× fewer than
the number of windows considered by a sliding window detector. By sampling around the regions proposed by the Hough detector there

is an improvement of 1.74% over the sliding window detector. (Right) Performance at Equal Error Rate on UIUC Single Scale Cars for
various methods.

6. Conclusions
The main contribution of this paper is to cast the Hough

transform in discriminative frameworkwhich leads to better

accuracy on various datasets compared to both uniform and

naive-bayes weights. The implicit shape model may bene-

fit from this framework to learn the weights as our frame-

work treats both the parts and spatial models as a blackbox.

The final problem is convex and easy to optimize using off

the shelf optimization packages. The proposed two stage

M2HT + IKSVM detector has better runtime complexity

than a sliding window detector and at the same time is more

robust to pose variations leading to state of the art results on

ETHZ shape dataset and competitive results on the UIUC

car and INRIA horse dataset.
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