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Abstract

The regularity lemma is a fundamental result from the ex-
tremal graph theory. It is to claim the existence of a regular
partition, from which we can construct the reduced graph,
hence preserve the consistent behavior inside the same parti-
tion, and also decrease the order of input graph significantly.
It is a very important tool in theoretical proofs, but due to the
requirement of very large graph, it has no practical applica-
tions so far. In this paper we discuss the possible modifica-
tions to make the regularity lemma applicable in practical set-
ting. This leads to a brand new clustering algorithm: Spectral
regularity algorithm. We apply it to an Educational Data min-
ing task: predicting student test result from features derived
from tutors, we also compare the result with using standard
spectral clustering algorithm. The experimental results are
very promising.

Introduction
An important concept in student modelling is of “mastery
learning” - that is, a student continues to learn a skill till
mastery is achieved. While the exact definition of mastery
varies, it is usually defined in terms of the most recent stu-
dent performance. For example, in the Knowledge Tracing
(Corbett and Anderson, 1995) framework that has come to
dominate student modelling in many contexts, mastery in a
skill is said to have been achieved when according to the
model the probability that the student knows the skill ex-
ceeds 0.95. In many actual tutoring systems this definition
is relaxed but still relies on the idea of recent performance.
In a recent work (Wang and Beck, 2012) draw our attention
to the question whether such a near singular focus is impor-
tant after all. Intuitively, whether a student will remember
enough to answer a question after taking a break is a better
definition of mastery as compared to a local measure based
on next item response, particularly in subjects such as Math-
ematics which are cumulative.

In particular, in their investigations Wang and Beck, while
expanding the notion of mastery learning to incorporate the
long term effect of learning, report some additional evidence
for the spaced practice effect (for example see (Spitzer,
1939). That is, they found that features such as the number
of distinct days that the student practised a skill was more
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important than features that accounted for how many ques-
tions they got correct. It is noteworthy that models such as
Knowledge Tracing are in stark contrast to this, they only
rely on the patterns of questions that students get correct or
incorrect to make a prediction of their response on the next
item, and hence factors such as how many questions they get
correct are more important. This difference is not surprising
since the factors that reflect long term retention might be
quite different from factors that cause good short term per-
formance.

While the goal of expanding mastery learning to incorpo-
rate long term retention makes intuitive sense, it is first im-
portant to consider the following questions: Is long term stu-
dent retention actually predictable? and secondly, does some
construct beyond performance, such as forgetting, vary by
student? Wang and Beck indicate that the answer to both
the questions appears to be in the affirmative. They give
a roadmap for further research on this question and also
suggest that the Performance Factor Analysis framework
(Pavlik et al. 2009) could be expanded with features that
are more relevant to retention. They list some such features
that appear to indicate that student retention is predictable,
but stop short of a study towards building such a detector.

In this work we take a step towards building a detector
that could predict student performance after a delay of 5-10
days. As a baseline, we consider the expanded Performance
Factor Analysis model as mentioned above (which is basi-
cally a logistic regression model) with additional features
more relevant to retention. We also consider a simple boot-
strapping strategy that uses clustering the data to generate
a mixture of experts while using the expanded PFA model
as a subroutine. The clustering methods used for the above
are k-means clustering, Spectral Clustering and a clustering
algorithm recently developed by the authors called Regular-
ity Clustering, which is derived from the Regularity Lemma
(Szemerédi, 1976), a fundamental result in graph theory.
We report that the predictions obtained by the bootstrapping
strategy are significantly better over the baseline and more
specifically the predictions obtained by bootstrapping while
using the Regularity Clustering method were significantly
better as compared to the cases when k-means and spectral
clustering was used. In the next section we provide details
on the strategy used for prediction and also discuss the reg-
ularity clustering method in more detail.



