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Abstract
We present a family of margin based online learning algorithms for various prediction tasks. In

particular we derive and analyze algorithms for binary and multiclass categorization, regression,
uniclass prediction and sequence prediction. The update steps of our different algorithms are all
based on analytical solutions to simple constrained optimization problems. This unified view al-
lows us to prove worst-case loss bounds for the different algorithms and for the various decision
problems based on a single lemma. Our bounds on the cumulative loss of the algorithms are relative
to the smallest loss that can be attained by any fixed hypothesis, and as such are applicable to both
realizable and unrealizable settings. We demonstrate someof the merits of the proposed algorithms
in a series of experiments with synthetic and real data sets.

1. Introduction

In this paper we describe and analyze several online learning tasks through the same algorithmic
prism. We first introduce a simple online algorithm which we call Passive-Aggressive (PA) for on-
line binary classification (see also (Herbster, 2001)). We then proposetwo alternative modifications
to the PA algorithm which improve the algorithm’s ability to cope with noise. We provide a unified
analysis for the three variants. Building on this unified view, we show how to generalize the binary
setting to various learning tasks, ranging from regression to sequence prediction.

The setting we focus on is that of online learning. In the online setting, a learning algorithm ob-
serves instances in a sequential manner. After each observation, the algorithm predicts an outcome.
This outcome can be as simple as a yes/no (+/−) decision, as in the case of binary classification
problems, and as complex as a string over a large alphabet. Once the algorithm has made a predic-
tion, it receives feedback indicating the correct outcome. Then, the online algorithm may modify
its prediction mechanism, presumably improving the chances of making an accurate prediction on
subsequent rounds. Online algorithms are typically simple to implement and their analysis often
provides tight bounds on their performance (see for instance Kivinen and Warmuth (1997)).
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Our learning algorithms use hypotheses from the set of linear predictors.While this class may
seem restrictive, the pioneering work of Vapnik (1998) and colleaguesdemonstrates that by us-
ing Mercer kernels one can employ highly non-linear predictors and still entertain all the formal
properties and simplicity of linear predictors. For concreteness, our presentation and analysis are
confined to the linear case which is often referred to as the primal version (Vapnik, 1998; Cristianini
and Shawe-Taylor, 2000; Schölkopf and Smola, 2002). As in other constructions of linear kernel
machines, our paradigm also builds on the notion of margin.

Binary classification is the first setting we discuss in the paper. In this setting each instance
is represented by a vector and the prediction mechanism is based on a hyperplane which divides
the instance space into two half-spaces. The margin of an example is proportional to the distance
between the instance and the hyperplane. The PA algorithm utilizes the margin tomodify the current
classifier. The update of the classifier is performed by solving a constrained optimization problem:
we would like the new classifier to remain as close as possible to the current one while achieving
at least a unit margin on the most recent example. Forcing a unit margin might turn out to be too
aggressive in the presence of noise. Therefore, we also describe two versions of our algorithm which
cast a tradeoff between the desired margin and the proximity to the current classifier.

The above formalism is motivated by the work of Warmuth and colleagues for deriving online
algorithms (see for instance (Kivinen and Warmuth, 1997) and the references therein). Furthermore,
an analogous optimization problem arises in support vector machines (SVM)for classification (Vap-
nik, 1998). Indeed, the core of our construction can be viewed as finding a support vector machine
based on a single example while replacing the norm constraint of SVM with a proximity constraint
to the current classifier. The benefit of this approach is two fold. First, we get a closed form solution
for the next classifier. Second, we are able to provide a unified analysisof the cumulative loss for
various online algorithms used to solve different decision problems. Specifically, we derive and
analyze versions for regression problems, uniclass prediction, multiclassproblems, and sequence
prediction tasks.

Our analysis is in the realm of relative loss bounds. In this framework, the cumulative loss
suffered by an online algorithm is compared to the loss suffered by a fixedhypothesis that may be
chosen in hindsight. Our proof techniques are surprisingly simple and the proofs are fairly short
and easy to follow. We build on numerous previous results and views. The mere idea of deriving an
update as a result of a constrained optimization problem compromising of two opposing terms, has
been largely advocated by Littlestone, Warmuth, Kivinen and colleagues (Littlestone, 1989; Kivi-
nen and Warmuth, 1997). Online margin-based prediction algorithms are alsoquite prevalent. The
roots of many of the papers date back to the Perceptron algorithm (Agmon, 1954; Rosenblatt, 1958;
Novikoff, 1962). More modern examples include the ROMMA algorithm of Liand Long (2002),
Gentile’s ALMA algorithm (Gentile, 2001), the MIRA algorithm (Crammer and Singer, 2003b), and
the NORMA algorithm (Kivinen et al., 2002). The MIRA algorithm is closely related to the work
presented in this paper, and specifically, the MIRA algorithm for binary classification is identical to
our basic PA algorithm. However, MIRA was designed forseparablebinary and multiclass prob-
lems whereas our algorithms also apply to nonseparable problems. Furthermore, the loss bounds
derived in Crammer and Singer (2003b) are inferior and less general than the bounds derived in this
paper. The NORMA algorithm also shares a similar view of classification problems. Rather than
projecting the current hypothesis onto the set of constraints induced by the most recent example,
NORMA’s update rule is based on a stochastic gradient approach (Kivinen et al., 2002). Of all the
work on online learning algorithms, the work by Herbster (2001) is probably the closest to the work
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presented here. Herbster describes and analyzes a projection algorithm that, like MIRA, is essen-
tially the same as the basic PA algorithm for the separable case. We surpass MIRA and Herbster’s
algorithm by providing bounds for both the separable and the nonseparable settings using a unified
analysis. As mentioned above we also extend the algorithmic framework and theanalysis to more
complex decision problems.

The paper is organized as follows. In Sec. 2 we formally introduce the binary classification
problem and in the next section we derive three variants of an online learning algorithm for this
setting. The three variants of our algorithm are then analyzed in Sec. 4. Wenext show how to
modify these algorithms to solve regression problems (Sec. 5) and uniclass prediction problems
(Sec. 6). We then shift gears to discuss and analyze more complex decision problems. Specifically,
in Sec. 7 we describe a generalization of the algorithms to multiclass problems andfurther extend
the algorithms to cope with sequence prediction problems (Sec. 9). We describe experimental results
with binary and multiclass problems in Sec. 10 and conclude with a discussion offuture directions
in Sec. 11.

2. Problem Setting

As mentioned above, the paper describes and analyzes several online learning tasks through the
same algorithmic prism. We begin with binary classification which serves as the mainbuilding block
for the remainder of the paper. Online binary classification takes place in a sequence of rounds. On
each round the algorithm observes an instance and predicts its label to be either+1 or−1. After the
prediction is made, the true label is revealed and the algorithm suffers aninstantaneous losswhich
reflects the degree to which its prediction was wrong. At the end of each round, the algorithm uses
the newly obtained instance-label pair to improve its prediction rule for the rounds to come.

