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Abstract. Collections of filters based on histograms of oriented gradients (HOG)
are common for several detection methods, notably, poselets and exemplar SVMs.
The main bottleneck in training such systems is the selection of a subset of good
filters from a large number of possible choices. We show that one can learn a
universal model of part “goodness” based on properties that can be computed
from the filter itself. The intuition is that good filters across categories exhibit
common traits such as, low clutter and gradients that are spatially correlated. This
allows us to quickly discard filters that are not promising thereby speeding up the
training procedure. Applied to training the poselet model, our automated selection
procedure allows us to improve its detection performance on the PASCAL VOC
data sets, while speeding up training by an order of magnitude. Similar results
are reported for exemplar SVMs.

1 Introduction

A common approach to modeling a visual category is to represent it as a mixture of
appearance models. These mixtures could be part-based, such as those in poselets [1,2],
and deformable part-based models [3], or defined globally, such as those in exemplar
SVMs [4]. Histograms of oriented gradient (HOG) [5] features are often used to model
the appearance of a single component of these mixtures. Details on how these mixture
components are defined, and discovered, vary across methods; in this paper our focus
is on a common architecture where a pool of candidate HOG filters is generated from
instances of the category, and perhaps some negative examples, followed by a selection
stage in which filters are, often in a greedy fashion, selected based on their incremental
contribution to the detection performance.

The candidate generation step is, typically, at most moderately expensive. The se-
lection stage, however, requires an expensive process of evaluating each candidate on
a large set of positive and negative examples. There are two sources of inefficiency in
this: (i) Redundancy, as many of the candidates are highly similar to each other, since
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Fig. 1. Outline of our approach: Left block shows the training pipeline which is used to obtain a
linear ranker (w) and diversity tradeoff parameter λ (described in Sect. 3) on a set of categories.
Our system improves the bottleneck of the selection procedure by learning to predict the utility
of filters for a new category.

the generation process is driven by frequency of keypoint configurations for poselets,
of examples for exemplar SVMs; (ii) Noise, as many of the candidates are not discrim-
inative, not localizable (e.g., due to aperture effect) or not repeatable.

In this paper we address both of these inefficiencies, and propose a method that
automatically selects from a large pool of filters generated for a category, a small subset
that is likely to contain non-redundant discriminative ones. We do this by learning to
predict relative discriminative value (quality rank) of a filter from its intrinsic properties,
and by combining the ranking scores with a diversity-inducing penalty on inter-filter
similarity. Fig. 1 shows an overview of our approach.

The components of this automatic selection mechanism, once learned on a set of
categories, can be applied to a novel target category. In that sense, it is a category-
independent method for part selection. Of course, some information about the target
category enters the process in the form of candidate parts, and our method can not
“hallucinate” them from scratch; but it can rank them, as we show in our experiments,
as accurately as a direct evaluation on thousands of examples for the category.

As its main contribution, this paper offers a practical way to speed up training de-
tection architectures based on poselets, and exemplar SVMs, by an order of magnitude,
with no loss, and in fact sometimes a moderate gain, in detection performance. This
eliminates a significant computational bottleneck, as computer vision advances towards
the goal of detecting thousands of categories [6]. As an additional contribution, our
ranking-with-diversity approach may provide insight into what makes a good filter for
object detection, with implications for design of part-based models and in descriptors
and interest operators.

1.1 Related work

The most relevant body of work that uses part generation and selection for building
detectors is the poselet model [1,2,7] which forms the basis for our work and which
we review in detail in the next section. Alternative methods for generating part li-
braries/ensembles include exemplar SVMs [4], where every positive example leads to a
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detector (typically for an entire object). The resulting ensemble is very redundant, and
may contain many poor exemplars; the hope is that these are suppressed when votes
are pooled across the ensemble at detection time. In many methods detection is based
on Hough-type voting by part detectors, with a library of parts built exhaustively [8],
randomly [9], by a sampling mechanism [10,11] or based on clustering [12,13,14]. The
latter construction ensures diversity, while the former does not. Our proposal could af-
fect all of these methods, e.g., by providing a rejection mechanism for hypothesized
parts with low estimated ranking score.

Finally, a family of models in which parts are learned jointly as part of a generative
model, most notably the deformable part model of [3]. Our work could be used to
provide a prior on parts in this framework, as constraint in addition to deformation cost
already in the model.