Clustering Students and Strategy for
Bootstrapping

The idea that students are perhaps quite different when it
comes to forgetting makes it quite apparent that it is perhaps
not a good idea to fit a global model on all of the data. In-
spite of individual differences, we hypothesize that broadly
the patterns and underlying reasons of forgetting would fall
into several coarse groups, with each such group having stu-
dents more “similar” to each other in regard to forgetting.
Honing on this intuition, it might make more sense to clus-
ter students into somewhat homogeneous groups and then
train a predictor separately on each such group, which con-
siders only the points from that cluster as the training set for
itself. It is clear that each such predictor would be a bet-
ter representative for that group of students as compared to a
single global predictor trained on all the students at one time.
While this idea sounds compelling, there is a major issue
with it. While it is useful to model students as belonging to
different groups, it is perhaps not a good idea to divide them
into hard clusters. This is because the groupings are usually
quite fuzzy. For example, a student might be extremely good
at retaining information about certain aspects of Trigonom-
etry but not other aspects, while at the same time might be
strong with retaining algebra. Such complex characteristics
can not be modelled by a simplistic solution as only cluster-
ing the data to some upper limit and then training predictors
on each cluster. The “fuzzy” nature of such a process, which
is like a spread of features across groups needs to be cap-
tured to make a distributive model such as the above more
meaningful. This issue can be fixed by varying the granular-
ity of the clustering and training separate models each time
so the such features can be accounted for. A simple strategy
to do so was proposed by the authors and was found quite
useful in various tasks in student modelling (Trivedi et al.,
2011a), (Trivedi et al., 2011b).

The idea is a simple ensemble method. The basic idea be-
hind ensemble methods is that they involve running a “base
learning algorithm” multiple times, each time with some
change in the representation of the input (e.g. considering
only a subset of the training examples or a subset of fea-
tures etc) so that a number of diverse predictions can be ob-
tained. This process also gives a rich representation of the
input, which is one of the reasons why they work so well.
In the particular case of our method, unlike many other en-
semble methods that use a random subset to bootstrap, we
use clustering to bootstrap. The training set is first clustered
into k disjoint clusters and then a logistic regression model
is trained on each of the clusters only based on the training
points that were assigned to that cluster. Each such model,
being a representative of a cluster is referred to as a clus-
ter model. Thus for a given value of k there would be k
cluster models. Note that since all the clusters are mutually
exclusive, the training set is represented by all the k clus-
ter models taken together. We refer to this as a Prediction
Model, PMk. For an incoming test point, we first figure out
the cluster that point belongs to and then use the concerned
cluster model alone to make a prediction on that point. Now
also note that we don’t specify the number of clusters above.

Figure 1: Construction of a Prediction Model for a given K.
See text for details

Hence, we can change the granularity of the clustering from
1 (PM1, which is the entire dataset as one cluster) to some
high value K. In each such instance we would get a differ-
ent Prediction Model, thus obtaining a set of K Prediction
Models. Since the granularity of the clustering is varied, the
predictions obtained would be diverse and hence could be
combined together by some method such as averaging them
together to get a single prediction.

Note that the clustering algorithm above is not specified
and hence could be any clustering technique, as long as there
is a straightforward way to map test points to clusters. In
particular we clustered students using three algorithms: k-
means (Hartigan et al 1979), Spectral Clustering (Luxburg,
2007) and a clustering technique recently introduced by the
authors called Regularity Clustering (Sárközy et al. 2012).
The basic k-means algorithm finds groupings in the data by
randomly initializing a set of k cluster centroids and then
iteratively minimizing a distortion function and updating
these k cluster centroids and the points assigned to them.
This is done till a point is reached such that sum of the dis-
tances of all the points with their assigned cluster centroids
is as low as possible. Clustering methods such as k-means
estimate explicit models of the data (specifically spherical
gaussians) and fail spectacularly when the data is organized
in very irregular and complex shaped clusters. Spectral clus-
tering on the other hand works quite differently. It represents
the data as an undirected graph and analyses the spectrum of
the graph laplacian obtained from the pairwise similarities of
the data points (also called the similar matrix of the graph).
This view is useful as it does not estimate any explicit model
of the data and instead works by unfolding the data mani-
fold to form meaningful clusters. Usually spectral cluster-
ing is a far more accurate clustering method as compared to



k-means except in cases where the data indeed confirms to
the model that the k-means estimates. For more details we
refer the reader the mentioned references. In the next sec-
tion we describe the newly introduced clustering technique
called Regularity Clustering.