We denote the instance presented to the algorithm on roundt by xt , and for concreteness we
assume that it is a vector inRn. We assume thatxt is associated with a unique labelyt ∈ {+1,−1}.
We refer to each instance-label pair(xt ,yt) as anexample. The algorithms discussed in this paper
make predictions using a classification function which they maintain in their internal memory and
update from round to round. We restrict our discussion to classification functions based on a vector
of weightsw ∈ R

n, which take the form sign(w · x). The magnitude|w · x| is interpreted as the
degree of confidence in this prediction. The task of the algorithm is therefore to incrementally learn
the weight vectorw. We denote bywt the weight vector used by the algorithm on roundt, and refer
to the termyt(wt ·xt) as the (signed)marginattained on roundt. Whenever the margin is a positive
number then sign(wt ·xt) = yt and the algorithm has made a correct prediction. However, we are not
satisfied by a positive margin value and would additionally like the algorithm to predict with high
confidence. Therefore, the algorithm’s goal is to achieve a margin of at least 1 as often as possible.
On rounds where the algorithm attains a margin less than 1 it suffers an instantaneous loss. This
loss is defined by the followinghinge-lossfunction,

ℓ
(

w;(x,y)
)

=

{

0 y(w ·x) ≥ 1
1−y(w ·x) otherwise

. (1)

Whenever the margin exceeds 1, the loss equals zero. Otherwise, it equals the difference between
the margin value and 1. We note in passing that the choice of 1 as the margin threshold below which
a loss is suffered is rather arbitrary. In Sec. 5 we generalize the hinge-loss function in the context
of regression problems, by letting the threshold be a user-defined parameter. We abbreviate the loss
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suffered on roundt by ℓt , that is,ℓt = ℓ
(

wt ;(xt ,yt)
)

. The algorithms presented in this paper will
be shown to attain a smallcumulative squared lossover a given sequence of examples. In other
words, we will prove different bounds on∑T

t=1ℓ2
t , whereT is the length of the sequence. Notice that

whenever a prediction mistake is made thenℓ2
t ≥ 1 and therefore a bound on the cumulative squared

loss also bounds the number of prediction mistakes made over the sequence of examples.

3. Binary Classification Algorithms

In the previous section we described a general setting for binary classification. To obtain a concrete
algorithm we must determine how to initialize the weight vectorw1 and we must define the update
rule used to modify the weight vector at the end of each round. In this section we present three
variants of an online learning algorithm for binary classification. The pseudo-code for the three
variants is given in Fig. 1. The vectorw1 is initialized to(0, . . . ,0) for all three variants, however
each variant employs a different update rule. We focus first on the simplest of the three, which on
roundt sets the new weight vectorwt+1 to be the solution to the following constrained optimization
problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. ℓ(w;(xt ,yt)) = 0. (2)

Geometrically,wt+1 is set to be the projection ofwt onto the half-space of vectors which attain a
hinge-loss of zero on the current example. The resulting algorithm ispassivewhenever the hinge-
loss is zero, that is,wt+1 = wt wheneverℓt = 0. In contrast, on those rounds where the loss is
positive, the algorithmaggressivelyforceswt+1 to satisfy the constraintℓ(wt+1;(xt ,yt)) = 0 re-
gardless of the step-size required. We therefore name the algorithmPassive-Aggressiveor PA for
short.

The motivation for this update stems from the work of Helmbold et al. (Helmbold etal., 1999)
who formalized the trade-off between the amount of progress made on each round and the amount
of information retained from previous rounds. On one hand, our updaterequireswt+1 to correctly
classify the current example with a sufficiently high margin and thus progress is made. On the other
hand,wt+1 must stay as close as possible towt , thus retaining the information learned on previous
rounds.

The solution to the optimization problem in Eq. (2) has a simple closed form solution,

wt+1 = wt + τtytxt where τt =
ℓt

‖xt‖2 . (3)

We now show how this update is derived using standard tools from convexanalysis (see for instance
(Boyd and Vandenberghe, 2004)). Ifℓt = 0 thenwt itself satisfies the constraint in Eq. (2) and is
clearly the optimal solution. We therefore concentrate on the case whereℓt > 0. First, we define the
Lagrangian of the optimization problem in Eq. (2) to be,

L (w,τ) =
1
2
‖w−wt‖2 + τ

(

1−yt(w ·xt)
)

, (4)

whereτ ≥ 0 is a Lagrange multiplier. The optimization problem in Eq. (2) has a convex objective
function and a single feasible affine constraint. These are sufficient conditions for Slater’s condition
to hold therefore finding the problem’s optimum is equivalent to satisfying the Karush-Khun-Tucker
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INPUT: aggressiveness parameterC > 0
INITIALIZE : w1 = (0, . . . ,0)
For t = 1,2, . . .

• receive instance:xt ∈ R
n

• predict: ŷt = sign(wt ·xt)
• receive correct label:yt ∈ {−1,+1}
• suffer loss:ℓt = max{0 , 1−yt(wt ·xt)}
• update:

1. set:
τt = ℓt

‖xt‖2 (PA)

τt = min
{

C , ℓt
‖xt‖2

}

(PA-I)

τt = ℓt

‖xt‖2+ 1
2C

(PA-II)

2. update: wt+1 = wt + τtytxt

Figure 1: Three variants of the Passive-Aggressive algorithm for binary classification.

conditions (Boyd and Vandenberghe, 2004). Setting the partial derivatives ofL with respect to the
elements ofw to zero gives,

0 = ∇wL (w,τ) = w−wt − τytxt =⇒ w = wt + τytxt . (5)

Plugging the above back into Eq. (4) we get,

L (τ) = − 1
2

τ2‖xt‖2 + τ
(

1−yt(wt ·xt)
)

.

Taking the derivative ofL (τ) with respect toτ and setting it to zero, we get,

0 =
∂L (τ)

∂τ
= − τ‖xt‖2 +

(

1−yt(wt ·xt)
)

=⇒ τ =
1−yt(wt ·xt)

‖xt‖2 .

Since we assumed thatℓt > 0 thenℓt = 1−yt(w ·xt). In summary, we can state a unified update for
the case whereℓt = 0 and the case whereℓt > 0 by settingτt = ℓt/‖xt‖2.

As discussed above, the PA algorithm employs an aggressive update strategy by modifying the
weight vector by as much as needed to satisfy the constraint imposed by the current example. In
certain real-life situations this strategy may also result in undesirable consequences. Consider for
instance the common phenomenon of label noise. A mislabeled example may causethe PA algo-
rithm to drastically change its weight vector in the wrong direction. A single mislabeled example
can lead to several prediction mistakes on subsequent rounds. To copewith such problems, we
present two variations on the PA update that employ gentler update strategies. We adopt the tech-
nique previously used to derive soft-margin classifiers (Vapnik, 1998)and introduce a non-negative
slack variableξ into the optimization problem defined in Eq. (2). This variable can be introduced in
two different ways. First, we consider the update where the objective function scales linearly with
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ξ, namely,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 + Cξ s.t. ℓ(w;(xt ,yt)) ≤ ξ and ξ ≥ 0. (6)

HereC is a positive parameter which controls the influence of the slack term on the objective func-
tion. Specifically, we will show that larger values ofC imply a more aggressive update step and we
therefore refer toC as theaggressiveness parameterof the algorithm. We term the algorithm which
results from this updatePA-I .

Alternatively, we can have the objective function scale quadratically withξ, resulting in the
following constrained optimization problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 + Cξ2 s.t. ℓ(w;(xt ,yt)) ≤ ξ. (7)

Note that the constraintξ ≥ 0 which appears in Eq. (6) is no longer necessary sinceξ2 is always
non-negative. We term the algorithm which results from this updatePA-II . As with PA-I , C is a
positive parameter which governs the degree to which the update of PA-IIis aggressive. The updates
of PA-I and PA-II also share the simple closed formwt+1 = wt + τtytxt , where

τt = min

{

C ,
ℓt

‖xt‖2

}

(PA-I) or τt =
ℓt

‖xt‖2 + 1
2C

(PA-II). (8)

A detailed derivation of the PA-I and PA-II updates is provided in Appendix A. It is worth noting
that the PA-II update is equivalent to increasing the dimension of eachxt from n to n+ T, setting
xn+t =

√

1/2C, setting the remainingT − 1 new coordinates to zero, and then using the simple
PA update. This technique was previously used to derive noise-tolerantonline algorithms in (Klas-
ner and Simon, 1995; Freund and Schapire, 1999). We do not use this observation explicitly in this
paper, since it does not lead to a tighter analysis.

