
 1 

 

Abstract—We explore the utility of clustering in reducing error 

in various prediction tasks. Previous work has hinted at the 

improvement in prediction accuracy attributed to clustering 

algorithms if used to pre-process the data. In this work we more 

deeply investigate the direct utility of using clustering to improve 

prediction accuracy and provide explanations for why this may be 

so. We look at a number of datasets, run k-means at different 

scales and for each scale we train predictors. This produces k sets 

of predictions. These predictions are then combined by a naïve 

ensemble. We observed that this use of a predictor in conjunction 

with clustering improved the prediction accuracy in most datasets. 

We believe this indicates the predictive utility of exploiting 

structure in the data and the data compression handed over by 

clustering. We also found that using this method improves upon 

the prediction of even a Random Forests predictor which suggests 

this method is providing a novel, and useful source of variance in 

the prediction process. 

 
Index Terms—Clustering, Ensemble Learning, Bootstrap 

Aggregation, Machine Learning  

 

I. INTRODUCTION 

ne of the motivations to this work is one of the author’s 

(Zachary A. Pardos) successful participation in the 2010 

KDD Cup, which involved a prediction task on an educational 

dataset. Methods such as Bagged Decision Trees were used to 

get the second position in the student category. The dataset had 

instances for a number of students. Since students can be 

crudely binned into categories in terms of learning rate, 

forgetting rate etc., a natural question to ask is if clustering the 

students and trying to find such groups would aid in 

classification accuracy. This question was crudely tested in the 

2010 UCSD Data Mining competition (an e-commerce task) in 

which the fourth position was secured using this clustering 

method alone. Motivated by the success of this technique, an 

internal graduate Machine Learning course competition was 

organized at Worcester Polytechnic Institute (WPI) that 

explored this notion further. This idea of using clustering 

coupled with simple predictors beat more complex methods 

such as Support Vector Machines and Random Forests on the 

KDD cup development set.  This also led to papers [1] [2] that 

explored this idea in an educational dataset. This paper 

essentially develops this notion further. The rest of the article is 

organized as follows: Section II reviews some work on 

clustering, such as a theoretical justification of using clustering 

for a classification task. Section III discusses the idea of using 
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clustering in conjunction with a predictor in more detail, with 

section III A providing some more work and intuition on how 

we can use clustering to improve accuracy on a prediction task. 

Section IV talks of the empirical study carried out and section 

V gives an overview of the results obtained, section VI has a 

discussion of observations and open questions. 

II. CLUSTERING 

It is reasonable to say that at least some part of our 

understanding of the world is due to a semi-supervised process 

that involves some sort of clustering in a big way. An example 

would be our ability to tell, given a mixture of objects which 

are similar and belong to the same category. It has been 

suggested that a mathematically precise notion of clustering is 

important in the sense that it can help us solve problems at least 

approximately as solved by the brain [3]. Clustering is probably 

the most used exploratory data analysis technique across 

disciplines and is frequently employed to get an intuition about 

the structure of the data, for finding meaningful groups, also for 

feature extraction and summarizing. Given a space , 

clustering can be thought of as a partitioning of this space into 

𝐾 parts i.e. 𝑓: 𝑋 → {1, … , 𝐾} This partitioning is done by 

optimizing some internal clustering criteria such as the intra-

cluster distances etc. The value of 𝐾 is found usually by 

employing a second criterion that measures the robustness of 

the partitioning 

While clustering is useful for data analysis and as a 

preprocessing step for a number of learning tasks, we are 

interested in the specific pre-processing task of using clustering 

to gain more information about the data to improve prediction 

accuracy. This leads to the questions: Can clustering of 

unlabeled data give any new information that can aid a 

classification task? It has been hinted in the literature that 

clustering of unlabeled data should help in a classification task 

as clustering can also be thought of as separating classes. It is 

not clear if clustering could help in a regression task, though 

there is some evidence [1][2]. Another question that could be 

asked is: Can a number of predictions obtained by varying 

clustering parameters give us access to new information that 

can be combined together to improve prediction accuracy even 

more? Can the idea of clustering as a predictor be formalized? 

Previous work comprehensively answers at least the third 

question. This is an important question to ask since the answer 

justifies using clustering in a prediction task. The next sub-

section briefly discusses this work before proposing a simple 

scheme to utilize clustering in prediction. 
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A. Related Work 

One of the most basic results in Learning Theory is the 

Occam’s Razor [4] i.e. if a set of mm  training examples can be 

described by a hypothesis using only 𝑘 ≪ 𝑚 bits, then we can 

be quite sure that the hypothesis generalizes well to unseen data. 

Another way of stating this is that compression implies learning 

for the description language of the hypothesis. If compression 

means learning then making predictions would mean 

decompression. The notion of compression implies learning for 

different description languages has lead to a number of 

important sample complexity bounds [5][6] and has been 

generalized to any description language by Blum & Langford 

[7]. This generalization, called the PAC-MDL bound gives a 

handle on understanding the generalization error and the 

tradeoff between good representations of the data and over-

fitting it. Clustering too can be seen as a trade-off between the 

quality of the representing groups in the data and the 

complexity of the same.  

