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Abstract

We propose a new paradigm for aligning a phoneme sequence of
a speech utterance with its acoustical signal counterpart.In con-
trast to common HMM-based approaches, our method employs
a discriminative learning procedure in which the learning phase
is tightly coupled with the alignment task at hand. The align-
ment function we devise is based on mapping the input acoustic-
symbolic representations of the speech utterance along with the
target alignment into an abstract vector space. We suggest a
specific mapping into the abstract vector-space which utilizes
standard speech features (e.g. spectral distances) as wellas con-
fidence outputs of a framewise phoneme classifier. Building on
techniques used for large margin methods for predicting whole
sequences, our alignment function distills to a classifier in the
abstract vector-space which separates correct alignmentsfrom
incorrect ones. We describe a simple iterative algorithm for
learning the alignment function and discuss its formal proper-
ties. Experiments with the TIMIT corpus show that our method
outperforms the current state-of-the-art approaches.

1. Introduction
Phoneme alignment is the task of proper positioning of a se-
quence of phonemes in relation to a corresponding continuous
speech signal. This problem is also referred to as phoneme seg-
mentation. An accurate and fast alignment procedure is a neces-
sary tool for developing speech recognition and text-to-speech
systems.

Most previous work on phoneme alignment has focused on
a generative model of the speech signal using Hidden Markov
Models (HMM). See for example [1, 6, 14] and the references
therein. Despite their popularity, HMM-based approaches have
several drawbacks such as convergence of the EM procedure to
local maxima and overfitting effects due to the large number of
parameters. In this paper we propose an alternative approach for
phoneme alignment that builds upon recent work on discrimina-
tive supervised learning. The advantage of discriminativelearn-
ing algorithms stems from the fact that the objective function
used during the learning phase is tightly coupled with the deci-
sion task one needs to perform. In addition, there is both theo-
retical and empirical evidence that discriminative learning algo-
rithms are likely to outperform generative models for the same
task (cf. [15, 4]). One of the best known discriminative learn-
ing algorithms is the support vector machine (SVM), which has
been successfully applied in speech applications [11, 7, 9]. The
classical SVM algorithm is designed for simple decision tasks
such as binary classification and regression. Hence, its exploita-
tion in speech systems so far has also been restricted to simple
decision tasks such as phoneme classification. The phoneme
alignment problem is more involved, since we need to predict
a sequence of phoneme start times rather than a single number.

The main challenge of this paper is to extend the notion of dis-
criminative learning to the complex task of phoneme alignment.

Our proposed method is based on recent advances in kernel
machines and large margin classifiers for sequences [13, 12],
which in turn build on the pioneering work of Vapnik and col-
leagues [15, 4]. The alignment function we devise is based
on mapping the speech signal and its phoneme representation
along with the target alignment into an abstract vector-space.
Building on techniques used for learning SVMs, our align-
ment function distills to a classifier in this vector-space which
is aimed at separating correct alignments from incorrect ones.
We describe a simple iterative algorithm for learning the align-
ment function and discuss its formal properties. Experiments
with the TIMIT corpus show that our method outperforms the
best performing HMM-based approach [1].

This paper is organized as follows. In Sec. 2 we formally in-
troduce the phoneme alignment problem. Our specific learning
method is then described in Sec. 3. Next, we present experi-
mental results in Sec. 4. Finally, concluding remarks and future
directions are discussed in Sec. 5.

2. Problem Setting
In this section we formally describe the alignment problem.We
denote scalars using lower case Latin letters (e.g.x), and vec-
tors using bold face letters (e.g.x). A sequence of elements is
designated by a bar (x̄) and its length is denoted as|x̄|.