Up until now, we have restricted our discussion to linear predictors of the form sign(w ·x). We
can easily generalize any of the algorithms presented in this section using Mercer kernels. Simply
note that for all three PA variants,

wt =
t−1

∑
i=1

τtytxt ,

and therefore,

wt ·xt =
t−1

∑
i=1

τtyt(xi ·xt).

The inner product on the right hand side of the above can be replaced with a general Mercer kernel
K(xi ,xt) without otherwise changing our derivation. Additionally, the formal analysis presented in
the next section also holds for any kernel operator.

4. Analysis

In this section we proverelative loss bounds for the three variants of the PA algorithm presented in
the previous section. Specifically, most of the theorems in this section relate thecumulative squared
loss attained by our algorithms on any sequence of examples with the loss attained by an arbitrary
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fixed classification function of the form sign(u ·x) on the same sequence. As previously mentioned,
the cumulative squared hinge loss upper bounds the number of prediction mistakes. Our bounds
essentially prove that, for any sequence of examples, our algorithms cannot do much worse than the
best fixed predictor chosen in hindsight.

To simplify the presentation we use two abbreviations throughout this paper.As before we
denote byℓt the instantaneous loss suffered by our algorithm on roundt. In addition, we denote
by ℓ⋆

t the loss suffered by the arbitrary fixed predictor to which we are comparing our performance.
Formally, letu be an arbitrary vector inRn, and define

ℓt = ℓ
(

wt ;(xt ,yt)
)

and ℓ⋆
t = ℓ

(

u;(xt ,yt)
)

. (9)

We begin with a technical lemma which facilitates the proofs in this section. With this lemma
handy, we then derive loss and mistake bounds for the variants of the PA algorithm presented in the
previous section.

Lemma 1 Let(x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈R
n and yt ∈ {+1,−1} for

all t. Let τt be as defined by either of the three PA variants given in Fig. 1. Then using the notation
given in Eq. (9), the following bound holds for anyu ∈ R

n,

T

∑
t=1

τt
(

2ℓt − τt‖xt‖2−2ℓ⋆
t

)

≤ ‖u‖2.

Proof Define∆t to be‖wt −u‖2−‖wt+1−u‖2. We prove the lemma by summing∆t over all t
in 1, . . . ,T and bounding this sum from above and below. First note that∑t ∆t is a telescopic sum
which collapses to,

T

∑
t=1

∆t =
T

∑
t=1

(

‖wt −u‖2−‖wt+1−u‖2)

= ‖w1−u‖2−‖wT+1−u‖2.

Using the facts thatw1 is defined to be the zero vector and that‖wT+1−u‖2 is non-negative, we
can upper bound the right-hand side of the above by‖u‖2 and conclude that,

T

∑
t=1

∆t ≤ ‖u‖2. (10)

We now turn to bounding∆t from below. If the minimum margin requirement is not violated on
roundt, i.e. ℓt = 0, thenτt = 0 and therefore∆t = 0. We can therefore focus only on rounds for
which ℓt > 0. Using the definitionwt+1 = wt +ytτtxt , we can write∆t as,

∆t = ‖wt −u‖2−‖wt+1−u‖2

= ‖wt −u‖2−‖wt −u+ytτtxt‖2

= ‖wt −u‖2−
(

‖wt −u‖2 +2τtyt(wt −u) ·xt + τ2
t ‖xt‖2)

= −2τtyt(wt −u) ·xt − τ2
t ‖xt‖2. (11)

557



CRAMMER, DEKEL, KESHET, SHALEV-SHWARTZ AND SINGER

Since we assumed thatℓt > 0 thenℓt = 1−yt(wt ·xt) or alternativelyyt(wt ·xt) = 1−ℓt . In addition,
the definition of the hinge loss implies thatℓ⋆

t ≥ 1−yt(u ·xt), henceyt(u ·xt) ≥ 1− ℓ⋆
t . Using these

two facts back in Eq. (11) gives,

∆t ≥ 2τt ((1− ℓ⋆
t )− (1− ℓt))− τ2

t ‖xt‖2

= τt
(

2ℓt − τt‖xt‖2−2ℓ⋆
t

)

. (12)

Summing∆t over allt and comparing the lower bound of Eq. (12) with the upper bound in Eq. (10)
proves the lemma.

We first prove a loss bound for the PA algorithm in the separable case. This bound was previ-
ously presented by Herbster (2001) and is analogous to the classic mistakebound for the Perceptron
algorithm due to Novikoff (1962). We assume that there exists someu ∈ R

n such thatyt(u ·xt) > 0
for all t ∈ {1, . . . ,T}. Without loss of generality we can assume thatu is scaled such that that
yt(u · xt) ≥ 1 and thereforeu attains a loss of zero on allT examples in the sequence. With the
vectoru at our disposal, we prove the following bound on the cumulative squared loss of PA .

Theorem 2 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖ ≤R for all t. Assume that there exists a vectoru such thatℓ⋆
t = 0 for all t. Then, the cumulative

squared loss of PA on this sequence of examples is bounded by,

T

∑
t=1

ℓ2
t ≤ ‖u‖2R2.

Proof Sinceℓ⋆
t = 0 for all t, Lemma 1 implies that,

T

∑
t=1

τt
(

2ℓt − τt‖xt‖2) ≤ ‖u‖2. (13)

Using the definition ofτt for the PA algorithm in the left-hand side of the above gives,

T

∑
t=1

ℓ2
t /‖xt‖2 ≤ ‖u‖2.

Now using the fact that‖xt‖2 ≤ R2 for all t, we get,

T

∑
t=1

ℓ2
t /R2 ≤ ‖u‖2.

Multiplying both sides of this inequality byR2 gives the desired bound.

The remaining bounds we prove in this section do not depend on a separability assumption.
In contrast to the assumptions of Thm. 2, the vectoru which appears in the theorems below is an
arbitrary vector inRn and not necessarily a perfect separator. The first of the following theorems
bounds the cumulative squared loss attained by the PA algorithm in the specialcase where all of
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the instances in the input sequence are normalized so that‖xt‖2 = 1. Although this assumption
is somewhat restrictive, it is often the case in many practical applications of classification that the
instances are normalized. For instance, certain kernel operators, such as the Gaussian kernel, imply
that all input instances have a unit norm. See for example (Cristianini and Shawe-Taylor, 2000).

Theorem 3 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖ = 1 for all t. Then for any vectoru ∈ R
n the cumulative squared loss of PA on this sequence

of examples is bounded from above by,

T

∑
t=1

ℓ2
t ≤

(

‖u‖+2
√

∑T
t=1(ℓ

⋆
t )2

)2

.

Proof In the special case where‖xt‖2 = 1, τt andℓt are equal. Therefore, Lemma 1 gives us that,

T

∑
t=1

ℓ2
t ≤ ‖u‖2 +2

T

∑
t=1

ℓtℓ
⋆
t .

Using the Cauchy-Schwartz inequality to upper bound the right-hand side of the above inequality,
and denoting

LT =
√

∑T
t=1ℓ2

t and UT =
√

∑T
t=1(ℓ

⋆
t )2, (14)

we get thatL2
T ≤ ‖u‖2 +2LTUT . The largest value ofLT for which this inequality is satisfied is the

larger of the two values for which this inequality holds with equality. That is, to obtain an upper
bound onLT we need to find the largest root of the second degree polynomialL2

T −2UTLT −‖u‖2,
which is,

UT +
√

U2
T +‖u‖2.