There has been relatively little work on predictive measures for part or filter quality.
Most notably, in [15] and [16] a structured prior for HOG filters is intended to capture
spatial structure typical of discriminative image regions. [15] is the work closest to
ours in spirit, and we evaluate it in our experiments. Our results show that while this
“structured norm” approach is helpful, additional features that we introduce further
improve our ability to distinguish good filters from bad ones.

2 Background

We are interested in a sliding window approach to detection [5,2] in which an object
template is specified by a filter f . An image subwindow is represented by its feature vec-
tor x and is scored by the inner product fTx. Feature vector x is computed by spatially
dividing the subwindow tom×n cells and computing a histogram of oriented gradients
for each cell. Feature vector consists of cell-level features, x = [x1;x2; . . . ;xmn] ∈
Rmnd, where ∀c ∈ {1, . . . ,mn},xc ∈ Rd and d is the dimension of the cell-level fea-
tures. In the same way model parameter can be broken down into f = [f1; f2; . . . ; fmn] ∈
Rmnd. The template f is learned from labeled training set X ,Y = {(x(i), y(i))}Ni=1 by
training a linear classifier, for instance by an SVM (we refer to such filters as SVM
filters) or by a linear discriminant analysis (LDA filters).

We consider the category-level transfer settings: having learned filters for (training)
categories g = 1, . . . , Gwe want to predict filter quality for a new (test) categoryG+1.
Our pipeline is outlined in Fig. 1. For each training category g, we start by constructing
a pool ofN candidate filters {fg,i} . Then we train a model which includes only n� N
parts. Once the models are fully trained, we can in hindsight look at the initial set of
N parts and the selected set of n for each category. We train a ranking function with
the objective to reproduce the order of filter quality. Furthermore, we tune a weight
which controls tradeoff between estimated rank of a filter and the diversity it adds; we
want to discourage adding a part similar to the ones already selected, even if this part is
highly ranked. The objective in tuning the diversity tradeoff is to as closely as possible
reproduce the selection of n out of N filters done by the expensive full process.

For the test category, we construct the pool of N candidate filters {fg+1,i} in the
same process as for training categories. This stage is typically inexpensive, especially
using the LDA method (Sect. 3.4). Then, we apply the learned ranker function to order
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Fig. 2. Poselet filters and the average of 10 nearest examples to its seed for various categories.

the candidate parts according to their estimated relative quality. Finally, we combine
suitably normalized relative scores with a diversity term tuned on training categories,
and select a set of n estimated high quality candidates by a greedy procedure. This
small set is used to train the full model. Thus, the expensive stage only includes n
parts, instead of N . In our experiments these steps are done as part of training a poselet
model [2,1], or exemplar SVMs [4]. We briefly describe the two models below.

2.1 An overview of poselets for object detection

Poselets [1,2] are semantically aligned discriminative patterns that capture parts of ob-
jects at a fixed pose and viewpoint. For person these include frontal faces, upper bodies,
or side facing pedestrians; for bicycles these include side views of front wheels, etc.
These patterns are discovered from the data using a combination of supervision in the
form of landmark annotations, discriminative filter training, and a selection procedure
that selects a subset of these patterns.

In more detail, each poselet is trained to detect a stable and repeatable configuration
of a subset of landmarks (“part”) using HOG features and linear SVMs. This step is
identical to pipelines typically used for training object detectors such as [5]. Technically,
a poselet filter is obtained by randomly sampling a seed window covering a subset
of landmarks in a positive example, then a list of matching windows, sorted by the
alignment error of the landmarks (up to a similarity transform to the landmarks within
the seed) is obtained. Top examples on the list (3% in our implementation) along with
some negative examples are used to retrain the HOG filter, which is retained as a poselet
detector. Fig. 2 shows examples of HOG filters, along with visualization of the average
of the top 10 matching examples used to train them.