Regularity Clustering Algorithm
In this section we briefly describe the Regularity Clustering
algorithm. Among the various clustering techniques, one
reason that spectral clustering has become quite popular is
that it has a much stronger theoretical background. The ob-
jective in it is to approximately solve the balanced mincut
problem. However, in the balanced mincut criteria, only the
distance between current part and the complement to it is
considered and ignores the information about the arrange-
ment of the complement. More precisely, suppose we at-
tach a weight value to each edge, the balanced mincut prob-
lem can be formalized as: to find a partition A1, A2, . . . , Ak
which minimize the value

cut(A1, A2, . . . , Ak) =
1

2

k∑
i=1

1

|Ai|
·W (Ai, Āi).

Now, consider the following scenario: we have two clus-
ters A and B which have a lot of edges in between; however
A also has a large number of connections to other parts of
the graph, B doesn’t have any such connections to the other
parts. By the definition of balanced mincut, we might com-
bine these two clusters; but indeed they have very different
behaviour, certain applications would prefer that these two
remain separated.

The Regularity Lemma (Szemerédi, 1976) is a fundamen-
tal result in Graph Theory that claims the existence of a regu-
lar partition, from which we can construct the reduced graph
and hence decrease the order of input graph significantly.
The criteria for evaluating a regular partition is quite differ-
ent from the spectral clustering, it looks for the consistency
behaviour within the same cluster, so a small portion would
be enough as a representative to all. It is a very important
tool in theoretical proofs, but due to the requirement of very
large graph, it doesn’t have practical applications. We re-
cently introduced a clustering method that makes an attempt
to harness the power of the Regularity Lemma. Before we
describe the algorithm, we first introduce some notation.

Notation and Definitions
Let G = (V,E) denote a graph, where V is the set of ver-
tices and E is the set of edges. When A,B are disjoint sub-
sets of V , the number of edges with one endpoint in A and
the other in B is denoted by e(A,B). When A and B are
nonempty, we define the density of edges between A and B
as

d(A,B) =
e(A,B)

|A||B|
.

The most important concept is the following.

Definition 1 The bipartite graph G = (A,B,E) is ε-
regular if for every X ⊂ A, Y ⊂ B satisfying

|X| > ε|A|, |Y | > ε|B|

we have
|d(X,Y )− d(A,B)| < ε,

otherwise it is ε-irregular.
Roughly speaking this means that in an ε-regular bipar-

tite graph the edge density between any two relatively large
subsets is about the same as the original edge density. In
effect this implies that all the edges are distributed almost
uniformly.
Definition 2 A partition P of the vertex set V = V0 ∪ V1 ∪
. . .∪ Vk of a graph G = (V,E) is called an equitable parti-
tion if all the classes Vi, 1 ≤ i ≤ k, have the same cardinal-
ity. V0 is called the exceptional class.
Thus note that the exceptional class V0 is there only for a
technical reason, namely to guarantee that the other classes
have the same cardinality.
Definition 3 For an equitable partition P of the vertex set
V = V0 ∪ V1 ∪ . . . ∪ Vk of G = (V,E), we associate a
measure called the index of P (or the potential) which is
defined by

ind(P ) =
1

k2

k∑
s=1

k∑
t=s+1

d(Cs, Ct)
2.

This will measure the progress towards an ε-regular parti-
tion.
Definition 4 An equitable partition P of the vertex set V =
V0∪V1∪ . . .∪Vk ofG = (V,E) is called ε-regular if |V0| <
ε|V | and all but εk2 of the pairs (Vi, Vj) are ε-regular where
1 ≤ i < j ≤ k.
With these definitions we are now in a position to state the
Regularity Lemma.

Original Regularity Lemma
Basically this lemma claims that every (dense) graph could
be partitioned into a bounded number of pseudo-random
bipartite graphs and a few leftover edges. Since random
graphs of a given edge density are much easier to treat than
all graphs of the same edge-density, the Regularity Lemma
helps us to translate results that are trivial for random graphs
to the class of all graphs with a given number of edges.
Theorem 1 (Regularity Lemma (Szemerédi, 1976)) For
every positive ε > 0 and positive integer t there is an integer
T = T (ε, t) such that every graph with n > T vertices has
an ε-regular partition into k + 1 classes, where t ≤ k ≤ T .

In applications of the Regularity Lemma the concept of
the reduced graph plays an important role.
Definition 5 Given an ε-regular partition of a graph G =
(V,E) as provided by Theorem 1, we define the reduced
graph GR as follows. The vertices of GR are associated
to the classes in the partition and the edges are associated
to the ε-regular pairs between classes with density above d.