In the alignment problem, we are given a speech utterance
along with a phonetic representation of the utterance. Our goal
is to generate an alignment between the speech signal and the
phonetic representation. The Mel-frequency cepstrum coeffi-
cients (MFCC) along with their first and second derivatives are
extracted from the speech in the standard way which is based
on the ETSI standard for distributed speech recognition. We
denote the domain of the acoustic feature vectors byX ⊂ R

d.
The acoustic feature representation of a speech signal is there-
fore a sequence of vectors̄x = (x1, . . . ,xT ), wherext ∈ X
for all 1 ≤ t ≤ T . A phonetic representation of an utterance
is defined as a string of phoneme symbols. Formally, we de-
note each phoneme byp ∈ P , whereP is the set of 48 English
American phoneme symbols as proposed by [8]. Therefore, a
phonetic representation of a speech utterance consists of ase-
quence of phoneme values̄p = (p1, . . . , pk). Note that the
number of phonemes clearly varies from one utterance to an-
other and thusk is not fixed. We denote byP⋆ (and similarly
X ⋆) the set of all finite-length sequences overP . In summary,
an alignment input is a pair(x̄, p̄) wherex̄ is an acoustic rep-
resentation of the speech signal andp̄ is a phonetic representa-
tion of the same signal. An alignment between the acoustic and
phonetic representations of a spoken utterance is a sequence of
start-timesȳ = (y1, . . . , yk) whereyi ∈ N is the start-time
(measured as frame number) of phonemei in the acoustic sig-
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Figure 1: The first four phonemes of the word “test” taken from
the TIMIT corpus. The speech signal is depicted in the upper
part of the figure. The vertical lines indicate the TIMIT manual
alignment.

nal. Each phonemei therefore starts at frameyi and ends at
frameyi+1 − 1. An example of the notation described above is
depicted in Fig. 1.

Clearly, there are different ways to pronounce the same ut-
terance. Different speakers have different accents and tend to
speak at different rates. Our goal is to learn an alignment func-
tion that predicts the true start-times of the phonemes fromthe
speech signal and the phonetic representation.

To motivate our construction, let us take a short detour in or-
der to discuss the common generative approaches for phoneme
alignment. In the generative paradigm, we assume that the
speech signal̄x is generated from the phoneme sequencep̄ and
from the sequence of their start timesȳ, based on a probabil-
ity function Pr [x̄|p̄, ȳ]. The maximum posterior prediction is
therefore,

ȳ′ = argmax
ȳ

Pr [ȳ|x̄, p̄] = argmax
ȳ

Pr [ȳ|p̄] Pr [x̄|p̄, ȳ] ,

where the last equality follows from Bayes rule. Put another
way, the predicted̄y′ is based on two probability functions:

I. a prior probabilityPr [ȳ|p̄].

II. a posterior probabilityPr [x̄|p̄, ȳ].

To facilitate efficient calculation of̄y′, practical generative
models assume that the probability functions may be fur-
ther decomposed into basic probability functions. For ex-
ample, in the HMM framework it is commonly assumed
that, Pr [x̄|p̄, ȳ] =

Q

i

Q

t Pr [xt|pi] , and that,Pr [ȳ|p̄] =
Q

i Pr [ℓi|ℓi−1, pi, pi−1] , whereℓi = yi+1 − yi is the length
of theith phoneme according tōy.

These simplifying assumptions lead to a model which is
quite inadequate for purpose of generating natural speech ut-
terances. Yet, the probability of the sequence of phoneme
start-times given the speech signal and the phoneme sequences
is used as an assessment for the quality of the alignment se-
quence. The learning phase of the HMM aims at determin-
ing the basic probability functions from a training set of exam-
ples. The learning objective is to find functionsPr [xt|pi] and
Pr [ℓi|ℓi−1, pi, pi−1] such that the likelihood of the training set
is maximized. Given these functions, the predictionȳ′ is calcu-
lated in the so-called inference phase which can be performed
efficiently using dynamic programming.

In this paper we describe and analyze an alternative
paradigm in which the learning phase is tightly coupled withthe
decision task the algorithm must perform. Rather than working
with probability functions we assume the existence of a pre-
defined set of base alignment functions,{φj}

n
j=1. Each base

function takes the formφj : X ⋆ × (P × N)⋆ → R . Thus, the
input of each base function is an acoustic-phonetic representa-
tion, (x̄, p̄), together with a candidate alignmentȳ. The base
function returns a scalar which, intuitively, represents the con-
fidence in the suggested alignment,ȳ. We denote byφ(x̄, p̄, ȳ)
the vector inRn whosejth element isφj(x̄, p̄, ȳ). The align-
ment functions we use are of the form

f(x̄, p̄) = argmax
ȳ

w · φ(x̄, p̄, ȳ) , (1)

wherew ∈ R
n is a vector of importance weights that must

be learned. In words,f returns a suggestion for an alignment
sequence by maximizing a weighted sum of the scores returned
by each base functionφj . Note that the number of possible
alignment sequences is exponentially large. Nevertheless, as in
the generative case, if the base functionsφj are decomposable,
the optimization in Eq. (1) can be efficiently calculated using a
dynamic programming procedure.

