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ABSTRACT

We study a fundamental question. What classes of hypotheses are learnable in
the online learning model? The analogous question in the PAC learning model
[12] was addressed by Vapnik and others [13], who showed that the VC dimen-
sion characterizes the learnability of a hypothesis class. In his influential work,
Littlestone [9] studied the online learnability of hypothesis classes, but only in the
realizable case, namely, assuming that there exists a hypothesis in the class that
perfectly explains the entire data. In this paper we study the online learnability in
the agnostic case, namely, no hypothesis perfectly predicts the entire data, and our
goal is to minimize regret. We first present an impossibility result, discovered by
Cover in the context of universal prediction of individual sequences, which implies
that even a class whose Littlestone’s dimension is only 1, is not learnable in the
agnostic online learning model. We then overcome the impossibility result by al-
lowing randomized predictions, and show that in this case Littlestone’s dimension
does capture the learnability of hypotheses classes in the agnostic online learning
model.



1 Introduction

The goal of this paper is to give a combinatorial characterization of hypothesis
classes that are learnable in the online model. In the online learning model, a
learning algorithm observes instances in a sequential manner. After each observa-
tion, the algorithm attempts to predict the label associated with the instance. For
example, the instance can be a vector of barometric features and the learner should
predict if it’s going to rain tomorrow. Once the algorithm has made a prediction,
it is told whether the prediction was correct (e.g. it was rainy today) and then uses
this information to improve its prediction mechanism. The goal of the learning
algorithm is simply to make few mistakes.

In the online learning model discussed in this paper, we make no statistical
assumptions regarding the origin of the sequence of examples. We allow the se-
quence to be deterministic, stochastic, or even adversarially adaptive to our own
behavior (as happens to be the case, e.g., in spam email filtering). Clearly, learning
is hopeless if there is no correlation between past and present examples. Classic
statistical theory of sequential prediction therefore enforces strong assumptions on
the statistical properties of the input sequence (for example, it must form a station-
ary stochastic process). Since we make no statistical assumptions, we must capture
the correlation between past and present examples in a different way.

One way to do this is to assume that all labels in the sequence of examples
are determined by a fixed, yet unknown, hypothesis. The learner knows that the
hypothesis is taken from a predefined hypothesis class and his task reduces to pin-
pointing the target hypothesis that generates the labels. We say that a hypothesis
class is online learnable if there exists an online algorithm that makes a finite num-
ber of prediction mistakes before pinpointing the target hypothesis. More precisely,
the class is online learnable if there exists an online algorithm which makes at most
M < ∞ mistakes on any realizable sequence (i.e. a sequence in which the labels
are determined by some hypothesis from the class). A natural question is therefore
which hypothesis classes are online learnable. Littlestone [9] studied this question
and provided a powerful result. He defined a combinatorial measure, which we call
Littlestone’s dimension, that characterizes online learnability.

Despite the elegance of Littlestone’s theory, it received little attention by on-
line learning researchers. This might be contributed to the fact that the realizable
assumption is rather strong. In recent years, much attention has been given to the
unrealizable case, in which we assume nothing about the “true” labeling function.
Following the PAC learning literature [8, 7], we call this model “agnostic online
learning”. In PAC learning, the VC dimension characterizes the learnability of
hypothesis classes both in the realizable and agnostic cases.

In this paper we study online learnability in the agnostic case. Since in this
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case even the optimal hypothesis in the hypothesis class might make many predic-
tion mistakes, we cannot hope to have a finite bound on the number of mistakes the
learner makes. Instead, we analyze the performance of the learner using the notion
of regret. The learner’s regret is the difference between the learner’s number of
mistakes and the number of mistakes of the optimal hypothesis. This is termed ’re-
gret’ since it measures how ’sorry’ the learner is, in retrospect, not to have followed
the predictions of the optimal hypothesis. We first present a negative result, show-
ing that even a trivial hypothesis class, whose Littlestone’s dimension is 1, is not
agnostic online learnable. Then, we show that this negative result can be circum-
vented by allowing the learner to make randomized predictions. In this case, we
prove that Littlestone’s dimension characterizes online learnability in the agnostic
case as well. Our proof is constructive – we present an online algorithm whose
expected regret vanishes, and the rate of convergence depends on the Littlestone’s
dimension.