The most important property of the reduced graph is that
many properties of G are inherited by GR. Thus GR can be
treated as a representation of the original graphG albeit with
a much smaller size, an “essence” of G. Then if we run any
algorithm on GR instead of G we get a significant speed-up.



Algorithmic Version of the Regularity Lemma
The original proof of the regularity lemma (Szemerédi,
1976) does not give a method to construct a regular parti-
tion but only shows that one must exist. To apply the reg-
ularity lemma in practical settings, we need a constructive
version. Alon et al. (Alon et al., 1994) were the first to give
an algorithmic version. Since then a few other algorithmic
versions have also been proposed (Frieze and Kanna, 1999),
(Kohayakawa, Rödl and Thoma, 2003). Below we present
the algorithm due to Alon et al.

To describe this algorithm, we need a couple of lemmas.

Lemma 1 (Alon et al., 1994) Let H be a bipartite graph
with equally sized classes |A| = |B| = n. Let 2n−1/4 <
ε < 1

16 . There is an O(M(n)) algorithm that verifies that
H is ε-regular or finds two subset A′ ⊂ A, B′ ⊂ B, |A′| ≥
ε4

16n, |B′| ≥ ε4

16n, such that |d(A,B)− d(A′, B′)| ≥ ε4.

This lemma basically says that we can either verify that
the pair is ε-regular or we provide certificates that it is not.
The certificates are the subsets A′, B′ and they help to pro-
ceed to the next step in the algorithm. The next lemma de-
scribes the procedure to do the refinement from these certifi-
cates.

Lemma 2 (Szemerédi, 1976) Let G = (V,E) be a graph
with n vertices. Let P be an equitable partition of the vertex
set V = V0 ∪ V1 ∪ . . . ∪ Vk. Let γ > 0 and let k be a
positive integer such that 4k > 600γ−5. If more than γk2
pairs (Vs, Vt), 1 ≤ s < t ≤ k, are γ-irregular then there is
an equitable partition Q of V into 1 + k4k classes, with the
cardinality of the exceptional class being at most

|V0|+
n

4k

and such that

ind(Q) > ind(P ) +
γ5

20
.

This lemma implies that whenever we have a partition that
is not γ-regular, we can refine it into a new partition which
has a better index (or potential) than the previous partition.
The refinement procedure to do this is described below.

Refinement Algorithm: Given a γ-irregular equitable
partition P of the vertex set V = V0 ∪ V1 ∪ . . . ∪ Vk with
γ = ε4

16 , construct a new partition Q.
For each pair (Vs, Vt), 1 ≤ s < t ≤ k, we apply Lemma
1 with A = Vs, B = Vt and ε. If (Vs, Vt) is found to be
ε-regular we do nothing. Otherwise, the certificates parti-
tion Vs and Vt into two parts (namely the certificate and the
complement). For a fixed s we do this for all t 6= s. In
Vs, these sets define the obvious equivalence relation with
at most 2k−1 classes, namely two elements are equivalent
if they lie in the same partition set for every t 6= s. The
equivalence classes will be called atoms. Set m = b |Vi|

4k
c,

1 ≤ i ≤ k. Then we choose a collection Q of pairwise dis-
joint subsets of V such that every member of Q has cardi-
nality m and every atom A contains exactly b |A|m c members
of Q. The collection Q is an equitable partition of V into at

most 1 + k4k classes and the cardinality of its exceptional
class is at most |V0|+ n

4k
.

Since the index cannot exceed 1/2, the algorithm must
halt after at most d10γ−5e iterations (see (Alon et al.,
1994)). Unfortunately, in each iteration the number of
classes increases to k4k from k. This implies that the graph
G must be indeed astronomically large (a tower function) to
ensure the completion of this procedure. As mentioned be-
fore, Gowers (Gowers, 1997) proved that indeed this tower
function is necessary in order to guarantee an ε-regular par-
tition for all graphs. The size requirement of the algorithm
above makes it impractical for real world situations where
the number of vertices typically is a few thousand.