The said PAC-MDL bound is defined for a transductive 

setting and essentially states that it is quite unlikely that a 

transductive classifier that does well on the training set will do 

badly on the test set. This can be formalized as follows: 

Consider we have a training set 𝑆𝑡𝑟𝑎𝑖𝑛  having 𝑚 labeled 

examples and a test set 𝑆𝑡𝑒𝑠𝑡  having 𝑛 unlabeled examples 

which are drawn independently from a distribution 𝐷. If 𝑋 is 

the instance and 𝑋 the target, then 𝑆𝑡𝑟𝑎𝑖𝑛 = {𝑋𝑚, 𝑌𝑚} and 

𝑆𝑡𝑒𝑠𝑡 = {𝑋𝑛, 𝑌𝑛}  with 𝑌 ∈ {1, … , 𝑙 }. Given any compression 

procedure as discussed in the previous paragraph which could 

be represented as 𝐴: (𝑋 × 𝑌)𝑚 × 𝑋𝑛 → {0,1}∗ there would be 

a decompression procedure𝐵: 𝑋𝑚+𝑛 × {0,1}∗ →  𝑌𝑚+𝑛. For 

this compression-decompression pair the transmitted string 𝜎 

would be the transductive classifier 𝜎: 𝑋𝑚+𝑛 → 𝑌𝑚+𝑛 that 

assigns labels to the examples. For a description language the 

bound on the test error (𝜎̂𝑡𝑒𝑠𝑡) as a function of the error on the 

training set is given by the PAC-MDL bound [7] [8]: 

For any given distribution 𝐷 and for the set of all description 

languages 𝐿 = {𝜎} with probability 1 − 𝛿 over the train and 

test sets: 

𝑆𝑡𝑟𝑎𝑖𝑛 , 𝑆𝑡𝑒𝑠𝑡~ 𝐷𝑚+𝑛: ∀𝜎 

𝜎̂𝑡𝑒𝑠𝑡 ≤ 𝑏𝑚𝑎𝑥(𝑚, 𝑛, 𝜎̂𝑡𝑟𝑎𝑖𝑛 , 2−|𝜎|𝛿) 

While the PAC-MDL bound is used for a transductive setting 

Banerjee & Langford [7] show that clustering can be converted 

to a transductive classification problem. They also demonstrate 

that for a description language 𝐿 = {𝜎} to be a valid description 

language, it must be an instantaneous code and hence satisfy 

Kraft’s inequality. For the case of clustering, with 𝑐 clusters and 

𝑙 labels, the family of descriptions 𝐿 = {𝜎}  has size 𝑙𝑐. This set 

can be encoded by |𝜎| = 𝑐𝑙𝑜𝑔(𝑙) bits. Since L satisfies Kraft’s 

inequality, it is a valid description language. This essentially 

gives an information theoretic justification of using clustering 

as a transductive classifier and also gives a set of PAC-MDL 

bounds on the same. 

The above review in simple terms states the following: Since 

clustering is a scheme for information compression. It will thus 

(when stated as a transductive problem for simplicity) most 

likely improve the prediction error. The PAC-MDL bounds that 

formalize this notion can be used without any loss of generality 

as an intuitive explanation of why clustering could be used in 

conjunction with a predictor as a pre-processing step. The next 

section returns to the notion of using clustering for prediction. 

III. USING CLUSTERING FOR BOOTSTRAPPING 

Clustering is used to mine structure in the data. According to a 

pre-defined metric data-points in one group are by definition 

highly similar to each other than to data-points from other 

groups/clusters. One useful way of looking at this is thinking of 

clustering as [9]: Consider a dataset that is obtained by 

sampling a collection of distributions {𝐷1, 𝐷2 , … , 𝐷𝑘} with 

associated weights  {𝑤1, 𝑤2, … , 𝑤𝑘}such that ∑ 𝑤𝑖𝑖 = 1 i.e. 

from each distribution 𝐷𝑖 , a point is picked with probability 𝑤𝑖 . 

Now given the dataset, the idea behind clustering is to identify 

these distinct distributions that might have generated it and 

assign points in the dataset into different groups accordingly. 

This new representation is more concise. 

Following from the above and from the discussion in section 

II: Given a dataset, clustering it gives a compressed 

representation (albeit lossy). This can be thought of as giving 

the data to an operator as input (k-means for example) that gives 

an output of the same data but taking much fewer bits to 

represent it. This transformation tells us something interesting 

about the data and its structure which could be exploited to 

improve the predictive power. One potential way of doing so is 

by training a separate predictor on each cluster rather than train 

a single predictor on the entire dataset.  

 
Fig. 1. A “Prediction Model”. A “prediction model” is composed of k cluster 

models (PMk). It should be noted that any other method for regression could be 
used in place of Linear Regression 

Consider a sample regression task (Fig. 1): Suppose we first 

cluster the dataset into k clusters using an algorithm such as k-

means. A separate linear regression model is then trained on 

each of these clusters (any other model can be used in place of 

linear regression). Let us call each such model a “Cluster 

Model”. All of the k Cluster Models together can be thought of 

as forming a more complex model that we call a “Prediction 

Model”. We represent a prediction model as PMk, with the 

subscript indicating the number of cluster models in the given 

prediction model (which in turn will obviously equal the 



 3 

number of clusters).  To summarize, to train a “prediction 

model”, the following steps are followed: 

1. Cluster the training data into k partitions 

2. For each partition train a separate classifier/predictor 

using the points inside that cluster as its training set. 

3. Each such predictor represents a model of the cluster, 

and hence is called the cluster model.  

Once a prediction model is obtained, making a prediction of a 

point from the test set would involve the following (Fig. 2.) 

 
Fig. 2. Mapping a test point to a cluster to make a prediction on it 

 

Making predictions for a point from the test set would thus 

involve two steps: 

1. Identify the cluster to which the test point belongs. 

2. Use the Cluster Model of the identified cluster to make 

the prediction for that data point. 

It must be noted that PM1 would simply be our predictor fit on 

the entire data set (for the above example it would be fitting a 

linear regression model on the dataset, we can think of the entire 

dataset as one cluster). 