Notation We denote by X the set of instances and by xt the instance the algo-
rithm receives on round t. The associated label is denoted by yt ∈ {−1,+1}. We
use H to denote a hypothesis class, namely, each h ∈ H is a mapping from X to
{+1,−1}. For a predicate π we denote the indicator function by 1JπK. For exam-
ple, if h(xt) 6= yt then 1Jh(xt) 6= ytK = 1 and otherwise 1Jh(xt) 6= ytK = 0. The
set of integers {1, . . . , n} is denoted by [n].

2 The Realizable Case

In this section we study online learnability in the realizable case and formally de-
fine Littlestone’s dimension. The content of this section is adopted from [9].

Recall that in the realizable case we assume that there exists h ∈ H such
that for all t, yt = h(xt). However, we make no further statistical assumptions
regarding the origin of the instances or the choice of h. The online algorithm
should be able to compete even against sequence of examples that are adversarially
adaptive to its own behavior. We therefore analyze the performance of the online
algorithm in a worst case manner.

Definition 1 (Mistake bound) Let H be a hypothesis class of functions from
X to {±1} and A be an online algorithm. We say that M is a mistake
bound for A, if for any hypothesis h? ∈ H and any sequence of examples
(x1, h

?(x1)), . . . , (xn, h?(xn)), the online algorithm A does not make more than
M prediction mistakes when running on the sequence of examples.
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v1

v2 v3

h1 h2 h3 h4

v1 −1 −1 1 1
v2 −1 1 ? ?
v3 ? ? −1 1

Figure 1: An illustration of a shattered tree of depth 2. The blue path corre-
sponds to the sequence of examples ((v1, 1), (v3,−1)), which can also be written
as ((v1, h3(v1)), (v3, h3(v3))). The tree is shattered by H = {h1, h2, h3, h4},
where the predictions of each hypothesis in H on the instances v1,v2,v3 is given
in the table (a question mark means that hj(vi) can be either 1 or −1).

We say that a hypothesis class is learnable in the online learning model if there
exists an online learning algorithm with a finite mistake bound, no matter how long
the sequence of examples is.

Next, we turn to describe a combinatorial measure of hypothesis classes that
characterizes the best possible achievable mistake bound. This measure was pro-
posed by Littleston and we therefore refer to it as Ldim(H).

To motivate the definition of Ldim it is convenient to view the online learning
process as a game between two players: the learner vs. the environment. On round
t of the game, the environment picks an instance xt, the learner predicts a label
ŷt ∈ {+1,−1}, and finally the environment outputs the true label, yt ∈ {+1,−1}.
Suppose that the environment wants to make the learner err on the first M rounds
of the game. Then, it must output yt = −ŷt, and the only question is how to
choose the instances xt in such a way that ensures that for some h ∈ H we have
yt = h(xt) for all t ∈ [M ].

It makes sense to assume that the environment should pick xt based on the
previous predictions of the learner, ŷ1, . . . , ŷt−1. Since in our case we have yt =
−ŷt we can also say that xt is a function of y1, . . . , yt−1. We can represent this
dependence using a complete binary tree of depth M (we define the depth of the
tree as the number of edges in a path from the root to a leaf). We have 2M+1 − 1
nodes in such a tree, and we attach an instance to each node. Let v1, . . . ,v2M+1−1

be these instances. We start from the root of the tree, and set x1 = v1. At round t,
we set xt = vit where it is the current node. At the end of round t, we go to the
left child of it if yt = −1 or to the right child if yt = 1. That is, it+1 = 2it + yt+1

2 .
Unraveling the recursion we obtain it = 2t−1 +

∑t−1
j=1

yj+1
2 2t−1−j .