Using the fact that
√

α+β ≤√
α+

√

β, we conclude that

LT ≤ ‖u‖+2UT . (15)

Taking the square of both sides of this inequality and plugging in the definitionsof LT andUT from
Eq. (14) gives the desired bound.

Next we turn to the analysis of PA-I . The following theorem does not provide a loss bound but
rather a mistake bound for the PA-I algorithm. That is, we prove a direct bound on the number of
timesyt 6= sign(wt ·xt) without using∑ℓ2

t as a proxy.

Theorem 4 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖ ≤ R for all t. Then, for any vectoru ∈ R
n, the number of prediction mistakes made by PA-I on

this sequence of examples is bounded from above by,

max
{

R2,1/C
}

(

‖u‖2 +2C
T

∑
t=1

ℓ⋆
t

)

,

where C is the aggressiveness parameter provided to PA-I (Fig. 1) .
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Proof If PA-I makes a prediction mistake on roundt then ℓt ≥ 1. Using our assumption that
‖xt‖2 ≤R2 and the definitionτt = min{ℓt/‖xt‖2,C}, we conclude that if a prediction mistake occurs
then it holds that,

min{1/R2,C} ≤ τtℓt .

Let M denote the number of prediction mistakes made on the entire sequence. Sinceτtℓt is always
non-negative, it holds that,

min{1/R2,C} M ≤
T

∑
t=1

τtℓt . (16)

Again using the definition ofτt , we know thatτtℓ
⋆
t ≤Cℓ⋆

t and thatτt‖xt‖2 ≤ ℓt . Plugging these two
inequalities into Lemma 1 gives,

T

∑
t=1

τtℓt ≤ ‖u‖2 +2C
T

∑
t=1

ℓ⋆
t . (17)

Combining Eq. (16) with Eq. (17), we conclude that,

min{1/R2,C} M ≤ ‖u‖2 +2C
T

∑
t=1

ℓ⋆
t .

The theorem follows from multiplying both sides of the above by max{R2,1/C}.

Finally, we turn to the analysis of PA-II . As before, the proof of the following theorem is based on
Lemma 1.

Theorem 5 Let (x1,y1), . . . ,(xT ,yt) be a sequence of examples wherext ∈ R
n, yt ∈ {+1,−1} and

‖xt‖2 ≤R2 for all t. Then for any vectoru∈R
n it holds that the cumulative squared loss of PA-II on

this sequence of examples is bounded by,

T

∑
t=1

ℓ2
t ≤

(

R2 +
1

2C

)

(

‖u‖2 + 2C
T

∑
t=1

(ℓ⋆
t )

2

)

,

where C is the aggressiveness parameter provided to PA-II (Fig. 1) .

Proof Recall that Lemma 1 states that,

‖u‖2 ≥
T

∑
t=1

(

2τtℓt − τ2
t ‖xt‖2−2τtℓ

⋆
t

)

.

Definingα = 1/
√

2C, we subtract the non-negative term(ατt − ℓ⋆
t /α)2 from each summand on the

right-hand side of the above inequality, to get

‖u‖2 ≥
T

∑
t=1

(

2τtℓt − τ2
t ‖xt‖2−2τtℓ

⋆
t − (ατt − ℓ⋆

t /α)2)

=
T

∑
t=1

(

2τtℓt − τ2
t ‖xt‖2−2τtℓ

⋆
t −α2τ2

t +2τtℓ
⋆
t − (ℓ⋆

t )
2/α2)

=
T

∑
t=1

(

2τtℓt − τ2
t (‖xt‖2 +α2)− (ℓ⋆

t )
2/α2) .
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Plugging in the definition ofα, we obtain the following lower bound,

‖u‖2 ≥
T

∑
t=1

(

2τtℓt − τ2
t

(

‖xt‖2 +
1

2C

)

−2C(ℓ⋆
t )

2
)

.

Using the definitionτt = ℓt/(‖xt‖2 +1/(2C)), we can rewrite the above as,

‖u‖2 ≥
T

∑
t=1

(

ℓ2
t

‖xt‖2 + 1
2C

−2C(ℓ⋆
t )

2

)

.

Replacing‖xt‖2 with its upper bound ofR2 and rearranging terms gives the desired bound.

We conclude this section with a brief comparison of our bounds to previouslypublished bounds
for the Perceptron algorithm. As mentioned above, the bound in Thm. 2 is equal to the bound of
Novikoff (1962) for the Perceptron in the separable case. However,Thm. 2 bounds the cumulative
squared hinge loss of PA , whereas Novikoff’s bound is on the number of prediction mistakes.
Gentile (2002) proved a mistake bound for the Perceptron in the nonseparable case which can be
compared to our mistake bound for PA-I in Thm. 4. Using our notation from Thm. 4, Gentile bounds
the number of mistakes made by the Perceptron by,

R2‖u‖2

2 + ∑T
t=1ℓ⋆

t +

√

R2‖u‖2 ∑T
t=1ℓ⋆

t +
(

R2‖u‖2

2

)2
.

At the price of a slightly loosening this bound, we can use the inequality
√

a+b≤√
a+

√
b to get

the simpler bound,

R2‖u‖2 + ∑T
t=1ℓ⋆

t + R‖u‖
√

∑T
t=1ℓ⋆

t .

With C = 1/R2, our bound in Thm. 4 becomes,

R2‖u‖2 + 2
T

∑
t=1

ℓ⋆
t .

Thus, our bound is inferior to Gentile’s whenR‖u‖ <
√

∑T
t=1ℓ⋆

t , and even then by a factor of at
most 2.

The loss bound for PA-II in Thm. 5 can be compared with the bound of Freund and Schapire
(1999) for the Perceptron algorithm. Using the notation defined in Thm. 5, Freund and Schapire
bound the number of incorrect predictions made by the Perceptron by,

(

R‖u‖+
√

∑T
t=1(ℓ

⋆
t )2

)2

.

It can be easily verified that the bound for the PA-II algorithm given in Thm. 5 exactly equals the
above bound of Freund and Schapire whenC is set to‖u‖/(2R

√

∑t(ℓ
⋆
t )2). Moreover, this is the

optimal choice ofC. However, we bound the cumulative squared hinge-loss of PA-II whereas the
bound of Freund and Schapire is on the number of mistakes.
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5. Regression

In this section we show that the algorithms described in Sec. 3 can be modified to deal with online
regression problems. In the regression setting, every instancext is associated with a real target
valueyt ∈ R, which the online algorithm tries to predict. On every round, the algorithm receives
an instancext ∈ R

n and predicts a target value ˆyt ∈ R using its internal regression function. We
focus on the class of linear regression functions, that is, ˆyt = wt · xt wherewt is the incrementally
learned vector. After making a prediction, the algorithm is given the true target valueyt and suffers
an instantaneous loss. We use theε-insensitive hinge loss function:

ℓε
(

w;(x,y)
)

=

{

0 |w ·x−y| ≤ ε
|w ·x−y|− ε otherwise

, (18)

whereε is a positive parameter which controls the sensitivity to prediction mistakes. Thisloss is
zero when the predicted target deviates from the true target by less thanε and otherwise grows
linearly with |ŷt −yt |. At the end of every round, the algorithm useswt and the example(xt ,yt) to
generate a new weight vectorwt+1, which will be used to extend the prediction on the next round.