A. k as a tunable parameter 

The previous section describes a way by which clustering 

could be used to construct what we call a “prediction model”. 

Building on the generic method, using the number of clusters 

‘k’ in k-means (or any other clustering that requires number of 

clusters to be input) as a free parameter, multiple prediction 

models can be obtained (Fig. 3.) i.e.  k can be varied from 1 to 

a value K and a Prediction Model for each instance can be 

obtained.  For example if K = 3, there would be three prediction 

models: PM1 (predictor trained on the entire dataset), PM2 

(predictors trained on two clusters), and PM3 (predictors trained 

on three clusters). These K prediction models are then 

employed to make a set of K distinct predictions on the test set 

using the two step procedure for mapping and making 

predictions of test points sketched in the previous section. 

Before looking at how these K predictions can be of value, it 

must be noted that  

1. Cluster models in different prediction models are 

different.  

2. There might indeed exist a prediction model PMi for 

some arbitrary number of clusters  that would have 

higher prediction accuracy than PM1. The reverse 

might also be true.  

The second factor i.e whether some arbitrary PMi would do 

better than PM1 would depend on two main factors: 

Clusterabilty of the dataset [3] and the choice of predictor. 

 
Fig. 3. Generation of multiple prediction models by using ‘k’ as a free 

parameter. Each of these prediction models will make a prediction on the test 

set. These predictions can then be combined together by a naïve ensemble to 
get a final prediction. 

Even if an arbitrary PMi does not return higher accuracy than 

PM1, a couple of questions of considerable interest would be: 

How good are the predictions made by each individual 

prediction model? How diverse are the predictions made by the 

various prediction models? If there is indeed some diversity in 

the error patterns in predictions made by the various prediction 

models, the next step would be to combine the predictions 

together to perhaps get a stronger prediction.  

B. Combining Predictions 

Before looking at combining predictions, it is useful to 

understand how the predictions made by the various prediction 

models might be diverse and why combining diverse 

predictions might be helpful. 

 

Information Theoretic View of Clustering 

As discussed in sections II and III, clustering seems useful 

for prediction as it is basically a scheme for data compression. 

By compression we learn something interesting about the 

structure and the regularities in the data that can be used to 

perhaps improve the prediction accuracy. A simple method to 

do so was outlined in section III-A. Interestingly however, how 

much compression we can achieve will depend on what ‘k’ 

(number of clusters) is chosen. A question that arises is: Is there 

at least some difference in the information content in these 

different cases? Let’s consider this question in some detail: 

Consider k-means clustering; Now since the cluster centroids 

are found by optimizing a distortion function, the choice of this 

distortion function decides what information should be kept and 

what should not be. The distortion function for k-means is given 

by: 

 

 is the cluster centroid to which a point  has been assigned. 

The data are described more concisely (and hence the 

compression) with all the points in a cluster approximated by 

their corresponding cluster centroids found using the distortion 

function. The rest of the irrelevant data is thrown away 
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Previous work by Still & Bialek [3] has formalized and 

extended this notion of relevance. This formalization gives a 

tradeoff between the complexity of the model and the amount 

of relevant information. The tradeoff range gives an optimal 

number of clusters for a dataset of a finite size beyond which 

we begin to over-fit it.  Other than this, the rate distortion theory 

applied to the problem of clustering also shows that the amount 

of relevant information coded at a certain clustering scale is 

different. Thus, in a sense there is no single best clustering of 

the data but a family of solutions that evolves with the tradeoff 

parameter [3]. This tradeoff in turn formalizes the notion of 

“clusterabilty” of the dataset and gives the valuable insight that 

at different values of this tradeoff we might get access to 

different information. While some of this information might be 

redundant, and some of it might be sampling noise, some 

information may also be unique to a grouping. We believe that 

it is this source of novel information that lends at least some 

power to the use of clustering in a prediction task. In our case, 

it would lend some diversity to the predictions obtained by the 

various prediction models since each is trained at a different 

scale of clustering. 

 

Ensemble Learning 

When we have a set of diverse (and accurate) predictors, 

combining them together to obtain a single prediction leads to 

ensemble methods (ensemble methods can also be considered 

methods as ways of generating diverse and accurate individual 

predictors in the first place).  

Ensemble methods have seen a rapid growth in the past 

decade in the machine learning community [10][11][12]. An 

ensemble is a group of predictors each of which gives an 

estimate of a target variable. Ensemble learning is a way to 

combine these predictions with the goal that the generalization 

error of the combination is lesser than each of the individual 

predictors. The success of ensembling lies in the ability to 

exploit (or inject and exploit) diversity in the individual 

predictors. That is, if the individual predictors exhibit different 

patterns of generalization, then the strengths of each of the 

predictors can be combined to form a single stronger predictor. 

A lot of research in ensemble learning has gone into finding 

methods that encourage diversity in the predictors.  

Dietterich [10] suggests three reasons why ensembles 

perform better than the individual predictors. The first reason is 

statistical. A learning algorithm can be considered as a way to 

search the space of hypotheses to identify the best hypothesis in 

it. The statistical problem is caused due to insufficient data. Due 

to this problem, the learning algorithm would give a set of 

different hypotheses with similar accuracy on the training data. 

By ensembling them, the risk of choosing the wrong hypothesis 

would be averaged out. The second reason is computational. 

Often, while looking for the best hypothesis, the algorithm 

might be stuck in local optima, thus giving us a bad hypothesis. 