The above strategy for the environment succeeds only if for any (y1, . . . , yM )
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there exists h ∈ H such that yt = h(xt) for all t ∈ [M ]. This leads to the following
definition.

Definition 2 (Shattered tree) A shattered tree of depth d is a sequence of in-
stances v1, . . . ,v2d−1 in X such that for all labeling (y1, . . . , yd) ∈ {±1}d
there exists h ∈ H such that for all t ∈ [d] we have h(vit) = yt where
it = 2t−1 +

∑t−1
j=1

yj+1
2 2t−1−j .

An illustration of a shattered tree of depth 2 is given in Figure 1.

Definition 3 (Littlestone’s dimension (Ldim)) Ldim(H) is the maximal integer
M such that there exist a shattered tree of depth M .

The definition of Ldim and the discussion above immediately imply the fol-
lowing:

Lemma 1 If Ldim(H) = M then no algorithm can have a mistake bound strictly
smaller than M .

Proof Let v1, . . . ,v2M−1 be a shattered tree (such a tree must exist since
Ldim(H) = M ). If the environment sets xt = vit and yt = −ŷt for all t ∈ [M ],
then the learner makes M mistakes while the definition of a shattered tree implies
that there exists a hypothesis h ∈ H such that yt = h(xt) for all t.

We have shown that Ldim(H) lower bounds the mistake bound of any algo-
rithm. Interestingly, there is a standard algorithm whose mistake bound matches
this lower bound. Thus, Ldim(H) is the exact characterization of the learnability
ofH in the online model.

Algorithm 1 Standard Optimal Algorithm (SOA)
INPUT: A hypothesis classH
INITIALIZE: V1 = H
FOR t = 1, 2, . . .

Receive xt
For r ∈ {±1} let V (r)

t = {h ∈ Vt : h(xt) = r}
Predict ŷt = arg maxr Ldim(V (r)

t )
Receive true answer yt
IF yt 6= ŷt

Update Vt+1 = V
(yt)
t

ELSE

Update Vt+1 = Vt
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The following lemma formally establishes the optimality of SOA.

Lemma 2 The SOA algorithm enjoys the mistake bound M = Ldim(H).

Proof It suffices to prove that whenever the algorithm makes a prediction mistake
we have Ldim(Vt+1) ≤ Ldim(Vt) − 1. We prove this claim by assuming the
contrary, that is, Ldim(Vt+1) = Ldim(Vt). If this holds true, then the definition
of ŷt implies that Ldim(V (r)

t ) = Ldim(Vt) for both r = 1 and r = −1. But, in
this case we can construct a shattered tree of depth Ldim(Vt) + 1 for the class Vt,
which leads to the desired contradiction.

Combining Lemma 2 and Lemma 1 we obtain:

Corollary 1 Let H be a hypothesis class. Then, SOA (Algorithm 1) enjoys the
mistake bound Ldim(H) and no other algorithm can have a mistake bound strictly
smaller than Ldim(H).

3 Agnostic Online Learnability

In the previous section we have shown that Littlestone’s dimension exactly charac-
terizes online learnability in the realizable case. However, the realizable assump-
tion is rather strong. In this section we consider the (more realistic) agnostic case.
In the agnostic case, our goal is to minimize the difference between the learner’s
number of mistakes and the number of mistakes of the optimal hypothesis in H.
This is termed ’regret’ since it measures how ’sorry’ the learner is, in retrospect,
not to have followed the predictions of the optimal hypothesis. We say that a class
H is agnostic online learnable if there exists an online algorithm that has a regret
bound of o(n), where n is the length of the sequence of examples. In other words, a
regret bound of o(n) means that the difference between the error rate of the learner
and the error rate of the optimal hypothesis inH converges to 0 when n→∞.