We now describe how the various PA algorithms from Sec. 3 can be adaptedto learn regression
problems. As in the case of classification, we initializew1 to (0, . . . ,0). On each round, the PA
regression algorithm sets the new weight vector to be,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. ℓε

(

w;(xt ,yt)
)

= 0, (19)

In the binary classification setting, we gave the PA update the geometric interpretation of projecting
wt onto the linear half-space defined by the constraintℓ

(

w;(xt ,yt)
)

= 0. For regression problems,
the set{w ∈ R

n : ℓε(w,zt) = 0} is not a half-space but rather a hyper-slab of width 2ε. Geomet-
rically, the PA algorithm for regression projectswt onto this hyper-slab at the end of every round.
Using the shorthandℓt = ℓε(wt ;(xt ,yt)), the update given in Eq. (19) has a closed form solution
similar to that of the classification PA algorithm of the previous section, namely,

wt+1 = wt +sign(yt − ŷt)τtxt where τt = ℓt/‖xt‖2.

We can also obtain the PA-I and PA-II variants for online regression by introducing a slack
variable into the optimization problem in Eq. (19), as we did for classification in Eq. (6) and Eq. (7).
The closed form solution for these updates also comes out to bewt+1 = wt +sign(yt − ŷt)τtxt where
τt is defined as in Eq. (8). The derivations of these closed-form updatesare almost identical to that
of the classification problem in Sec. 3.

We now turn to the analysis of the three PA regression algorithms described above. We would
like to show that the analysis given in Sec. 4 for the classification algorithms also holds for their
regression counterparts. To do so, it suffices to show that Lemma 1 still holds for regression prob-
lems. After obtaining a regression version of Lemma 1, regression versions of Thm. 2 through
Thm. 5 follow as immediate corollaries.

Lemma 6 Let(x1,y1), . . . ,(xT ,yT) be an arbitrary sequence of examples, wherext ∈R
n and yt ∈R

for all t. Let τt be as defined in either of the three PA variants for regression problems. Then using
the notation given in Eq. (9), the following bound holds for anyu ∈ R

n,

T

∑
t=1

τt
(

2ℓt − τt‖xt‖2−2ℓ⋆
t

)

≤ ‖u‖2.
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Proof The proof of this lemma follows that of Lemma 1 and therefore subtleties which were dis-
cussed in detail in that proof are omitted here. Again, we use the definition

∆t = ‖wt −u‖2−‖wt+1−u‖2

and the same argument used in Lemma 1 implies that,

T

∑
t=1

∆t ≤ ‖u‖2,

We focus our attention on bounding∆t from below on those rounds where∆t 6= 0. Using the
recursive definition ofwt+1, we rewrite∆t as,

∆t = ‖wt −u‖2−‖wt −u+sign(yt − ŷt)τtxt‖2

= −sign(yt − ŷt)2τt(wt −u) ·xt − τ2
t ‖xt‖2

We now add and subtract the term sign(yt − ŷt)2τtyt from the right-hand side above to get the bound,

∆t ≥ −sign(yt − ŷt)2τt(wt ·xt −yt) + sign(yt − ŷt)2τt(u ·xt −yt) − τ2
t ‖xt‖2. (20)

Sincewt ·xt = ŷt , we have that−sign(yt − ŷt)(wt ·xt −yt) = |wt ·xt −yt |. We only need to consider
the case where∆t 6= 0, soℓt = |wt ·xt −yt |− ε and we can rewrite the bound in Eq. (20) as,

∆t ≥ 2τt(ℓt + ε) + sign(yt − ŷt)2τt(u ·xt −yt) − τ2
t ‖xt‖2.

We also know that sign(yt − ŷt)(u ·xt −yt) ≥−|u ·xt −yt | and that−|u ·xt −yt | ≥ −(ℓ⋆
t + ε). This

enables us to further bound,

∆t ≥ 2τt(ℓt + ε) − 2τt(ℓ
⋆
t + ε) − τ2

t ‖xt‖2 = τt(2ℓt − τt‖xt‖2−2ℓ⋆
t ).

Summing the above over allt and comparing to the upper bound discussed in the beginning of this
proof proves the lemma.

6. Uniclass Prediction

In this section we present PA algorithms for the uniclass prediction problem. This task involves
predicting a sequence of vectorsy1,y2, · · · whereyt ∈ R

n. Uniclass prediction is fundamentally dif-
ferent than classification and regression as the algorithm makes predictions without first observing
any external input (such as the instancext). Specifically, the algorithm maintains in its memory a
vectorwt ∈ R

n and simply predicts the next element of the sequence to bewt . After extending this
prediction, the next element in the sequence is revealed and an instantaneous loss is suffered. We
measure loss using the followingε-insensitive loss function:

ℓε(w;y) =

{

0 ‖w−y‖ ≤ ε
‖w−y‖− ε otherwise

. (21)

As in the regression setting,ε is a positive user-defined parameter. If the prediction is withinε of the
true sequence element then no loss is suffered. Otherwise the loss is proportional to the Euclidean
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distance between the prediction and the true vector. At the end of each roundwt is updated in order
to have a potentially more accurate prediction on where the next element in the sequence will fall.
Equivalently, we can think of uniclass prediction as the task of finding a center-pointw such that as
many vectors in the sequence fall within a radius ofε from w. At the end of this section we discuss
a generalization of this problem, where the radiusε is also determined by the algorithm.

As before, we initializew1 = (0, . . . ,0). Beginning with the PA algorithm, we define the update
for the uniclass prediction algorithm to be,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. ℓε(w;yt) = 0, (22)

Geometrically,wt+1 is set to be the projection ofwt onto a ball of radiusε aboutyt . We now show
that the closed form solution of this optimization problem turns out to be,

wt+1 =

(

1− ℓt

‖wt −yt‖

)

wt +

(

ℓt

‖wt −yt‖

)

yt . (23)

First, we rewrite the above equation and expresswt+1 by,

wt+1 = wt + τt
yt −wt

‖yt −wt‖
, (24)

whereτt = ℓt . In the Uniclass problem the KKT conditions are both sufficient and necessary for
optimality. Therefore, we prove that Eq. (24) is the minimizer of Eq. (22) by verifying that the KKT
conditions indeed hold. The Lagrangian of Eq. (22) is,

L (w,τ) =
1
2
‖w−wt‖2 + τ(‖w−yt‖− ε) , (25)

whereτ ≥ 0 is a Lagrange multiplier. Differentiating with respect to the elements ofw and setting
these partial derivatives to zero, we get the first KKT condition, stating that at the optimum(w,τ)
must satisfy the equality,

0 = ∇wL (w,τ) = w−wt + τ
w−yt

‖w−yt‖
. (26)

In addition, an optimal solution must satisfy the conditionsτ ≥ 0 and,

τ(‖w−yt‖− ε) = 0. (27)

Clearly, τt ≥ 0. Therefore, to show thatwt+1 is the optimum of Eq. (22) it suffices to prove that
(wt+1,τt) satisfies Eq. (26) and Eq. (27). These equalities trivially hold ifℓt = 0 and therefore from
now on we assume thatℓt > 0. Plugging the valuesw = wt+1 andτ = τt in the right-hand side of
Eq. (26) gives,

wt+1−wt + τt
wt+1−yt

‖wt+1−yt‖
= τt

(

yt −wt

‖yt −wt‖
+

wt+1−yt

‖wt+1−yt‖

)

. (28)

Note that,

wt+1−yt = wt + τt
yt −wt

‖yt −wt‖
−yt = (wt −yt)

(

1− τt
1

‖yt −wt‖

)

=
wt −yt

‖wt −yt‖
(‖wt −yt‖− τt) =

ε
‖wt −yt‖

(wt −yt). (29)
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Combining Eq. (29) with Eq. (28) we get that,

wt+1−wt + τt
wt+1−yt

‖wt+1−yt‖
= 0,

and thus Eq. (26) holds for(wt+1,τt). Similarly,

‖wt+1−yt‖− ε = ε− ε = 0,

and thus Eq. (27) also holds. In summary, we have shown that the KKT optimality conditions hold
for (wt+1,τt) and therefore Eq. (24) gives the desired closed-form update.