Some of the resulting poselet detectors may not be discriminative. For instance,
limb detectors are often confused by parallel lines. Some others, e.g., detectors of faces
and upper bodies, are more discriminative. In order to identify the set of discriminative
poselets, they are evaluated as part detectors on the entire training set, and a subset is
selected using a ‘greedy coverage algorithm’ that iteratively picks poselets that offer
highest increase in detection accuracy at a fixed false positive rate. We can compute the
detection average precision (AP) of each poselet independently, by looking at overlap
between predicted and true (if any) bounding box for the part. This is what we will learn
to predict in our using a discriminative ranker (Sect. 3).
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Our poselet training and testing baseline. We use an in-house implementation of pose-
lets training that leads to results comparable to those reported elsewhere. To isolate
the effect of poselet selection, we use a simplified model that avoids some of the post-
processing steps, such as, learned weights for poselets (we use uniform weights), and
higher-order Q-poselet models (we use q-poselets, i.e., raw detection score). During
training we learn 800 poselets for each category and evaluate the detector by select-
ing 100 poselets. Our models achieve a mean AP (MAP) of 29.0% across 20 categories
of the PASCAL VOC 2007 test set. This is consistent with the full-blown model that
achieves 32.5% MAP. The combination of Q-poselets, and learned weights per poselet,
typically lead to a gain of 3% across categories. Our baseline implementation is quite
competitive to existing models that use HOG features and linear SVMs, such as, the
Dalal & Triggs detector (9.7%), exemplar SVMs (22.7%) [4] and DPM (33.7%). These
scores are without inter-object context re-scoring, or any other post-processing.

Breakdown of the training time. Our implementation takes 20 hours to train a single
model on a 6-core modern machine. About 24% of the time is spent in the initial poselet
training, i.e., linear classifiers for each detector. The rest 76% of the time is spent on
poselet selection, an overwhelming majority of which is spent on evaluating the 800
poselets on the training data. The actual selection, calibration and construction of the
models takes less than 0.05% of the time.

2.2 An overview of exemplar SVMs for object detection

Exemplar SVMs [4] is a method for category representation where each positive exam-
ple of a category is used to learn a HOG filter that discriminates the positive example
from background instances. Thus, the number of exemplar SVMs for a given category
is equal to the number of positive examples in the category, similar in the spirit to a
nearest neighbor classifier. At test time each of these SVMs are run as detectors, i.e.,
using a multi-scale scanning window method, and the activations are collected. Overall
detections are obtained by pooling spatially consistent set of activations from multiple
exemplars within an image.

By design, the exemplars are likely to be highly redundant since several examples
within a category are likely to be very similar to one another. Hence, a good model may
be obtained by considering only a subset of the exemplars. Experimentally, we found
that using only 100 best exemplars (based on the learned weights of the full model), a
small fraction of the total, we obtain a performance of MAP = 21.89%, compared to
MAP = 22.65%. We use publicly available models 4 for our experiments, and report
results using E-SVM + Co-occ method reported in [4].

The training time scales linearly with the number of exemplars in the model. Hence,
we would save significantly in training time we could quickly select a small set of
relevant exemplars. We describe the details of the experimental setup in Sect. 5.

4 https://github.com/quantombone/exemplarsvm

https://github.com/quantombone/exemplarsvm
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3 Ranking and diversity

One could attempt to predict the AP value of a filter, or some other direct measure of
filter’s quality, directly in a regression settings. However this is unlikely to work5 due
to a number of factors: noisy estimates of AP on training filters/categories, systemic
differences across categories (some are harder than others, and thus have consistently
lower performing parts), etc.

3.1 Learning to rank parts

Our approach instead is to train a scoring function. Given a feature representation of a
part, this function produces a value (score) taken to represent the quality of the filter.
Ordering a set of filters by their scores determines the predicted ranking of their quality;
note that the scores themselves are not important, only their relative values are.

Let φ(f) be a representation of a filter f in terms of its intrinsic features; we describe
the choice of φ in Sect. 3.3. We model the ranking score of f by a linear function
〈w,φ(f)〉. The training data consists of a set of filters {fg,i} for g = 1, . . . , G (training
categories) and i = 1, . . . , N , where N is the number of filters per category (assumed
for simplicity of notation to be the same for all categories). For each fg,i we have the
estimated quality yg,i measured by the explicit (expensive) procedure on the training
data of the respective categories. Let fg,i be ordered by descending values of yg,i. For
i > j, we denote ∆g,i,j

.
= yg,i − yg,j ; this measures how much better fg,i is than fg,j .