As before, we are interested in a combinatorial measure that determines the
learnability of hypothesis classes in the agnostic case. A natural candidate is the
Littlestone’s dimension. We start this section with a negative result, showing a class
with Ldim(H) = 1 that has a non-vanishing regret. Next, we slightly change our
model, by allowing the learner to randomized his predictions and analyze the ex-
pected regret. As a warm-up, we show that finite hypotheses classes are learnable,
if randomized predictions are allowed. Finally, we present our main result, show-
ing that any class with Ldim(H) < ∞ is agnostic online learnable, if randomized
predictions are allowed. In particular, we present a constructive online algorithm
that enjoys the expected regret bound of Ldim(H) +

√
Ldim(H)n log(n).
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3.1 Cover’s impossibility result

We present a negative result, showing a hypothesis class with Ldim(H) = 1 that
is not agnostic online learnable. This impossibility result was given in [3].

Theorem 1 (Cover’s impossibility result) There exists a hypothesis classH with
Ldim(H) = 1, such that for any online algorithm, there exists a sequence of
examples (x1, y1), . . . , (xn, yn) on which the online algorithm makes n mistakes,
while the optimal hypothesis inH makes at most n/2 mistakes. Namely, the regret
is at least n/2.

Proof Consider the class of two constant functions H = {h1(x) = 1, h2(x) =
−1}. It is easy to verify that Ldim(H) = 1. For any sequence of n examples,
the number of prediction mistakes of the constant prediction sign (

∑n
t=1 yt) is at

most n/2. Therefore, on any sequence of n examples, the optimal hypothesis inH
makes at most n/2 mistakes. Let A be an arbitrary online algorithm. We present
A the following sequence of examples. On round t we present an arbitrary xt,
receive the prediction of the algorithm ŷt, and then provide the output yt = −ŷt.
Therefore, the number of mistakes the algorithm makes on a sequence of length n
is exactly n. This concludes our proof.

3.2 Randomized Predictions

The negative result given in the previous subsection shows that even trivial hy-
potheses classes are not agnostic online learnable. Early results in game the-
ory [11, 1, 6] and information theory [4, 5] sidestepped Cover’s impossibility result
by allowing the learner to randomized his predictions.

Formally, on round t the learner defines a probability p̂t ∈ [0, 1] over
{+1,−1}, and the prediction ŷt is a random variable with P[ŷt = 1] = p̂t. We
analyze the expected regret of the algorithm and define:

Definition 4 (Expected regret) The expected regret of an online algorithm on a
sequence (x1, y1), . . . , (xn, yn) with respect to a hypothesis setH is:

n∑
t=1

E[1Jŷt 6= ytK]−min
h∈H

n∑
t=1

1Jh(xt) 6= ytK ,

where

E[1Jŷt 6= ytK] =

{
1− p̂t if yt = 1
p̂t if yt = −1

=
1 + yt

2
− ytp̂t .
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As before, we say that H is agnostic online learnable with randomized predic-
tions if there exists an algorithm with a sub-linear expected regret.

Next, we show how to circumvent Cover’s impossibility results by allowing the
online learner to make randomized predictions.

3.3 Finite Hypothesis Classes and Experts Algorithms

Let H be a finite hypothesis classes and denote H = {h1, . . . , hd}. We can think
on the hypotheses in H as “experts”, and the goal of the online learning algorithm
is to track the optimal expert.

One way to do this is by using the weighted majority algorithm [10]. The
version of the algorithm we give here, as well as the regret bound, is based on [2].