By considering multiple such hypotheses, we can obtain a much 

better approximation to the true function. An example of the 

computational aspect is trying to train a neural network by 

restarting gradient descent a number of times to ensure that the 

result is better. The third reason is representational. Sometimes 

the true function might not be any hypothesis in the hypotheses 

space. By ensembling them, the representational space might be 

expanded to give a better approximation of the true function. 

Given the discussion about ensemble methods, we now 

consider combining the predictions in the method in section III-

A. 

 

Methodology for Combining Predictions 

With each prediction model having access to different 

information about the data, combining them improves the 

representation and averages out the chance of finding an 

improper hypothesis. Hence we expect a combination to give 

an improvement in accuracy. As an example for improving 

representation, suppose a linear regression is to be used for 

training on the dataset. Such an arrangement will likely have a 

high bias on a real world dataset. Using linear regression on the 

clusters and not on the entire dataset gives a chance to expand 

the representational space and give a better fit to the data and 

increase variance.  

As discussed in section III-A, we obtain a set of K predictions 

by varying the value the free parameter ‘k’. These predictions 

can be combined by uniform averaging, weighted averaging or 

ensembling them together. The aim of our work is to show the 

utility of clustering in causing an improvement in accuracy, and 

hence though we can use ensemble methods to combine them 

together we show results by simple averaging only. Averaging 

the predictions in a regression task (equivalent to voting in a 

classification task) is probably the easiest way to combine them. 

First, the training set is clustered and by varying k, K prediction 

models are obtained. And then each of these prediction models 

are used to make a prediction on the test set. We thus obtain a 

set of K predictions on the test set. Averaging all these 

predictions might not be fruitful as some of them might be poor 

predictors and thus might prove to be detrimental to the 

prediction accuracy. Thus, a subset of the total number of 

predictions obtained must be averaged to improve accuracy. 

Like mentioned earlier, in place of uniform averaging, a 

weighted averaging or the use of an ensemble method could 

greatly improve the combined prediction. 

 

C. Similarity with Other Existing Methods 

Before looking at the empirical evaluation of the method so 

discussed, we compare this method with some papers that 

atleast talked of using clustering for prediction. 

We introduced a simple yet effective bootstrap-aggregating 

meta-algorithm that uses clustering as means to bootstrap. This 

method can be thought of as a mixture of local experts similar 

to one discussed by Jacobs, Hinton et al.  [13]. It is noteworthy 

however that unlike in other bagging methods which select a 

random subset of the data to bootstrap, this method has a 

specific expert for each “locality” i.e cluster; which can 

potentially lead to more interpretability. By varying the 

granularity of the clustering we are able to train a set of experts 

at different scales which leads to a set of diverse predictions 

amenable to ensembling together. For example, if a K of 10 is 

chosen then for each test point there are ten experts to “consult” 

for a prediction, one each at a different level of granularity (i.e 

for k =1 there is an expert, at k =2 there is another and so on till 

k = 10). 

 On their work on Statistical Predicate Invention, Kok & 

Domingos [14] use multiple clusterings to better capture the 
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interactions between objects in relational learning. Deodhar & 

Ghosh [15] also mention the same, however they use it in co-

clustering framework and both of these works do not combine 

the predictions at different scales.  

 

IV. EMPIRICAL VALIDATION 

In this section we report the mechanics of an empirical study 

performed on a number of benchmark datasets for the task of 

regression for three different predictors. 

A. Algorithms 

The algorithm used for clustering the various datasets was 

the k-means algorithm. k-means finds a partition by optimizing 

a distortion function, and while it can be considered to converge 

in a certain sense (it can be stated to be Lyapunov Stable [16] 

and thus the objective function decreases monotonically), the 

distortion function for k-means is non-convex. It is thus 

sensitive to the choice of initial cluster centroids and returns 

sub-optimal solutions quite often. We randomly initialized k-

means 200 times on each run and picked the best solution.  

For the prediction task (i.e. for training cluster models), Linear 

Regression, Step-Wise Linear Regression and Random Forests 

(for regression) were used. While this work can be extended to 

classification tasks as well, we do not discuss them in this work.  

B. Datasets  

The datasets used for the empirical validation of this technique 

were taken from the University of California, Irvine Machine 

Learning repository [17]. Out of the 17 regression datasets 

available, those datasets were considered that did not have a 

large number of missing values or nominal attributes and thus 

we restricted ourselves to datasets having numerical attributes 

solely. Some of these datasets had more than one target 

variable. Such cases are reported as separate datasets. 

The following datasets were considered (a) Breast Cancer 

Wisconsin Dataset (BREAST CANCER) has 569 data 

instances, each having 32 attributes. The prediction is for 

diagnosis (Benign or Malignant); (b) Cement Compressive 

Strength Dataset (COMPRESSIVE) has 1030 data points in 

total. Each data instance is described by 10 features [18]. The 

task is to predict the compressive strength (M Pa); (c) Concrete 

Slump I; (d) Concrete Slump II and (e) Concrete Slump III are 

essentially the same dataset (CONCRETE SLUMP) with the 

target attribute different in each case. This dataset has 103 data 

instances and 10 attributes, out of which 3 are target attributes 

(slump, flow and compressive strength); (f) The Forest Fires 

Dataset (FIRES) is one of the hardest regression datasets 

available[19]. It has 13 attributes and a total size of 513 

observations. The task is to predict area burned in square 

kilometers; (g) Housing Dataset (HOUSING) has 506 instances 

of houses around the suburbs of Boston. There are 14 attributes; 

the task is to predict the median value of owner occupied houses 

in $1000’s. The Parkinson’s Telemonitoring Dataset 

(PARKINSON) [20] is a unique dataset in which about 5875 

instances are provided, each with 26 attributes. This dataset has 

two target attributes which we denote as (h) Parkinson – I and 

(i) Parkinson – II; (j) Red Wine and (k) White Wine are two 

extensive datasets [21] that have 1599 and 4898 data points 

respectively, each with 12 features. Out of which one, the wine 

quality score (between 0 and 10) is the target attribute. These 

datasets give us a desired variety to test empirically our 

approach. Some of these datasets are straightforward tasks, 

while some are (such as FIRES) are amongst the hardest 

regression datasets available. 