To obtain uniclass versions of PA-I and PA-II , we add a slack variable tothe optimization
problem in Eq. (22) in the same way as we did in Eq. (6) and Eq. (7) for the classification algorithms.
Namely, the update for PA-I is defined by,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 +Cξ s.t. ‖w−yt‖ ≤ ε+ξ, ξ ≥ 0, (30)

and the update for PA-II is,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 +Cξ2 s.t. ‖w−yt‖ ≤ ε+ξ.

The closed form for these updates can be derived using the same technique as we used for
deriving the PA update. The final outcome is that both PA-I and PA-II share the form of update
given in Eq. (24), withτt set to be,

τt = min{ C , ℓt } (PA-I) or τt =
ℓt

1+ 1
2C

(PA-II).

We can extend the analysis of the three PA variants from Sec. 4 to the case of uniclass prediction.
We do so by proving a uniclass version of Lemma 1. After proving this lemma, wediscuss an
additional technical difficulty which needs to be addressed so that Thm. 2 through Thm. 5 carry
over smoothly to the uniclass case.

Lemma 7 Let y1, . . . ,yT be an arbitrary sequence of vectors, whereyt ∈ R
n for all t. Let τt be as

defined in either of the three PA variants for uniclass prediction. Then usingthe notation given in
Eq. (9), the following bound holds for anyu ∈ R

n,

T

∑
t=1

τt (2ℓt − τt −2ℓ⋆
t ) ≤ ‖u‖2.

Proof We prove this lemma in much the same way as we did Lemma 1. We again use the definition,
∆t = ‖wt −u‖2−‖wt+1−u‖2, along with the fact stated in Eq. (10) that

T

∑
t=1

∆t ≤ ‖u‖2.
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We now focus our attention on bounding∆t from below on those rounds where∆t 6= 0. Using the
recursive definition ofwt+1, we rewrite∆t as,

∆t = ‖wt −u‖2−
∥

∥

∥

∥

(

1− τt

‖wt −yt‖

)

wt +

(

τt

‖wt −yt‖

)

yt −u

∥

∥

∥

∥

2

= ‖wt −u‖2−
∥

∥

∥

∥

(wt −u)+

(

τt

‖wt −yt‖

)

(yt −wt)

∥

∥

∥

∥

2

= −2

(

τt

‖wt −yt‖

)

(wt −u) · (yt −wt) − τ2
t .

We now add and subtractyt from the term(wt −u) above to get,

∆t = −2

(

τt

‖wt −yt‖

)

(wt −yt +yt −u) · (yt −wt) − τ2
t

= 2τt‖wt −yt‖ − 2

(

τt

‖wt −yt‖

)

(yt −u) · (yt −wt) − τ2
t .

Now, using the Cauchy-Schwartz inequality on the term(yt −u) · (yt −wt), we can bound,

∆t ≥ 2τt‖wt −yt‖ − 2τt‖yt −u‖ − τ2
t .

We now add and subtract 2τtε from the right-hand side of the above, to get,

∆t ≥ 2τt (‖wt −yt‖− ε) − 2τt (‖yt −u‖− ε) − τ2
t .

Since we are dealing with the case whereℓt > 0, it holds thatℓt = ‖wt − yt‖− ε. By definition,
ℓ⋆
t ≥ ‖u−yt‖− ε. Using these two facts, we get,

∆t ≥ 2τtℓt −2τtℓ
⋆
t − τ2

t .

Summing the above inequality over allt and comparing the result to the upper bound in Eq. (10)
gives the bound stated in the lemma.

As mentioned above, there remains one more technical obstacle which standsin the way of
applying Thm. 2 through Thm. 5 to the uniclass case. This difficulty stems from the factxt is not
defined in the uniclass whereas the term‖x‖2 appears in the theorems. This issue is easily resolved
by settingxt in the uniclass case to be an arbitrary vector of a unit length, namely‖xt‖2 = 1. This
technical modification enables us to writeτt as ℓt/‖xt‖2 in the uniclass PA algorithm, as in the
classification case. Similarly,τt can be defined as in the classification case for PA-I and PA-II .
Now Thm. 2 through Thm. 5 can be applied verbatim to the uniclass PA algorithms.

Learning the Radius of the Uniclass Predictor In the derivation above we made the simplifying
assumption thatε, the radius of our uniclass predictor, is fixed beforehand and that the online algo-
rithm can only move its center,w. We now show that learningε andw in parallel is no harder than
learningw alone. We do so by using a simple reduction argument. For technical reasons, we still
require an upper bound onε, which we denote byB. AlthoughB is specified ahead of time, it can
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be arbitrarily large and does not appear in our analysis. Typically, we willthink of B as being far
greater than any conceivable value ofε. Our goal is now to incrementally findwt andεt such that,

‖wt −yt‖ ≤ εt , (31)

as often as possible. Additionally, we would likeεt to stay relatively small, since an extremely
large value ofεt would solve the problem in a trivial way. We do so by reducing this problem toa
different uniclass problem where the radius is fixed and whereyt is in R

n+1. That is, by adding an
additional dimension to the problem, we can learnε using the same machinery developed for fixed-
radius uniclass problems. The reduction stems from the observation that Eq. (31) can be written
equivalently as,

‖wt −yt‖2 +(B2− ε2
t ) ≤ B2. (32)

If we were to concatenate a 0 to the end of everyyt (thus increasing its dimension ton+ 1) and
if we considered then+ 1’th coordinate ofwt to be equivalent to

√

B2− ε2
t , then Eq. (32) simply

becomes‖wt −yt‖2 ≤ B2. Our problem has reduced to a fixed-radius uniclass problem where the
radius is set toB. w1,n+1 should be initialized toB, which is equivalent to initializingε1 = 0. On
each round,εt can be extracted fromwt by,

εt =
√

B2−w2
t,n+1.

Sincewt+1,n+1 is defined to be a convex combination ofwt,n+1 andyt,n+1 (where the latter equals
zero), thenwt,n+1 is bounded in(0,B] for all t and can only decrease from round to round. This
means that the radiusεt is always well defined and can only increase witht. Since the radius is
initialized to zero and is now one of the learned parameters, the algorithm has anatural tendency
to favor small radii. Letu denote the center of a fixed uniclass predictor and letε denote its radius.
Then the reduction described above enables us to prove loss bounds similar to those presented in
Sec. 4, with‖u‖2 replaced by‖u‖2 + ε2.

7. Multiclass Problems

We now address more complex decision problems. We first adapt the binaryclassification algo-
rithms described in Sec. 3 to the task ofmulticlass multilabelclassification. In this setting, every
instance is associated with a set of labelsYt . For concreteness we assume that there arek different
possible labels and denote the set of all possible labels byY = {1, . . . ,k}. For every instancext , the
set of relevant labelsYt is therefore a subset ofY . We say that labely is relevantto the instancext if
y∈Yt . This setting is often discussed in text categorization applications (see for instance (Schapire
and Singer, 2000)) wherext represents a document andYt is the set of topics which are relevant to
the document and is chosen from a predefined collection of topics. The special case where there
is only asingle relevant topic for each instance is typically referred to asmulticlass single-label
classification or multiclass categorization for short. As discussed below, our adaptation of the PA
variants to multiclass multilabel settings encompasses the single-label setting as a special case.