Algorithm 2 Learning with Expert Advice

INPUT: Number of experts d ; Number of rounds n

INITIALIZE: η =
√

2 ln(d)/n ; ∀i ∈ [d], M0
i = 0

FOR t = 1, 2, . . . , n

Receive experts advice (f t1, . . . , f
t
d) ∈ {±1}d

Define wt−1
i = exp(−ηM t−1

i )/(
∑

j exp(−ηM t−1
j ))

Define p̂t =
∑

i:f t
i =1w

t−1
i

Predict ŷt = 1 with probability p̂t
Receive true answer yt
Update: M t

i = M t−1
i + 1Jf ti 6= ytK

The algorithm maintains the number of prediction mistakes each expert made
so far, M t−1

i , and assign a probability weight to each expert accordingly. Then, the
learner sets p̂t to be the total mass of the experts which predict 1. The definition of
ŷt clearly implies that

E[1Jŷt 6= ytK] =
d∑
i=1

wt−1
i 1Jf ti 6= ytK . (1)

That is, the probability to make a mistake equals to the expected error of experts,
where expectation is with respect to the probability vector wt.

The following theorem analyzes the expected regret of the algorithm.
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Theorem 2 Algorithm 2 satisfies
n∑
t=1

E[1Jŷt 6= ytK]−min
i∈[d]

n∑
t=1

1Jf ti 6= ytK ≤
√

0.5 ln(d)n .

Proof Define Zt =
∑

i e
−ηMt

i . We have,

ln
Zt
Zt−1

= ln
∑

i e
−ηMt−1

i e−η1Jf
t
i 6=ytK

Zt−1
= ln

∑
i

wt−1
i e−η1Jf

t
i 6=ytK .

Note that wt is a probability vector and 1Jf ti 6= ytK ∈ [0, 1]. Therefore, we can
apply Hoeffding’s inequality (see for example [2], Lemma 2.2) on the right-hand
side of the above to get

ln
Zt
Zt−1

≤ − η
∑
i

wt−1
i 1Jf ti 6= ytK +

η2

8
= − ηE[1Jŷt 6= ytK] +

η2

8
,

where the last equality follows from Eq. (1). Summing the above inequality over t
we get

ln(Zn)− ln(Z0) =
n∑
t=1

ln
Zt
Zt−1

≤ −η
n∑
t=1

E[1Jŷt 6= ytK] +
n η2

8
. (2)

Next, we note that ln(Z0) = ln(d) and that

lnZn = ln

(∑
i

e−ηM
n
i

)
≥ ln

(
max
i
e−ηM

n
i

)
= −ηmin

i
Mn
i .

Combining the above with Eq. (2) and rearranging terms we obtain that∑
t

E[1Jŷt 6= ytK]−min
i
Mn
i ≤

ln(d)
η

+
η n

8
.

Setting η =
√

8 ln(d)/n and rearranging terms we conclude our proof.

Based on the above, we can easily define an agnostic online learning algorithm
for finite hypothesis classes as follows.

Algorithm 3 Agnostic online learning of a finite hypothesis class

INPUT: Finite classH = {h1, . . . , hd} ; Number of rounds n

LOOP: Run Algorithm 2, where on round t, set f ti = hi(xt)
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As a direct corollary of Theorem 2 we obtain:

Corollary 2 LetH be a finite hypothesis class and let (x1, y1), . . . , (xn, yn) be an
arbitrary sequence of examples. Then, Algorithm 3 satisfies

n∑
t=1

E[1Jŷt 6= ytK]−min
h∈H

n∑
t=1

1Jh(xt) 6= ytK ≤
√

0.5 ln(|H|)n .

In particular, the above implies thatH is agnostic online learnable.

The next step is to characterize the learnability of infinite size classes.

3.4 Agnostic Online Learnability

In this section we present our main result. We describe an algorithm for ag-
nostic online learnability that achieves an expected regret bound of Ldim(H) +√

0.5 Ldim(H)n log(n). The immediate corollary is that Littlestone’s dimension
characterizes the learnability of a hypothesis class also in the agnostic case, as long
as we allow randomized predictions.