As mentioned above, we would like to learn the function
f from examples. Each example is composed of an acoustic
and a phonetic representation of an utterance(x̄, p̄) together
with the true alignment between them,ȳ. Let ȳ′ = f(x̄, p̄)
be the alignment suggested byf . We denote byγ(ȳ, ȳ′) the
cost of predicting the alignment̄y′ where the true alignment is
ȳ. Formally,γ : (N × N)⋆ → R is a function that gets two
alignments and returns a scalar which is the cost of predicting
ȳ′ where the true alignment is̄y. We assume thatγ(ȳ, ȳ′) ≥ 0
and thatγ(ȳ, ȳ) = 0. An example for such a cost function is,

γ(ȳ, ȳ′) =
1

|ȳ|

|ȳ|
X

i=1

|yi − y′
i| .

The above cost is the average of the absolute differences be-
tween the predicted alignment and the true alignment. In our
experiments, we used a variant of the above cost function and
replaced the summands|yi − y′

i| with max{0, |yi − y′
i| − ε},

whereε is a predefined small constant. The advantage of this
cost is that no loss is incurred due to theith phoneme ifyi and
y′

i are within a distanceε of each other. The goal of the learning
process is to find an alignment functionf that attains small cost
on unseen examples. In the next section we show how to use
the training set in order to find an alignment functionf which
with high probability, attains a small cost on the training set and
on unseen examples as well.

3. The Learning Apparatus
In this section we present the details of our novel discriminative
approach for phoneme alignment. Recall that our construction
is based on a set of base alignment functions{φj}

n
j=1 which

maps an acoustic-phonetic representation of a speech utterance
as well as a suggested alignment into an abstract vector-space.
We start the section by introducing a specific set of base func-
tions which is highly adequate for our phoneme alignment prob-
lem. Next, we describe a simple iterative procedure for finding
a weight vectorw. The role ofw is to rank the possible align-
ments for an input utterance such that the correct alignmentat-
tains the top rank.

3.1. Base Alignment Functions

We utilize seven different base functions (n = 7). These base
functions are used for defining our alignment functionf(x̄, p̄)
as in Eq. (1). To facilitate an efficient evaluation off(x̄, p̄) one



must enforce structural constraints on the base functions.In the
following, we describe our base functions while explicitlypay-
ing attention to their decomposability properties, which later
enables us to efficiently evaluatef(x̄, p̄) using a dynamic pro-
gramming procedure. The same kind of structural assumptions
are also assumed in HMM-based approaches.

Our first four base functions aim at capturing transitions
between phonemes. These base functions are based on the dis-
tance between frames of the acoustical signal at two sides of
phoneme boundaries as suggested by an alignmentȳ. The dis-
tance measure we employ, denotedd, is the Euclidean distance
between feature vectors. Our underlying assumption is thatif
two frames,xt andxt′ , are derived from the same phoneme
then the distanced(xt,xt′) should be smaller than if the two
frames are derived from different phonemes. Formally, our first
4 base functions are defined as,

φs(x̄, p̄, ȳ) =

|ȳ|
X

i=1

d(xyi−s,xyi+s), s ∈ {1, 2, 3, 4} , (2)

If ȳ is the correct alignment then distances between frames
across the phoneme change points are likely to be large. In con-
trast, an incorrect alignment is likely to compare frames from
the same phoneme, often resulting small distances.

The fifth base function we use is based on the frame-
wise phoneme classifier described in [5]. Formally, for each
phonemep ∈ P and framex ∈ X , there is a confidence, de-
notedgp(x), that the phonemep is pronounced in the framex.
The resulting base function measures the cumulative confidence
of the complete speech signal given the phoneme sequence and
their start-times,

φ5(x̄, p̄, ȳ) =

|p̄|
X

i=1

yi+1−1
X

t=yi

gpi
(xt) . (3)

Our next base function scores alignments based on
phoneme durations. Unlike the previous base functions, the
sixth base function is oblivious to the speech signal itself. It
merely examines the length of each phoneme, as suggested by
ȳ, compared to the typical length required to pronounce this
phoneme. Formally,

φ6(x̄, p̄, ȳ) =

|ȳ|−1
X

i=1

N (yi+1 − yi; µ̂pi
, σ̂pi

) , (4)

whereN is a Normal probability density function with meanµ̂p

and standard deviation̂σp. In our experiments, we estimatedµ̂p

andσ̂p from the entire TIMIT training set, excluding SA1 and
SA2 utterances.