C. Methodology 

For testing the efficacy of this method, the datasets were 

subject to a 5 fold cross validation. No feature selection was 

done on any of the datasets. This is beneficial in these 

experiments as that makes the prediction task harder. Some of 

these datasets have a large number of attributes and hence it is 

clear that not doing feature selection would make the prediction 

task harder. The only dataset in which a set of features were 

chosen was the forest fires dataset (f). As given in the 

description of the dataset in the UCI Machine Learning 

Repository, we used the last four attributes only.  

Features in all datasets were also normalized to values 

between 1 and -1 before applying this technique. This 

normalization was simply to ensure that none of the features 

dominated disproportionately in the clustering or regression 

tasks. While other normalization procedures were tested and 

some datasets returned better results with specific 

normalization techniques, we report the results only with one 

technique applied uniformly across datasets.  

Two methodologies for combining predictions were 

employed in the experiments. Following is one of them:.  

1. Normalize the dataset such that the features are scaled 

to the interval [-1, 1] 

2. Run k-means clustering on the dataset from 2 to k and 

assign the value of k for which the dataset hit an empty 

cluster (Kempty) to it.    

3. Choose K = Kempty/2 for that dataset. This will signify 

how many prediction models are to be obtained. 

Clearly, Kempty/2 prediction models (discussed in 

section III) are obtained. 

4. For each prediction model obtained in step 3 obtain a 

prediction on the test set. 

5. Uniformly average all predictions in step 4 to get a 

final prediction.  

Clearly this method is simplistic in choosing a fixed value of k 

and not choosing a value empirically. To offset this problem we 

use a second methodology too. This is described below: 

1. Normalize the features between [-1, 1] like in the 

previous case.  

2. Recall that we have to run a 5 fold cross validation on 

the data. In each of the 5 runs, we have randomly 

chosen and mutually exclusive train and test sets, such 

that 4/5th of the data forms the train set and the 

remaining 1/5th forms the test set.  

3. For each of the five folds, run a sub – 5 fold cross 

validation on the training data of that fold (a cross 

validation within a cross validation i.e consider the 

4/5th of the data mentioned in step 2 and divide it 

further into 5 folds). 

a. In each such sub cross validation phase 

consider a high value of k (such as Kempty) and 
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cluster the training data of this sub phase till 

that value. 

b. Train prediction models till this value of k in 

the sub-phase training set or to a value of k 

where models can be trained. 

c. Average the predictions obtained in this 5 

fold sub-cross validation from prediction 

models 1 to the value in step 3 b above. 

d. Find the k in step c averaging to which (from 

PM1 to PMk) gives the least prediction error 

e. Choose this k and return it to the main cross 

validation loop 

4. The k returned in step 3 e. is the value for that fold to 

which the predictions are to be averaged to. i.e. train 

prediction models on the train set to this value of k and 

average the predictions of all of these prediction 

models.   

5. Repeat the process for each fold.  

6. Average the errors in the five folds to get a single 

prediction error (let’s call it CVk error)  

As discussed, the problem with the first method was that no 

matter what predictor was used, it always averaged the first 

Kempty/2 prediction models. This value did not depend on what 

predictor was used to make the final prediction. Clearly the 

choice of predictor would have an impact on how many 

prediction models are to be averaged (intuitively a weaker 

predictor would need more prediction models to improve 

performance while a stronger one would need fewer). The 

second method alleviates this problem to some degree. It 

however suffers from the problem that training in the sub-cross 

validation phase, by virtue of having lesser points than training 

in the cross validation phase might return prediction models that 

are not completely representative of the prediction models 

returned in the main cross validation.   

With these methodologies, experiments were run using three 

predictors: 

1. Linear Regression (without feature selection) 

2. Stepwise Linear Regression 

3. Random Forests (for regression) 

There were multiple objectives to the experiments conducted 

using these two methodologies, some of which were: 

1. In what kind of datasets is such a method of averaging 

predictions useful? Are there datasets when it does 

worse? 

2. The choice of averaging Kempty/2 predictors is an 

approximation. However it would be interesting to see 

how the value of number of prediction models that 

returns the best error value changes depending on the 

nature of the dataset and the predictor.  

3. How much does the utility of clustering depend on the 

predictor used? What if a strong predictor is used and 

what if a weak predictor is used? 

4. How do these results compare with results when a 

cross validation within a cross validation is used to 

choose a value of k till which to average. 

5. Does the nature of data normalization alter results? 

 

V. RESULTS 

The three different predictors (Linear Regression, Stepwise 

Linear Regression and Random Forests) were chosen as 

representatives for different levels of predictor complexity. A 

linear regression model might be considered to have high bias 

with respect to most real world datasets and hence might be 

thought of as a naïve choice in most prediction settings. 

Stepwise Linear Regression on the other hand usually does a 

better job than its forced counterpart. Random Forests, 

however, represent the state of art in classification and 

regression. As discussed in the previous section, the 

experiments were done so as to evaluate how the information 

exploited by clustering the data aided in a prediction task given 

a dataset and type of predictor used. Another important question 

was to understand what kinds of datasets were suitable for such 

a technique. These observations are discussed in this section. 