Spectral regularity algorithm
To make the regularity lemma applicable we first needed a
constructive version that we stated above. But we see that
even the constructive version is not directly applicable to
real world scenarios. We note that the above algorithm has
such restrictions because it’s aim is to find a perfect regular
partition. Thus, to make the regularity lemma truly applica-
ble, we modify the Regular Partition Algorithm so that in-
stead of constructing a regular partition, we find an approx-
imately regular partition. Such a partition should be much
easier to construct. We have the following 3 major modifi-
cations to the Regular Partition Algorithm.

Modification 1: We want to decrease the cardinality of
atoms in each iteration. In the above Refinement Algorithm
the cardinality of the atoms may be 2k−1, where k is the
number of classes in the current partition. This is because
the algorithm tries to find all the possible ε-irregular pairs
such that this information can then be embedded into the
subsequent refinement procedure. Hence potentially each
class may be involved with up to k − 1 ε-irregular pairs.
One way to avoid this problem is to bound this number. To
do so, instead of using all the ε-irregular pairs, we only use
some of them. Specifically, in this paper, for each class we
consider at most one ε-irregular pair that involves the given
class. By doing this we reduce the number of atoms to at
most 2. We observe that in spite of the crude approximation,
this seems to work well in practice.

Modification 2: We want to bound the rate by which the
class size decreases in each iteration. As we have at most 2
atoms for each class, we could significantly increase m used
in the Refinement Algorithm as m = |Vi|

l , where a typical
value of l could be 3 or 4, much smaller than 4k. We call
this user defined parameter l the refinement number.

Modification 3: Modification 2 might cause the size of
the exceptional class to increase too fast. Indeed, by using a
smaller l, we risk putting 1

l portion of all vertices into V0 af-
ter each iteration. To overcome this drawback, we “recycle”
most of V0, i.e. we move back most of the vertices from V0.
Here is the modified Refinement Algorithm.

Modified Refinement Algorithm: Given a γ-irregular
equitable partition P of the vertex set V = V0∪V1∪. . .∪Vk
with γ = ε4

16 and refinement number l, construct a new par-
tition Q.
For each pair (Vs, Vt), 1 ≤ s < t ≤ k, we apply Lemma



1 with A = Vs, B = Vt and ε. For a fixed s if (Vs, Vt)
is found to be ε-regular for all t 6= s we do nothing, i.e.
Vs is one atom. Otherwise, we select one ε-irregular pair
(Vs, Vt) randomly and the corresponding certificate parti-
tions Vs into two atoms. Set m = b |Vi|

l c, 1 ≤ i ≤ k.
Then we choose a collection Q′ of pairwise disjoint subsets
of V such that every member of Q′ has cardinality m and
every atom A contains exactly b |A|m c members of Q′. Then
we unite the leftover vertices in each Vs, we select one more
subset of size m from these vertices and add these sets to Q′
resulting in the partitionQ. The collectionQ is an equitable
partition of V into at most 1 + lk classes.

Now we present our modified Regular Partition Algo-
rithm. There are three main parameters to be selected by the
user: ε, the refinement number l and h the minimum class
size when we must halt the refinement procedure. h is used
to ensure that if the class size has gone too small then the
procedure should not continue.

Modified Regular Partition Algorithm :
Given a graph G and parameters ε, l, h, construct an ap-
proximately ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G
into an equitable partition P1 with classes V0, V1, . . . , Vl,
where |V1| = bnl c and hence |V0| < l. Denote k1 = l.

2. Check size and regularity: If |Vi| < h, 1 ≤ i ≤ k, then
halt. Otherwise for every pair (Vs, Vt) of Pi, verify if it is
ε-regular or find X ⊂ Vs, Y ⊂ Vt, |X| ≥ ε4

16 |Vs|, |Y | ≥
ε4

16 |Vt|, such that |d(X,Y )− d(Vs, Vt)| ≥ ε4.

3. Count regular pairs: If there are at most εk2i pairs that
are not verified as ε-regular, then halt. Pi is an ε-regular
partition.

4. Refinement: Otherwise apply the Modified Refinement
Algorithm, where P = Pi, k = ki, γ = ε4

16 , and obtain a
partition Q with 1 + lki classes.

5. Iteration: Let ki+1 = lki, Pi+1 = Q, i = i + 1, and go
to step 2.

Two phase algorithm
To make the regularity lemma applicable in clustering set-
tings, we still need to solve two issues.