Our last base function exploits assumptions on the speak-
ing rate of a speaker. Intuitively, people usually speaks in
an almost steady rate and therefore an alignment sequence in
which speech rate is changed abruptly is probably incorrect.
Formally, let µ̂p be the average length required to pronounce
the pth phoneme. We denote byri the relative speech rate,
ri = (yi+1 − yi)/µ̂p. That is,ri is the ratio between the actual
length of phonemepi as suggested bȳy to its average length.
The relative speech rate presumably changes slowly over time.
In practice the speaking rate ratios often differ from speaker to
speaker and within a given utterance. We measure the local
change in the speaking rate as(ri − ri−1)

2 and we define the
base functionφ7 as the cumulative sum of the changes in the

speaking rate,

φ7(x̄, p̄, ȳ) =

|ȳ|−1
X

i=2

(ri − ri−1)
2 . (5)

We conclude the descriptions of the base alignment func-
tions, with a discussion of the practical evaluation of the align-
ment functionf . Recall that calculatingf requires solving
the optimization problem,f(x̄, p̄) = argmaxȳ w · φ(x̄, p̄, ȳ).
A direct search for the maximizer is not feasible since the
number of possible alignment sequencesȳ is exponential in
the length of the sequence. Fortunately, the base functions
we have presented are decomposable and thus the best align-
ment sequence can be found in polynomial time using dynamic
programming (similarly to the Viterbi procedure often imple-
mented in HMMs [10]).

3.2. A Learning Algorithm

We now turn to the description of our iterative learning algo-
rithm for phoneme alignment. Recall that a supervised learn-
ing algorithm for alignment receives as input a training set
S = {(x̄1, p̄1, ȳ1), . . . , (x̄m, p̄m, ȳm)} and returns a weight
vectorw defining the alignment functionf given by Eq. (1).
Similar to the SVM algorithm for binary classification, our ap-
proach for choosing the weight vectorw is based on the idea
of large-margin separation. However, in our case, alignments
are not merely correct or incorrect. Instead, the cost function
γ(ȳ, ȳ′) is used for assessing the quality of alignments. There-
fore, we do not aim at separating correct alignments from in-
correct ones but rather try to rank alignments according to their
quality. Theoretically, our approach can be described as a two-
step procedure: First, we construct a vectorφ(x̄i, p̄i, ȳ

′) in the
vector spaceRn based on each instance(x̄i, p̄i) in the training
setS and each possible alignmentȳ′. Second, we find a vec-
tor w ∈ R

n, such that the projection of vectors ontow ranks
the vectors constructed in the first step above according to their
quality. Formally, for each instance(x̄i, p̄i) and for each pos-
sible suggested alignment̄y′, the following constraint should
hold,

w · φ(x̄i, p̄i, ȳi)−w · φ(x̄i, p̄i, ȳ
′) ≥ γ(ȳi, ȳ

′)−ξi , (6)

whereξi is a non-negative slack variable indicates the loss of
theith example. The SVM solution for the problem is therefore
the weight vectorw ∈ R

n which minimizes the objective func-
tion 1

2
‖w‖2 + C

Pm
i=1

ξi while satisfying all the constraints
in Eq. (6). The parameterC serves as a complexity-accuracy
trade-off parameter (see [4]).

In practice, the above two-step procedure can not be di-
rectly implemented since the number of constraints is exponen-
tially large. To overcome this obstacle, we describe a simple
iterative procedure for findingw. Our iterative algorithm first
constructs a sequence of weight vectorsw0,w1, . . . , wm. The
first weight vector is set to be the zero vector,w0 = 0. On itera-
tion i of the algorithm, we utilize theith example of the training
set along with the previous weight vectorwi, for defining the
next weight vectorwi+1. Let ȳ′ be the predicted alignment se-
quence for theith example according towi. We set the next
weight vectorwi+1 to be the minimizer of the following opti-
mization problem,

min
w∈R

n

,ξ≥0

1

2
‖w − wi‖

2 + Cξ s.t.

w · φ(x̄, p̄,ȳ) − w · φ(x̄, p̄, ȳ′) ≥
p

γ(ȳ, ȳ′) − ξ .