The results with clustering are compared to the condition when 

no clustering was used (PM1) using a paired t-test to check for 

statistical significance. The two methodologies described in 

section IV-C were employed to combine predictions.  

The results are organized in three tables (Tables I, II and III) 

and two figures (Figs 4 and 5). The prediction results with 

clustering (employing both the methodologies discussed in IV 

C) and without clustering (PM1) for Linear Regression, 

Stepwise Linear Regression and Random Forests are tabulated 

in tables I, II and III respectively. Figures 4 and 5 show the error 

profiles for the different datasets for Stepwise Linear 

Regression and Random Forests. The error profile shown is 

essentially the mean absolute error in the prediction obtained by 

ensembles having 2 to k prediction models (this is represented 

in the x axis. i.e. a point 5 on the x axis would mean that the bar 

graph at that point shows the error returned by a model that 

averaged the first five prediction models). These figures 

underline the fact that the choice of k returned using the first 

methodology (of taking Kempty/2) gives quite a sub-optimal 

choice of k and thus the error value. While the CVk error (given 

by the second methodology for choosing k empirically) cannot 

be plotted in such graphs for obvious reasons, the number in the 

tables show a marked improvement over the first methodology. 

In table I, we immediately notice a couple of broad trends: 

The CVk error is mostly better than the error obtained by 

averaging the first Kempty/2 prediction models (as indicated by 

kmeans – I i.e. methodology I in the table). In all but one case 

it also improves the statistical significance for the improvement 

over PM1. The only exception being the red wine dataset where 

the error returned by the second methodology CVk is a little 

worse than even PM1, however this difference is not statistically 

significant. Perhaps this improvement across board is not 

surprising. This is because of the nature of the Linear 

Regression model, which is a very simple model that has a high 

bias w.r.t most real world datasets (PM1). So clustering even a 

little and not to a level that is optimal (clearly methodology I 

chooses a k that clearly could have been better) improves the 

prediction accuracy significantly as it boosts the variance. 

Improving this estimate of how many prediction models should 

be averaged (by using methodology II, CVk) further improves 

the prediction accuracy and statistical significance over PM1. 

Another observation was 
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that there are datasets which are more clusterable than others 

with respect to the size of the data matrix (rows by columns or 

number of data points by number of features). In such datasets, 

the improvement in prediction errors is not only huge, it is 

highly statistically significant. The only exception to this 

generalization is the Red Wine dataset. The red wine dataset is 

a moderate sized dataset as compared to the others, however 

clustering does not seem to help in prediction with it. In another 

dataset, Slump II, the prediction made by using methodology I 

is better than PM1 but only marginally statistically significant, 

this improvement is made statistically significant by using the 

second methodology. This underlines the ability of CVk to find 

a better prediction. In conclusion, out of the 11 datasets, an 

improvement in prediction accuracy was seen in all of them 

(except the CVk error for Red Wine), this improvement was 

much more pronounced in the CVk error, both in terms of raw 

error and statistical significance (over PM1). This observation 

points out that the choice of k to average in method I was 

perhaps suboptimal. This method of choosing k itself might not 

be optimal but certainly is more principled than the method 

employed in some experiments.

 
TABLE I 

PREDICTIONS USING LINEAR REGRESSION AND CLUSTERING 

Dataset Kempty MAE (PM1) MAE (kmeans - I) p-value(with PM1) MAE- CVk p-value(with 

PM1) 

Parkinson I 42 6.3445 5.0809 << 0.001 4.3638 << 0.001 

Parkinson II 42 8.0785 6.6190 << 0.001 5.7727 << 0.001 

Red Wine 26 0.5065 0.5048 0.6860 0.5073 0.7888 

White Wine 52 0.5858 0.5507 << 0.001 0.5394 << 0.001 

Housing 35 3.4021 2.5904 << 0.001 2.5883 << 0.001 

Breast Cancer 20 0.1944 0.1136 << 0.001 0.1139 << 0.001 

Fires 11 19.5009 18.9246 0.0399 18.8739 0.0074 

Concrete 30 8.2730 5.9688 << 0.001 5.8316 << 0.001 

Slump I 7 6.2958 5.8312 0.0959 5.7297 0.0155 

Slump II 7 11.2000 10.5712 0.1843 10.5203 0.1343 

Slump III 7 2.0136 1.7655 0.0086 1.7475 0.0063 

Kemoty is the value of k in k-means beyond which the dataset returned empty clusters. kmeans – I represents the first heuristic where Kempty/2 prediction models were 

averaged to get a prediction. The errors are reported in Mean Absolute Error, along with the ttest values with PM1 reported. CVk reports the prediction errors when 
the second heuristic is used, along with the p-values when compared to PM1. 