We train the ranking parameters w to minimize the large margin ranking objective

min
w

1

2
‖w‖2 + C

G∑
g=1

N−1∑
i=1

N∑
j=i+1

[
1−

〈
w, δφg,i,j

〉]
+
∆g,i,j (1)

where δφg,i,j
.
= φ(fg,i)− φ(fg,j). and [·]+ is the hinge at 0. The value C determines

the tradeoff between regularization penalty on w and the empirical ranking hinge loss.
Additionally, per-example scaling by ∆g,i,j is applied only to pairs on which the rank-
ing makes mistakes; this is known as slack rescaled6 hinge loss [17]. We minimize (1)
in the primal, using conjugate gradient descent [19].

3.2 Selecting a diverse set of parts

A set of parts that are good for detection should be individually good and complemen-
tary. We can cast this as a maximization problem. Let xi ∈ {0, 1}, i ∈ {1, . . . , N},
denote the indicator variable that part i is selected. Let ŷi denote the (estimated) score
of part i, and Aij denote the similarity between parts i, j; we defer the details of evalu-
ating Aij until later. Then the problem of selecting n parts can be cast as:

max
x∈{0,1}N ,

∑
i xi=n

∑
i

ŷixi − λ
∑
i

max
j 6=i

Aijxixj . (2)

5 and indeed did poorly in our early experiments
6 In our experiments slack rescaling performed better than margin rescaling, consistent with

results reported elsewhere [17,18].



Knowing a good HOG filter when you see it: Efficient selection of filters for detection 7

Fig. 3. Examples of good and bad filters from the poselets model. Good filters exhibit less clutter,
and stronger correlations among nearby spatial locations, than bad ones.

This is a submodular function, which can be made monotone by additive shift in the
values of ŷ. For such functions, although exact maximization of this function subject
to cardinaty constraint

∑
xi = n is intractable, the simple greedy agorithm described

below is known [20] to provide near-optimal solution, and to work well in practice.
First part selected is argmaxi ŷi. Now, suppose we have selected t parts, without

loss of generality let those be 1, . . . , t. Then, we select the next part as

argmax
i

{
ŷi − λ max

j=1,...,t
Ai,j

}
.

We can further relax the diversity term, by replacing the max with the k-th order value
of similarity between candidate part and those already selected. For instance, if k = 10,
we select the first ten parts based on scores ŷ only, and then start penalizing candidates
by the tenth highest value of similarity to selected parts. Suppose this value is σ; this
means that ten parts already selected are similar to the candidate by at least σ. This
makes it less likely that we will reject a good part because a single other part we selected
is somewhat similar to it.

3.3 Features for part ranking

Recall that filter f is considered to be good if during prediction it does not confuse
between a negative sub-window and a sub-window belonging to the object class. Or in
other words it results in high average precision for that object/part/poselet. Fig. 3 shows
some examples of good and bad filters. We propose to capture the properties of a good
filter by considering various low level features that can be computed from the filter itself
which are described below.

– Norm: The first feature we consider is the `2-norm of the filter
√

fT f . Intuitively,
high norm of filter weights is consistent with high degree of alignment of positive
windows similar to the seed that initiated the part, and may indicate a good part.

– Normalized norm: The norm is not invariant to the filter dimension (m×n), which
may vary across filters. Therefore we introduce normalized norm

√
fT f/(mn).

– Cell covariance: For good filters, the activations of different gradient orientation
bins within a cell are highly structured. Neighboring gradient orientation bins are
active simultaneously and majority of them are entirely suppressed. This is because
the template has to account for small variations in local gradient directions in or-
der to be robust, and if a certain gradient orientation is encouraged, its orthogonal
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counterpart is often penalized. For each filter f ∈ Rmnd, a d × d feature vector is
obtained which captures average covariance of the filter weights within a cell.

– Cell cross-covariance: Similarly, there is also a strong correlation between filter
weights in nearby spatial locations. Dominant orientations of neighboring cells tend
to coincide to form lines, curves, corners, and parallel structures. This could be
attributed to the fact that the template has to be robust to small spatial variations in
alignment of training samples, and that contours of objects often exhibit such traits.
We model 4 types of features: cross-covariance between pairs of cells that are (a)
horizontal (b) vertical, (c) diagonal 1 (+45◦), and (d) diagonal 2 (−45◦). This leads
to a 4d× d dimensional feature vector.

Our covariance features are inspired by [15] who used them in a generative model
of filters that served as a prior for learning filters from few examples. In contrast, we use
these features in a discriminative framework for selecting good filters. Our experiments
suggests that the discriminative ranker outperforms the generative model (Sect. 4).