(7)



Training set size Test set size t ≤ 10 ms t ≤ 20 ms t ≤ 30 ms t ≤ 40 ms
Discrim. Alignment 650 or 3696 192 (core) 79.7 92.1 96.2 98.1
Brugnaraet al [1] 3696 192 (core) 75.3 88.9 94.4 97.1
Discrim. Alignment 650 or 2336 1344 (entire) 80.0 92.3 96.4 98.2
Brugnaraet al [1] 2336 1344 (entire) 74.6 88.8 94.1 96.8

Table 1: Percentage of correctly positioned boundaries, given a predefined tolerance

This optimization problem can be thought of as a relaxed ver-
sion of the SVM optimization problem with three major dif-
ferences. First, we replace the exponential number of con-
straints from Eq. (6) with a single constraint. This constraint
is based on the predicted alignmentȳ′ according to the previ-
ous weight vectorwi. Second, we replaced the term‖w‖2 in
the objective function of the SVM with the term‖w − wi‖

2.
Intuitively, we would like to minimize the loss ofw on the
current example, i.e., the slack variableξ, while remaining as
close as possible to our previous weight vectorwi. Last, we
replaceγ(ȳ, ȳ′) with

p

γ(ȳ, ȳ′) for technical reasons which
will be given elsewhere. It can be shown (see [3]) that the so-
lution to the above optimization problem is,wi+1 = wi +
min{ℓ/‖a‖2, C}a, wherea = φ(x̄i, p̄i, ȳi) − φ(x̄i, p̄i, ȳ

′)

andℓ = max{(γ(ȳi, ȳ
′))1/2 − wi · a, 0}.

The above iterative procedure gives us a sequence of weight
vectors. We briefly note that it has been proved that at least
one of the resulting alignment functions is likely to have good
generalization properties [12, 2]. To find an alignment func-
tion that generalizes well, we calculate the average cost ofeach
alignment function on a validation set and choose the one that
achieves the best results.

4. Experimental Results
To validate the effectiveness of the proposed approach we per-
formed experiments with the TIMIT corpus. We first divided
the training portion of the TIMIT (excluding the SA1 and SA2
utterances) into three disjoint parts containing 500, 100 and
3093 utterances. The first part of the training set was used
for learning the functionsgp (Eq. (3)), which define the base
functionφ5. Those functions were learned by the algorithm de-
scribed in [5] using the MFCC+∆+∆∆ acoustic features and a
Gaussian kernel (σ = 6.24 andC = 5.0). The second set of
100 utterances formed the validation set needed for our align-
ment algorithm as described in Sec. 3. Finally, we ran our it-
erative alignment algorithm on the remaining utterances inthe
training set. The value ofε in the definition ofγ was set to be 1
(i.e., 10 ms).

We evaluated the learned alignment functions on both the
core test set and the entire test set of TIMIT. A comparison of
our results with the results reported in [1] is provided in Tab. 3.1.
For each tolerance valueτ ∈ {10 ms, 20 ms, 30 ms, 40 ms}, we
counted the number of predictions whose distance to the true
boundary,t = |yi − y′

i|, is less thanτ . As can be seen, our
discriminative method outperforms the generative approach de-
scribed in [1] on all predefined tolerance values. Furthermore,
the results obtained by our algorithm are the same whether we
use the entire 3093 utterances or only the first 50 utterances.

5. Discussion
We describe and experimented with a discriminative method
for phoneme alignment. The proposed approach is based on
recent advances in large margin classifiers. Our training algo-
rithm is simple to implement and entertains convergence guar-

antees. In contrast to HMM training procedures which are prone
to local maxima variabilities, our proposed algorithm is guaran-
teed to converge to a solution which has good generalization
properties under mild conditions. Indeed, the experimentsre-
ported above suggest that the discriminative training requires
fewer training examples than an HMM-based alignment proce-
dure while achieving the best reported results for this task.
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