The first is in practise we don’t require equitable partition;
the other is we do not have full control of cluster numbers in
the final partition. To overcome these, we adopt the follow-
ing two phase strategy (Figure 1):

1. Application of the Regular Partition Algorithm: In the
first stage we apply the regular partition algorithm as de-
scribed in the previous section to obtain an approximately
regular partition of the graph representing the data. Once
such a partition has been obtained, the reduced graph as
described in Definition 5 could be constructed from the
partition.

2. Clustering the Reduced Graph: The reduced graph as
constructed above would preserve most of the properties

Figure 2: A Two Phase Strategy for Clustering

of the original graph (see (Komlós et al., 2002)). This im-
plies that any changes made in the reduced graph would
also reflect in the original graph. Thus, clustering the re-
duced graph would also yield a clustering of the origi-
nal graph. We apply spectral clustering (though any other
pairwise clustering technique could be used) on the re-
duced graph to get a partitioning and then project it back
to the higher dimension. Recall that vertices in the excep-
tional set V0, are leftovers from the refinement process
and must be assigned to the clusters obtained. Thus in
the end these leftover vertices are redistributed amongst
the clusters using k-nearest neighbour classifier to get the
final grouping.

Dataset Description and Experimental Results
The data considered in this article comes from the ASSIST-
ments system, a web-based tutoring system for 4th to 10th
grade mathematics. The system is widely used in Northeast-
ern United States by students in labs and for doing home-
work in the night. The dataset used is the same as used in
(Wang and Beck, 2012). The only exception being that we
considered the data for a unique 1969 students and did not
consider multiple data points of the same student attempting
something from a different skill. This was only done be-
cause we were interested in clustering students according to
user-id.

The following features were used. The goal was to predict
whether a response was correct i.e. 1 or incorrect or 0.

1. n correct: the number of prior student correct responses
on this skill; This feature along with n incorrect, the num-
ber of prior incorrect responses on this skill are both used
in PFA models.

2. n day seen: the number of distinct days on which stu-
dents practiced this skill. This feature distinguishes the
students who practiced more days with fewer opportuni-
ties each day from those who practiced fewer days but
more intensely, and allow us to evaluate the difference be-
tween these two situations. This feature was designed to
capture certain spaced practice effect in students data.

3. g mean performance: the geometric mean of students
previous performances, using a decay of 0.7. For a
given student and a given skill, use opp to represent
the opportunity count the student has on this skill, we
compute the geometric mean of students previous perfor-
mance using formula: g mean performance(opp) =



Figure 3: Mean Absolute Errors on Using the three Cluster-
ing Techniques for Bagging

g mean performance(opp − 1) × 0.7 +
correctness(opp) × 0.3. The geometric mean method
allows us to examine current status with a decaying
memory of history data. The number 0.7 was selected
based on experimenting with different values.

4. g mean time: the geometric mean of students previ-
ous response time, using a decay of 0.7. Similar
with g mean performance, for a given student and a
given skill, the formula of the geometric mean of stu-
dents previous response time is: g mean time(opp) =
g mean time(opp− 1)× 0.7 + response time(opp)×
0.3.

5. slope 3: the slope of students most recent three perfor-
mances. The slope information helps capture the influ-
ence of recent trends of student performance.

6. delay since last: the number of days since the student last
saw the skill. This feature was designed to account for a
gradual forgetting of information by the student.

7. problem difficulty: the difficulty of the problem. The
problem difficulty term is actually the problem easiness
in our model, since it is represented using the percent cor-
rect for this problem across all students. The higher this
value is, the more likely the problem can be answered cor-
rectly.

Out of these features it was reported that features such as
n correct and n incorrect had very little influence on the pre-
diction performance while the features g mean performance
and n day seen appear to be reliable predictors of student re-
tention. This observation is consistent with the spaced prac-
tice effect in cognitive science. Hence, in our experiments
we don’t consider n correct and n incorrect while training
the model.

Table 1: Paired t-tests on the predictions obtained with Spec-
tral and Regularity Clustering at different k

Pred. Models Spectral & Regularity
1 -
2 0.1086
3 0.0818
4 0.0045
5 � 0.005

Table 2: Paired t-tests on the predictions obtained with the
baseline (PM1) and Regularity Clustering

Pred. Models Baseline & Regularity
1 -
2 0.00531
3 0.0401
4 0.0018
5 0.0044

Conclusion and future work
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