3.4 The LDA acceleration

Instead of ranking SVM filters, one can also learn to rank the filters that are obtained
using linear discriminant analysis (LDA) instead [21]. The key advantage is that this
can be computed efficiently in closed form as Σ−1(µ+−µ−), where Σ is a covariance
matrix of HOG features computed on a large set of images, and µ+ and µ− are the
mean positive and negative features respectively. The parameters Σ and µ− need to be
estimated once for all classes. In our experiments the LDA filter by itself did not perform
very well. The LDA based detector with poselets was 10% worse in AP on bicycles, but
we found that the performance of the LDA filters and that of the SVM filters are highly
correlated. If the selection is effective using the LDA filters we can train the expensive
SVM filters only for the selected poselets, providing a further acceleration in training
time. We consider additional baseline where the ranker is trained on the LDA filters
instead of the SVM filters in our experiments.

4 Experiments with Poselets

We perform our poselet selection on the models described in Sect. 2.1. For each cate-
gory we have a set of 800 poselets, each with learned HOG filter trained with a SVM
classifier, and its detection AP computed on the training set. We evaluate our selection
in a leave-one-out manner – for a given category the goal is to select a subset (say of
size 100) out of all the poselets by training a ranker on the remaining categories. The
code can be downloaded from our project page 7.

We compare the various selection algorithms in two different settings. The first
is ranking task where algorithms are evaluated by comparing the predicted ranking
of poselets to the true ranking according to their AP. We report overlaps at different
depths of the lists to measure the quality. In addition, we also evaluate the selected
poselets in the detection task, by constructing a detector out of the selected poselets

7 http://www.umiacs.umd.edu/˜ejaz/goodParts/

http://www.umiacs.umd.edu/~ejaz/goodParts/
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and evaluating it on the PASCAL VOC 2007 test set. All the poselets are trained on
the PASCAL VOC 2010 trainval set for which the keypoint annotations are publicly
available, and the images in our training set are disjoint from the test set.

4.1 Training the ranking algorithm

As described in Sect. 3.1 for each category we train a ranking algorithm that learns to
order the poselets from the remaining 19 categories according to their detection AP. We
normalize the APs of each class by dividing by maximum for that category to make
them comparable across categories. Note that this does not change the relative ordering
of poselets within a class.

The learning is done according to 1. From the pool of all the poselet filters (19×800)
we generate ordering constraints for pairs of poselets i, j for which ∆c,i,j > 0.05; this
significantly reduces computation with negligible effect on the objective.8 The cost of
reversing the constraint is set proportional to the difference of the APs of the pair under
consideration. The constant of proportionality C in Eqn. 1 is set using cross-validation.
We consider values ranging from 10−13 to 103. As a criteria for cross-validation we
check for ranking on the held-out set. We consider the ranked list at depth one fourth
of the number of samples in the held-out set. The cross-validation score is computed
as follows, listpredicted∩listactual

listpredicted∪listactual
, and set using 3 fold cross validation. Note, that at any

stage of the learning, the filters for the target class are not used.

4.2 Training the diversity model

The actual set of filters selected by the poselet model is not simply the top performing
poselets, instead they are selected greedily based on highest incremental gain in detec-
tion AP. We can model this effect by encouraging diversity among the selected poselets
as described in Sect 3.2. To do so, we first need a model of similarity between poselets.
In our experiments we use a simple notion of similarity that is based on the overlap
of their training examples. Note that poselets use keypoint annotations to find similar
examples and provide an ordering of the training instances. For two different poselets
i, j we compute the overlap of the top r = 3% (which is used for training the filters)
of the ordered list of training examples Topi and Topj to compute the similarity, i.e.,
Aij =

Topi∩Topj

Topi∪Topj
. We ignore the actual filter location and simply consider the overlap

between indices of training examples used. More sophisticated, but slower, versions of
similarity may include computing the responses of a filter on the training examples of
another.

The only parameter that remains is the term λ (Eqn. 3.2) controlling the tradeoff
between diversity and estimated AP rank. We tune it by cross-validation. Note that
unlike the previous setting for ranking where we learn to match the AP scores, here we
train the diversity parameter λ to match the set of “poselets” that were actually picked
by the poselet training algorithm. This process closely approximates the true diversity
based selection algorithm. For each category, we pick a λ that matches the predicted list
of other categories best on average. In practice, we found λ to be very similar across
categories.