As in the previous sections, the algorithm receives instancesx1,x2, . . . in a sequential manner
where eachxt belongs to an instance spaceX . Upon receiving an instance, the algorithm outputs
a score for each of thek labels inY . That is, the algorithm’s prediction is a vector inR

k where
each element in the vector corresponds to the score assigned to the respective label. This form
of prediction is often referred to as label ranking. Predicting a label ranking is more general and
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flexible than predicting the set of relevant labelsYt . Special purpose learning algorithms such as
AdaBoost.MR (Schapire and Singer, 1998) and adaptations of supportvector machines (Crammer
and Singer, 2003a) have been devised for the task of label ranking. Here we describe a reduction
from online label ranking to online binary classification that deems label ranking as simple as binary
prediction. We note that in the case of multiclass single-label classification, theprediction of the
algorithm is simply set to be the label with the highest score.

For a pair of labelsr,s∈ Y , if the score assigned by the algorithm to labelr is greater than the
score assigned to labels, we say that labelr is rankedhigher than labels. The goal of the algorithm
is to rank every relevant label above every irrelevant label. Assume that we are provided with a set
of d featuresφ1, . . . ,φd where each featureφ j is a mapping fromX × Y to the reals. We denote
by Φ(x,y) = (φ1(x,y), . . . ,φd(x,y)) the vector formed by concatenating the outputs of the features,
when each feature is applied to the pair(x,y). The label ranking function discussed in this section
is parameterized by a weight vector,w ∈ R

d. On roundt, the prediction of the algorithm is the
k-dimensional vector,

(

(wt ·Φ(xt ,1)) , . . . , (wt ·Φ(xt ,k))
)

.

We motivate our construction with an example from the domain of text categorization. We describe
a variant of theTerm Frequency - Inverse Document Frequency(TF-IDF) representation of docu-
ments (Rocchio, 1971; Salton and Buckley, 1988). Each featureφ j corresponds to a different word,
denotedµj . Given a corpus of documentsS, for everyx ∈ S and for every potential topicy, the
featureφ j(x,y) is defined to be,

φ j(x,y) = TF(µj ,x) · log

( |S|
DF(µj ,y)

)

,

where TF(µj ,x) is the number of timesµj appears inx and DF(µj ,y) is the number of timesµj

appears in all of the documents inSwhich arenot labeled byy. The valueφ j grows in proportion to
the frequency ofµj in the documentx but is dampened ifµj is a frequent word for topics other than
y. In the context of this paper, the important point is that each feature is label-dependent.

After making its prediction (a ranking of the labels), the algorithm receives the correct set of
relevant labelsYt . We define themarginattained by the algorithm on roundt for the example(xt ,Yt)
as,

γ
(

wt ;(xt ,Yt)
)

= min
r∈Yt

wt ·Φ(xt , r) − max
s6∈Yt

wt ·Φ(xt ,s).

This definition generalizes the definition of margin for binary classification and was employed by
both single-label and multilabel learning algorithms for support vector machines (Vapnik, 1998;
Weston and Watkins, 1999; Elisseeff and Weston, 2001; Crammer and Singer, 2003a). In words,
the margin is the difference between the score of the lowest ranked relevant label and the score
of the highest ranked irrelevant label. The margin is positive only if all of the relevant labels are
ranked higher than all of the irrelevant labels. However, in the spirit of binary classification, we are
not satisfied by a mere positive margin as we require the margin of every prediction to be at least 1.
After receivingYt , we suffer an instantaneous loss defined by the following hinge-loss function,

ℓMC

(

w;(x,Y)
)

=

{

0 γ
(

w;(x,Y)
)

≥ 1
1− γ

(

w;(x,Y)
)

otherwise
. (33)
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As in the previous sections, we useℓt as an abbreviation forℓMC

(

wt ;(xt ,Yt)
)

. If an irrelevant label is
ranked higher than a relevant label, thenℓ2

t attains a value greater than 1. Therefore,∑T
t=1ℓ2

t upper
bounds the number of multiclass prediction mistakes made on rounds 1 throughT.

One way of updating the weight vectorwt is to mimic the derivation of the PA algorithm for
binary classification defined in Sec. 3 and to set

wt+1 = argmin
w∈Rd

1
2
‖w−wt‖2 s.t. ℓMC(w;(xt ,Yt)) = 0. (34)

Satisfying the single constraint in the optimization problem above is equivalentto satisfying the
following set of linear constraints,

∀r ∈Yt ∀s 6∈Yt w ·Φ(xt , r)−w ·Φ(xt ,s) ≥ 1. (35)

However, instead of attempting to satisfy all of the|Y t |× (k−|Y t |) constraints above we focus only
on the single constraint which is violated the most bywt . We show in the sequel that we can still
prove a cumulative loss bound for this simplified version of the update. We note that satisfying all
of these constraints simultaneously leads to the online algorithm presented in (Crammer and Singer,
2003a). Their online update is more involved and computationally expensive, and moreover, their
analysis only covers the realizable case.

Formally, let rt denote the lowest ranked relevant label and letst denote the highest ranked
irrelevant label on roundt. That is,

rt = argmin
r∈Yt

wt ·Φ(xt , r) and st = argmax
s6∈Yt

wt ·Φ(xt ,s). (36)

The single constraint that we choose to satisfy isw ·Φ(xt , rt)−w ·Φ(xt ,st) ≥ 1 and thuswt+1 is set
to be the solution of the following simplified constrained optimization problem,

wt+1 = argmin
w

1
2
‖w−wt‖2 s.t. w · (Φ(xt , rt)−Φ(xt ,st)) ≥ 1. (37)

The apparent benefit of this simplification lies in the fact that Eq. (37) has aclosed form solution.
To draw the connection between the multilabel setting and binary classification,we can think of the
vectorΦ(xt , rt)−Φ(xt ,st) as a virtual instance of a binary classification problem with a label of
+1. With this reduction in mind, Eq. (37) becomes equivalent to Eq. (2). Therefore, the closed form
solution of Eq. (37) is

wt+1 = wt + τt(Φ(xt , rt)−Φ(xt ,st)). (38)

with,

τt =
ℓt

‖Φ(xt , rt)−Φ(xt ,st)‖2 .

Although we are essentially neglecting all but two labels on each step of the multiclass update, we
can still obtain multiclass cumulative loss bounds. The key observation in our analysis it that,

ℓMC

(

wt ;(xt ,Yt)
)

= ℓ
(

wt ;(Φ(xt , rt)−Φ(xt ,st),+1)
)

.

To remind the reader,ℓ on the right-hand side of the above equation is the binary classification loss
defined in Eq. (1). Using this equivalence of definitions, we can convert Thm. 2 into a bound for
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the multiclass PA algorithm. To do so we need to cast the assumption that for allt it holds that
‖Φ(xt , rt)−Φ(xt ,st)‖ ≤ R. This bound can immediately be converted into a bound on the norm
of the feature set since‖Φ(xt , rt)−Φ(xt ,st)‖ ≤ ‖Φ(xt , rt)‖+‖Φ(xt ,st)‖. Thus, if the norm of the
mappingΦ(xt , r) is bounded for allt and r then so is‖Φ(xt , rt)−Φ(xt ,st)‖. In particular, if we
assume that‖Φ(xt , r)‖ ≤ R/2 for all t andr we obtain the following corollary.

Corollary 8 Let (x1,Y1), . . . ,(xT ,YT) be a sequence of examples withxt ∈ R
n and YT ⊆ {1, . . . ,k}.

Let Φ be a mappingΦ : X ×Y → R
d such that‖Φ(xt , r)‖ ≤ R/2 for all t and r. Assume that there

exists a vectoru such thatℓ(u;(xt ,Yt)) = 0 for all t. Then, the cumulative squared loss attained by
the multiclass multilabel PA algorithm is bounded from above by,

T

∑
t=1

ℓ2
t ≤ R2‖u‖2.