 

TABLE II 
PREDICTIONS USING STEPWISE LINEAR REGRESSION AND CLUSTERING 

Dataset Kempty MAE (PM1) MAE (kmeans - I) p-value(with PM1) MAE- CVk p-value(with 

PM1) 

Parkinson I 42 6.3597 5.1411 << 0.001 4.4290 << 0.001 

Parkinson II 42 8.0798 6.7266 << 0.001 5.8678 << 0.001 

Red Wine 26 0.5059 0.5034 0.4799 0.5005 0.1555 

White Wine 52 0.5850 0.5537 << 0.001 0.5440 << 0.001 

Housing 35 3.4252 2.5403 << 0.001 2.5503 << 0.001 

Breast Cancer 20 0.1962 0.0941 << 0.001 0.0784 << 0.001 

Fires 11 19.2495 18.8972 0.0215 18.8314 0.0368 

Concrete 30 8.3243 6.1101 << 0.001 5.8025 << 0.001 

Slump I 7 6.4607 6.1754 0.2709 5.7699 0.0255 

Slump II 7 10.5918 10.6652 0.8909 10.5639 0.8376 

Slump III 7 2.1864 1.7687 << 0.001 1.7880 << 0.001 

 
TABLE III 

PREDICTIONS USING RANDOM FORESTS AND CLUSTERING 

Dataset Kempty MAE (PM1) MAE (kmeans - I) p-value(with PM1) MAE- CVk p-value(with 

PM1) 

Parkinson I 42 2.0790 2.0687 0.5650 1.8468 << 0.001 

Parkinson II 42 2.6942 2.6900 0.8363 2.4264 << 0.001 

Red Wine 26 0.4233 0.4255 0.4239 0.4211 0.3260 

White Wine 52 0.4312 0.4290 0.2313 0.4297 0.3186 

Housing 35 2.1888 2.2046 0.7394 2.1764 0.6789 

Breast Cancer 20 0.0777 0.0760 0.4359 0.0760 0.3540 

Fires 11 20.6546 20.5958 0.8879 20.1743 0.0490 

Concrete 30 3.5550 3.7846 << 0.001 3.5202 0.0489 

Slump I 7 5.5629 5.8020 0.1086 5.7336 0.3031 

Slump II 7 10.1521 10.1762 0.9537 10.1521 -- 

Slump III 7 3.1424 2.9877 0.0390 3.0051 0.0373 
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Fig. 4. The error profiles for all 11 datasets for stepwise linear regression. The x-axis represents the number of prediction models averaged from 1. The bar marked 

in red indicates the one that has been chosen by the first heuristic as the final prediction. In many cases we notice that this is clearly a sub-optimal choice. The 

chosen value and the lowest value in the error profile for each dataset should be contrasted with the value of CVk mentioned in the table. Since the number of 

prediction models to average chosen is different in each fold by the second method, it has not been represented in the graph.

 

Table 2, which aggregates the results for Stepwise Linear 

Regression, shows trends similar to Linear Regression. The 

CVk errors are generally better as compared to the errors  

 

returned by the first methodology here as well. The only two 

exceptions in which clustering (by both methods) does not seem 

to improve upon PM1 are the SLUMP II and Red Wine datasets 

(just like for linear regression). As expected, results for 

stepwise linear regression with clustering give smaller errors as 

compared to simply linear regression with clustering. Like in 

the case of Linear Regression, the choice of the number of 

prediction models to average was suboptimal. This is indicated 

by the error profile (Fig. 4) for all 11 datasets when stepwise 

linear regression was used. The bar in the graph marked in red 

indicates the error and k picked by using the
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Fig. 5. The error profiles for all 11 datasets for Random Forests (for regression). The x-axis represents the number of prediction models averaged from 1. The bar 

marked in red indicates the one that has been chosen by the first heuristic as the final prediction. In many cases we notice that this is clearly a sub-optimal choice. 

The chosen value and the lowest value in the error profile for each dataset should be contrasted with the value of CVk mentioned in the table. Since the number of 
prediction models to average chosen is different in each fold by the second method, it has not been represented in the graph.

first heuristic. These can be contrasted with the CVk errors. The 

error profiles make a strong case for choosing the number of 

prediction models to average empirically. Similar error profiles 

were observed for Linear Regression. Since the two methods 

are simple in terms of representation power, more clustering 

seems to help the results (making Kempty/2 a bad choice), this is 

especially prominent in datasets that are more clusterable (such 

Parkinson I and II, White Wine etc), red wine being the only 

exception. This notion is also reinforced by the error profiles in 

smaller, noisier datasets such as the SLUMP datasets. By 

choosing k empirically, we frequently choose a better k for each 

fold and this is reflected in the results.  

The results for random forests are the most interesting. This 

is because it is a strong predictor by itself and hence it is not 

clear how much help clustering would lend to improve 

prediction accuracy. It being a strong predictor also in turn 

means that the earlier heuristic (first methodology) of choosing 

how many prediction models to average would not work. 
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Choosing this number empirically seems to be a better bet 

(CVk). This is reflected in the error profiles for all the datasets 

(Fig. 5), which are very different from the error profiles of 

simpler predictors such as Linear Regression and Stepwise 

Linear Regression. We also notice that the red bar is usually 

much worse in terms of results. Also, the “correct” choice of 

how many prediction models to average seems to change from 

dataset to dataset and there does not seem to be a clear trend 

unlike for linear regression and stepwise linear regression. 

Table III has results that confirm the above speculations. Except 

in a couple of datasets, the first methodology for combining 

predictions does not help in improving the prediction accuracy 

at all. In fact, it goes worse in more than half of the datasets and 

significantly worse in one dataset. The results for CVk as 

expected are much better; with the prediction errors improving 

across datasets and importantly, significantly improving over 

PM1 (Random Forest on the entire dataset with no clustering) 

in 6 datasets. This is an important result. Even in the dataset 

where the first method returned a significantly worse 

prediction, the CVk error is better, though not statistically 

significant. As a remark on implementation, it should be noted 

that Random Forests could not be trained to a high enough value 

of k as they need a certain number of points to train properly. 

And hence much lesser values of k are shown in the bar graphs 

beyond which training Random Forests was untenable.  