8 The results are not sensitive to the choice of threshold on ∆
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4.3 Selection methods considered

Below are the methods we consider for various ranking and detection tasks in the pose-
lets framework:

– Oracle - poselets ordered using the poselet selection algorithm (Sect 2.1).
– 10% - only 10% of the training images are used for poselet selection.
– Random - select a random subset of poselets.
– Norm (svm) - poselets ordered in descending order of `2-norm of their SVM filter.
– Σ-Norm (svm) - poselets ordered in descending order on SVM filters, according to

fT (I− λsΣs)f , where λs is set such that the largest eigenvalue of λsΣs = 0.9 as
defined in [15]. We construct Σs from top 30 filters (according to AP) from each
category to create a model of a good filter. While constructing Σs for one category
we consider all the other category’s filters.

– Rank (svm) - poselets ordered according to the score of the ranker trained on the
SVM filters (Sect. 4.1).

– Rank (lda) - poselets ordered according to the score of the ranker trained on LDA
filters (Sect 3.4).

In addition we consider variants with diversity term added (Sect. 4.2), which is
shown as + Div appended to the end of the method name.

4.4 Ranking results

Tab. 1 displays the performance of various ranking methods on the ranking task. Ranked
list was looked at various depths (top 50, 100 etc.) and its overlap was found with top
100 poselets in the groundtruth ranking (i.e. ranking according to actual AP, Sec. 2).
Table shows number of poselets in top 100 groundtruth by considering various depths
in the ranked list, averaged across categories. Note that Rank (svm) performs best
at all the depths considered, and is closely matched by ranking using the LDA filter
Rank (lda). It is worth noting that the ranking task is a proxy for the real task (detec-
tion). In the next section we examine how the differences (some of them minor) between
methods in Table 1 translate to difference in detection accuracy.

Methods 50 100 150 200

Norm (svm) 30.25 52.80 68.60 80.00
Σ-Norm (svm) 29.30 52.20 67.85 79.70
Rank (lda) 31.50 54.30 70.20 80.20
Rank (svm) 31.55 55.35 71.20 81.10

Table 1. The number of common filters in the ranked list for various methods and the ground
truth list based on the poselet detection AP for different lengths of the list.

4.5 PASCAL VOC detection results

Tab. 2 summarizes the accuracy of the detectors, reported as the mean average preci-
sion (MAP) across the 20 categories using the model constructed from the top 100 pose-
lets using various algorithms. We also report the speedups and relative MAP (δMAP =
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MAP − MAPoracle), that various methods can provide over the actual implementation
for training model consisting of 100 poselets from a pool of 800 poselets.

Ranking with SVM filters. The Random baseline performs poorly with δMAP = −2.37%.
Norm based ordering does well – the `2-norm based ordering already comes close with
a δMAP = −1.65%, while the structured norm, Σ-Norm (svm) is slightly better with
a δMAP = −1.50%. Our learned ranker outperforms the norm based methods (not sur-
prising since the features include norm and the co-variance structure of the HOG cells).
The ranker trained on the SVM filters achieves a δMAP = −1.22%.

Adding diversity term leads to improvements across the board. Notably, the perfor-
mance of the Rank (svm)+Div is indistinguishable from the original model δMAP =
+0.01%. Examination of the sets of 100 filters obtained with and without diversity with
Rank (svm) reveals that on average (across categories) 40% of the filters are different.