As in the case of finite hypothesis classes, the main idea is to construct a set of
experts and then to use the Learning-with-experts-advice algorithm. Recall that the
expected regret of the Learning-with-experts-advice algorithm is O(

√
log(d)n),

where d is the number of experts. Therefore, unless |H| is finite, we cannot use
each h ∈ H as an expert. The challenge is therefore how to define a set of experts
that on one hand is not excessively large while on the other hand contains an expert
that gives accurate predictions.

The basic idea is to simulate each expert by running an instance of the SOA
algorithm (Algorithm 1) on a small sub-sequence of examples. Formally, let L be
an integer such that L ≤ Ldim(H). For each sub-sequence 1 ≤ i1 < i2 < . . . <
iL ≤ n, we define an expert as follows.
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Algorithm 4 Expert(i1, . . . , iL)

INPUT: A hypothesis classH ;

Indices i1 < i2 < . . . < iL

INITIALIZE: V1 = H
FOR t = 1, 2, . . . , n

Receive xt
For r ∈ {±1} let V (r)

t = {h ∈ Vt : h(xt) = r}
Predict ŷt = argmaxr Ldim(V (r)

t )

Receive true answer yt
IF yt 6= ŷt and t ∈ {i1, . . . , iL}

Update Vt+1 = V
(yt)
t

ELSE

Update Vt+1 = Vt

The following key lemma shows that there exists an expert whose performance
is almost optimal.

Lemma 3 Let (x1, y1), . . . , (xn, yn) be a sequence of examples and let H be a
hypothesis class with Ldim(H) < ∞. There exists L ≤ Ldim(H) and a sub-
sequence 1 ≤ i1 < . . . < iL ≤ n, such that Expert(i1, . . . , iL) makes at most

L+ min
h∈H

n∑
t=1

1Jh(xt) 6= ytK

mistakes on the sequence of examples.

Proof To simplify our notation, letM(h) be the number of mistakes a hypothesis
h makes on the sequence of examples. Let h? ∈ H be an optimal hypothesis, that
isM(h?) = minhM(h). Let j1, . . . , jk be the set of rounds on which h? does not
err. Thus, k = n −M(h?). The sequence of examples (xj1 , yj1), . . . , (xjk , yjk)
is realizable for H (since h? ∈ H never err on this sequence). Therefore, if
we run SOA (Algorithm 1) on this sequence we have at most Ldim(H) mis-
takes. Choose i1, . . . , iL to be a sub-sequence of j1, . . . , jk that contains the
indices of examples on which SOA errs, and note that L ≤ Ldim(H). Since
the predictions of SOA on j1, . . . , jk are exactly the same as the predictions
of Expert(i1, . . . , iL) on j1, . . . , jk we get that the total number of prediction
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mistakes of Expert(i1, . . . , iL) on the entire sequence is at most L+M(h?).

Our agnostic online learning algorithm is now an application of the Learning-
with-experts-advice algorithm.

Algorithm 5 Agnostic Online Learning Algorithm

INPUT: A hypothesis classH with Ldim(H) <∞ ; Horizon n

INITIALIZE:

For each L ≤ Ldim(H)

For each sub-sequence i1, . . . , iL
Construct an expert from (i1, . . . , iL) as in Figure 4

LOOP: Run Algorithm 2 with the set of constructed experts

To analyze Algorithm 5 we combine Lemma 3 with the upper bound on the
number of experts,

d =
Ldim(H)∑
L=0

(
n

L

)
≤ nLdim(H)

to obtain the following:

Theorem 3 LetH be a hypothesis class with Ldim(H) <∞. If we run Algorithm
5 on any sequence (x1, y1), . . . , (xn, yn), we obtain the expected regret bound,

n∑
t=1

E[1Jŷt 6= ytK] ≤ min
h∈H

n∑
t=1

1Jh(xt) 6= ytK+Ldim(H)+
√

0.5 Ldim(H)n ln(n) .

In particular, the above implies that a class H that has a finite Littlestone di-
mension is agnostic online learnable.
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