One of the advantages of choosing k empirically is illustrated 

very clearly in the case of SLUMP II. In this dataset, clustering 

does not seem to give any advantage in prediction at all. The 

cross validation within cross validation affirms this and returns 

the best value of k to be 1. This means that we end up with a 

final prediction which is the same as for PM1. This example 

shows that choosing k empirically ensures that we do not force 

clustering on a dataset where its performance after clustering 

will actually go worse.   

VI. DISCUSSION AND FUTURE WORK 

The results obtained in using clustering in conjunction with 

Linear Regression are not very surprising. The Linear 

Regression Model is a model with a high bias and is thus not 

expected to do too well on most real world datasets. Using 

Linear Regression in conjunction with clustering makes it a 

much more powerful method as it gives it access to more 

variance in the data, thus improving the bias-variance trade-off 

of the complete system. The improvement in prediction 

accuracy is very significant when it is combined with clustering 

after doing some feature selection (stepwise regression). In 

some cases stepwise with clustering returned accuracies 

comparable to those returned by Random Forests without 

clustering. Therefore, clustering seems to be giving a cheap 

method of accessing a lot of information about the data.  

It must also be noted that clustering a dataset at a single value 

of k, with any predictor (only one PM alone making a prediction 

without any ensembling), rarely improved prediction accuracy 

in a statistically significant manner compared to the predictor 

trained without clustering. But, if done at different scales with 

a prediction obtained at each scale and then combined by means 

of a naïve ensemble, the improvement is very significant as 

discussed in the previous section. It was also observed that in 

datasets that were not very clusterable, this technique did not 

improve upon much.  

The experiments done using random forests were more 

interesting. On smaller datasets the results obtained by using a 

random forest on the entire dataset and those obtained using the 

combination of predictions obtained at different scales of 

clustering did not have a statistically significant difference. This 

is understandable, as for small datasets clustering at a high 

value of k might not be able to reveal the true structure for lack 

of enough data points and might just end up considering 

sampling noise as structure [3]. This would not contribute much 

information to aid in the prediction task (might instead reduce 

the quality). The second and the more important reason would 

be that for small datasets, techniques such as random forests can 

exploit enough information such that the generalization error on 

the test set approaches a limit. Since Random Forest is itself an 

ensemble method, by means of random sampling of instances 

and attributes, it already gains a lot of information about the 

data. Because of this reason, information provided by clustering 

might not be necessarily novel. An implicit justification for this 

is given by the results returned by datasets that are large in size 

and are much more clusterable. Clustering in such cases is thus 

more likely to give a novel source of variance that can improve 

prediction significantly. 

An important aspect about the method was choosing which 

predictions to average. One of the methodologies followed was 

a naïve averaging of the first half of the predictions. This was a 

suboptimal choice, as there could have been better 

combinations of the set of predictions that could have been 

averaged. The choice of using the first half of the predictors was 

based on the following intuition: Finding the optimal clustering 

for a dataset might also be considered to be a bias-variance 

problem. If the number of clusters is too few as compared to the 

“true” number of clusters, then, most likely, the clustering has 

a high bias. Inversely, if the number of clusters is too high, we 

would be over fitting on the data. We selected the first half as a 

crude tradeoff between this tension. Ideally, the optimal choice 

of the predictors would be a function of both the clusterabilty 

of the dataset and the base predictor used. For example, if 

Linear Regression is used, averaging more predictions could be 

beneficial. The point of the method discussed in this work was 

to indicate that clustering gives access to a novel source of 

information in the data, and thus the aspect of combinations was 

not optimized. However, a method to pick k empirically was 

still employed and experimented with. It showed superior 

results to the earlier naïve heuristic. There were some problems 

with this methodology too. One being that k-means clustering 

is not a particularly stable clustering. The method utilized to 

choose a k was based on a cross validation within each fold. 

Since this stage chose a sub fold that was of a smaller size that 

the original fold it was not necessarily representative of it. And 

thus many times it was observed that the error profiles for the 

sub-cross validation phase were quite different from the error 

profiles for the main cross validation phase (Fig. 4 and Fig. 5 

have the error profiles of the main cross validation phase). 

While this definitely hurt the best choice of k, this experiment 

establishes how the prediction could be improved. This 

discussion poses an open model selection problem that could be 

solved by methods such as those used by the authors in the KDD 

cup [22] or using averaging as discussed by Caruana [23]. 
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Perhaps the best method for model selection in this case would 

be the PAC-MDL bound [8]. 

Another open question is if injecting randomness at various 

stages can improve the method’s prediction performance. This 

randomness can be injected in many stages, such as: Currently, 

we assign each test point to a cluster centroid based on the 

Euclidean distance and make a prediction for that point. Instead, 

the point could be assigned in a fuzzy manner, with 

probabilities of it lying in all clusters. Predictions on each 

cluster can then be obtained for that point and then weighted 

averaging can be done to obtain the final prediction. The 

weights in this case would be the probability that the point 

belongs to a particular cluster.  

Also, for each cluster model we use all features and training 

examples in the cluster. A random selection with replacement 

can be made to generate more diversity in the predictors. 

Preliminary work shows that such an ensemble gives promising 

performance. Yet another source of variance can be the k-

means clustering algorithm itself.  The k-means algorithm can 

give unstable results. In the experiments, we ran kmeans 200 

times and picked the best clustering. However, each of the 

converged runs can be used to generate more predictions that 

can then be combined together.  

Yet another area that can be worked on to improve the 

performance of the system can be by using supervised 

clustering. In our task, we use clustering to boost a prediction 

performance. However, the clustering is done in a completely 

unsupervised manner without any regard to the target. The 

clustering might be completely different if the target is 

accounted for. A process where the target is taken into 

consideration while clustering and then models are trained on 

these clusters would potentially be more beneficial. 
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