All these methods provide a speedup of 8× in the poselet selection step relative to
Oracle, and an overall speed up of 3×, since the initial training of expensive SVM
filters still has to be done which consumes 24% of the overall training time as described
in Sect. 2.1 (except for Random which provides a speedup of 8×, but at significant
loss of accuracy). Finally, an alternative way to achieve such speedup is to evaluate
the AP of the filters directly, but on only the fraction of the data; this 10% method does
significantly worse than our proposed methods, and provides a smaller speedup of 2.4×
since all the filters need to be evaluated on 10% of the data. One likely reason for the
low performance: most poselets, including useful ones, are rare (hence the pretty low
APs even for the top performing parts), and subsampling the training set might remove
almost all true positive examples for many parts, skewing the estimated APs. Larger
subsets, e.g., 25% would lead to even smaller speedups, 1.9× in this case.
Ranking with LDA filters. Next we consider LDA filters, and we find the the perfor-
mance of the selection of poselets based on the LDA filters is slightly worse. The
diversity based ranker trained on the LDA filters, Rank (lda) + Div, achieves a
δMAP = −0.84%. The key advantage of ranking using the LDA filters is that it speeds
up the initial poselet training time as well, since only 100 poselets are further trained
using SVM bootstrapping and data-mining. Thus the overall speed up provided by this
procedure is 8×, almost an order of magnitude. On a six-core machines it takes about
2.5 hours to train a single model, compared to 20 hours for the original model. Note
that we only use the LDA filter for ranking as we found that the LDA filters themselves
are rather poor for detection on a number of categories. Notably, the bicycle detector
was 10% worse – the LDA based wheel detector has many false positives on wheels of
cars, which the hard-negative mining stage of SVM training learns to discriminate.
The 2× poselets experiment. We can select twice as many seeds and select an even
better set of 100 poselets using the diversity based ranker based on the LDA filters.
This has a negligible effect on the training time as the seed generation and LDA filter
computation takes a small amount of additional time (< 1%). However, this improves
the performance which is better than the original model with δMAP = 0.43%, while
still being an order of magnitude faster than the original algorithm.
PASCAL VOC 2010 results. We evaluated the oracle and the best performing method
(Rank (lda) + Div (2x seeds)), on the PASCAL VOC 2010 detection test set and
achieved a δMAP = 0.56%.
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VOC 2007 test Training speedup
Method MAP δMAP Initial Selection Overall
Oracle 29.03
Random 26.66 −2.37 8× 8× 8×
10% 27.78 −1.25 1× 4.4× 2.4×
Norm (svm) 27.38 −1.65 1× 8× 3×
Norm (svm) + Div 28.34 −0.69 1× 8× 3×
Σ-Norm (svm) 27.53 −1.50 1× 8× 3×
Σ-Norm (svm) + Div 28.51 −0.52 1× 8× 3×
Rank (svm) 27.81 −1.22 1× 8× 3×
Rank (svm) + Div 29.04 +0.01 1× 8× 3×
Rank (lda) + Div 28.19 −0.84 8× 8× 8×
Rank (lda) + Div (2× seeds) 29.46 +0.43 8× 8× 8×

Table 2. Performance of poselet selection algorithms on PASCAL VOC 2007 detection.

5 Experiments with exemplar SVMs

Here we report experiments on training exemplar SVMs. As described in Sect. 2.2,
exemplar SVMs’ training time scales linearly with the number of positive examples in
the category. On the PASCAL VOC 2007 dataset, each category has on average 630
exemplars. Our goal is to select a set of 100 exemplars such that they reproduce the
performance of the optimal set of 100 exemplars. This is obtained as follows: we use
the model trained using all the exemplars and use the weights learned per exemplar in
the final scoring model as an indicator of its importance. The oracle method picks
the 100 most important exemplars, and obtains a performance of MAP = 21.89%.

Unlike poselet filters, some of these exemplars are likely to be rare. Thus even
though the filter looks good, it may not be useful for detection since it is likely to detect
only a small number of positive examples. Hence, we need to consider the frequency
of the filter, in addition to its quality as a measure of importance. We use a simple
method for frequency estimation. Each exemplar filter is evaluated on the every other
positive instance, and the highest response is computed among all locations that have
overlap > 50%. Let, sij , denote the normalized score of exemplar i on instance j, i.e,
sii = 1. Then, the frequency of the ith filter is the number of detections with score > θ,
where θ is set to be the 95 percentile of the entries in s. The overall quality of the filter
f is the sum of score obtained from the ranker and is frequency, Rank(f) + Freq(f).

The same metric can be used for diversity. In our experiments we say that τ =
5% of the nearest exemplars are considered similar. For each category the ranker itself
was trained on the poselets of the other 19 categories, i.e., we use Rank(lda) model
described in Sect. 4.3. The diversity tradeoff parameter λ is estimated again by cross-
validation within the 19 categories.

To summarize, our overall procedure for exemplar selection is, (a) we train an LDA
filter for each exemplar, (b) using the ranker (trained on poselet model for the training
categories) select a set of 100 filters and associated exemplars, (c) train the full model
with SVM filters for these 100 exemplars. Steps (a) and (b) are relatively inexpensive,
hence the training time is dominated by step (c). Compared to the oracle model with
100 exemplars, our fast selection procedure offers a 6.3× speedup.
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5.1 PASCAL VOC detection results

Here we compare several selection strategies listed below:

– Oracle - top 100 filters picked according to learned weights (as described earlier)
– Random - a random set of 100 filters.
– Freq - the set of 100 most frequent filters.
– Rank(lda) - the set of 100 highest ranked filters according to the LDA ranker.
– Rank(lda) + Freq - the set of 100 filters according to the rank and frequency.
– Rank(lda) + Freq+ Div - previous step with diversity term added.

Tab. 3 shows the performance of various methods on the PASCAL VOC 2007
dataset reported as the mean average precision (MAP) across 20 categories. The Oracle
obtains 21.89%, while Random does poorly at 18.53%. Frequency alone is insufficient,
and does even worse at 16.23%. Similarly rank alone is insufficient with performance of
17.93%. Our ranker combined with frequency obtains 18.75%, while adding the diver-
sity term improves the performance to 19.62%. Note that we obtain this result using the
model trained on the poselet filters and using LDA for training the exemplars. Replac-
ing this with SVM filters may close the gap even further as we observed in the poselet
based experiments.

Method MAP on VOC 2007 test
Oracle 21.89
Random 18.53
Freq 16.23
Rank(lda) 17.93
Rank(lda) + Freq 18.75
Rank(lda) + Freq+ Div 19.62

Table 3. Performance of selection algorithms for detection on the PASCAL VOC 2007 dataset.
All these methods provide a speed up of 6.3× relative to the Oracle as there are on average
630 exemplars per category.

5.2 An analysis of bicycle HOG filters

Finally, we look at the bicycle category to get some insight into the ranker. We take the
filters obtained from the poselets model, as well as exemplar SVMs. To decouple the
effect of frequency we only consider side-facing bicycle exemplars. The assumption
here is that all side-facing exemplars have the same frequency.

Fig. 4 (top) shows a scatterplot of the score obtained by the ranker (higher is better)
and the true ranks of the filters (lower is better) for poselets and exemplar SVMs. For
poselets there is a strong (anti) correlation between the predicted score and quality (cor-
relation coefficient = -0.64). For exemplar SVMs, the prediction is weaker, but it does
exhibit high (anti) correlation (correlation coefficient = -0.42). Fig. 4 (bottom) shows
the 10 least and highest ranked side-facing exemplars. The ranker picks the exemplars
that have high figure-ground contrast revealing the relevant shape information and little
background clutter.
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Fig. 4. An analysis of bicycle filters. (Top-left) Scatter plot of true ranks and the ranker score of
the bicycle poselets. (Top-right) the same for all the exemplars of side-facing bicycles. The high
scoring side-facing exemplars (Bottom row) exhibit high contrast and less clutter than the low
scoring exemplars (Middle row).

6 Conclusion

We described an automatic mechanism for selecting a diverse set of discriminative parts.
As an alternative to the expensive explicit evaluation that is often the bottleneck in
many methods, such as poselets, this has the potential to dramatically alter the tradeoff
between accuracy of a part based model and the cost of training. In our experiments,
we show that combined with LDA-HOG, an efficient alternative to SVM, for training
the part candidates, we can reduce the training time of a poselet model by an order of
magnitude, while actually improving its detection accuracy. Moreover, we show that
our approach to prediction of filter quality transcends specific detection architecture:
rankers trained for poselets allow efficient filter/exemplar ranking for exemplar SVMs
as well. This also reduced the training time for exemplar SVMs by an order of magni-
tude while suffering a small loss in performance.

The impact of such a reduction would be particularly important when one wants to
experiment with many variants of the algorithm – situation all too familiar to practition-
ers of computer vision. Our work suggests that it is possible to evaluate the discrimi-
native quality of a set of filters based purely on their intrinsic properties. Beyond direct
savings in training time for part-based models, this evaluation may lead to speeding
up part-based detection methods at test time, when used as an attention mechanism to
reduce number of convolutions and/or hashing lookups.

Our plans for future work include investigation of the role of class affinity in gen-
eralization of part quality; e.g., one might benefit from using part ranking from vehicle
classes when the test class is also a vehicle.
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