Similarly, we can obtain multiclass versions of PA-I and PA-II by using the update rule in Eq. (38)
but settingτt to be either,

τt = min

{

C ,
ℓt

‖Φ(xt , rt)−Φ(xt ,st)‖2

}

or τt =
ℓt

‖Φ(xt , rt)−Φ(xt ,st)‖2 + 1
2C

,

respectively. The analysis of PA-I and PA-II in Thms. 4-5 also carriesover from the binary case to
the multilabel case in the same way.

Multi-prototype Classification In the above discussion we assumed that the feature vectorΦ(x,y)
is label-dependent and used a single weight vectorw to form the ranking function. However, in
many applications of multiclass classification this setup is somewhat unnatural. Many times, there
is a single natural representation for every instance rather than multiple feature representations for
each individual class. For example, in optical character recognition problems (OCR) an instance
can be a gray-scale image of the character and the goal is to output the content of this image. In this
example, it is difficult to find a good set of label-dependent features.

The common construction in such settings is to assume that each instance is a vector in R
n and to

associate a different weight vector (often referred to as prototype) with each of thek labels (Vapnik,
1998; Weston and Watkins, 1999; Crammer and Singer, 2001). That is, the multiclass predictor is
now parameterized byw1

t , . . . ,w
k
t , wherewr

t ∈ R
n. The output of the predictor is defined to be,

(

(w1
t ·xt), . . . ,(wk

t ·xt)
)

.

To distinguish this setting from the previous one we refer to this setting as the multi-prototype mul-
ticlass setting and to the previous one as the single-prototype multiclass setting. We now describe
a reduction from the multi-prototype setting to the single-prototype one which enables us to use all
of the multiclass algorithms discussed above in the multi-prototype setting as well. Toobtain the
desired reduction, we must define the feature vector representationΦ(x,y) induced by the instance
label pair(x,y). We defineΦ(x,y) to be ak·n dimensional vector which is composed ofk blocks of
sizen. All blocks but they’th block of Φ(x,y) are set to be the zero vector while they’th block is set
to bex. Applying a single prototype multiclass algorithm to this problem produces a weight vector
wt ∈R

kn on every online round. Analogous to the construction ofΦ(x,y), the vectorwt is composed
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INPUT: cost functionρ(y,y′)
INITIALIZE : w1 = (0, . . . ,0)
For t = 1,2, . . .

• receive instance:xt ∈ R
n

• predict: ŷt = argmaxy∈Y (wt ·Φ(xt ,y))
• receive correct label:yt ∈ Y
• define:ỹt = argmaxr∈Y

(

wt ·Φ(xt , r)−wt ·Φ(xt ,yt)+
√

ρ(yt , r)
)

• define:

qt =

{

ŷt (PB)
ỹt (ML)

• suffer loss:ℓt = wt ·Φ(xt ,qt)−wt ·Φ(xt ,yt)+
√

ρ(yt ,qt)
• set:τt = ℓt

‖Φ(xt ,yt)−Φ(xt ,qt)‖2

• update:wt+1 = wt + τt (Φ(xt ,yt)−Φ(xt ,qt))

Figure 2: Theprediction-based(PB) and max-loss(ML) passive-aggressive updates for cost-
sensitive multiclass problems.

of k blocks of sizen and denote blockr by wr
t . By construction, we get thatwt ·Φ(xt , r) = wr

t ·xt .
Equipped with this construction we can use verbatim any single-prototype algorithm as a proxy for
the multi-prototype variant. Namely, on roundt we find the pair of indicesrt ,st which corresponds
to the largest violation of the margin constraints,

rt = argmin
r∈Yt

wt ·Φ(xt , r) = argmin
r∈Yt

wr
t ·xt ,

st = argmax
s6∈Yt

wt ·Φ(xt ,s) = argmax
s6∈Yt

ws
t ·xt . (39)

Unraveling the single-prototype notion of margin and casting it as a multi-prototype one we get that
the loss in the multi-prototype case amounts to,

ℓ
(

w1
t , . . . ,w

k
t ;(xt ,Yt)

)

=

{

0 wrt
t ·xt −wst

t ·xt ≥ 1
1−wrt

t ·xt +wst
t ·xt otherwise

. (40)

Furthermore, applying the same reduction to the update scheme we get that theresulting multi-
prototype update is,

wrt
t+1 = wrt

t+1 + τtxt and wst
t+1 = wst

t+1− τtxt . (41)

For the PA algorithm, the value ofτt is the ratio of the loss, as given by Eq. (40), and the squared
norm ofΦ(xt , rt)−Φ(xt ,st). By construction, this vector hask−2 blocks whose elements are zeros
and two blocks that are equal toxt and−xt . Since the two non-zero blocks are non-overlapping we
get that,

‖Φ(xt , rt)−Φ(xt ,st)‖2 = ‖xt‖2 + ‖−xt‖2 = 2‖xt‖2.

Finally, due to our reduction we also get multi-prototype versions of Thm. 4 and Thm. 5.
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8. Cost-Sensitive Multiclass Classification

Cost-sensitive multiclass classification is a variant of the multiclass single-labelclassification setting
discussed in the previous section. Namely, each instancext is associated with a single correct label
yt ∈ Y and the prediction extended by the online algorithm is simply,

ŷt = argmax
y∈Y

(wt ·Φ(xt ,y)) . (42)

A prediction mistake occurs ifyt 6= ŷt , however in the cost-sensitive setting different mistakes incur
different levels of cost. Specifically, for every pair of labels(y,y′) there is a costρ(y,y′) associated
with predictingy′ when the correct label isy. The cost functionρ is defined by the user and takes
non-negative values. We assume thatρ(y,y) = 0 for all y∈ Y and thatρ(y,y′) ≥ 0 whenevery 6= y′.
The goal of the algorithm is to minimize thecumulative costsuffered on a sequence of examples,
namely to minimize∑ρ(yt , ŷt).

The multiclass PA algorithms discussed above can be adapted to this task by incorporating the
cost function into the online update. Recall that we began the derivation ofthe multiclass PA update
by defining a set of margin constraints in Eq. (35), and on every round we focused our attention
on satisfying only one of these constraints. We repeat this idea here while incorporating the cost
function into the margin constraints. Specifically, on every online round we would like for the
following constraints to hold,

∀r ∈ {Y \yt} wt ·Φ(xt ,yt)−wt ·Φ(xt , r) ≥
√

ρ(yt , r). (43)

The reason for using the square root function in the equation above will be justified shortly. As
mentioned above, the online update focuses on a single constraint out of the |Y |−1 constraints in
Eq. (43). We will describe and analyze two different ways to choose thissingle constraint, which
lead to two different online updates for cost-sensitive classification. Thetwo update techniques are
called theprediction-basedupdate and themax-lossupdate. Pseudo-code for these two updates is
presented in Fig. 2. They share an almost identical analysis and may seem very similar at first,
however each update possesses unique qualities. We discuss the significance of each update at the
end of this section.

The prediction-based update focuses on the single constraint in Eq. (43) which corresponds to
the predicted label ˆyt . Concretely, this update setswt+1 to be the solution to the following optimiza-
tion problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. wt ·Φ(xt ,yt)−wt ·Φ(xt , ŷt) ≥

√

ρ(yt , ŷt), (44)

where ŷt is defined in Eq. (42). This update closely resembles the multiclass update given in
Eq. (37). Define the cost sensitive loss for the prediction-based update to be,

ℓPB

(

w;(x,y)
)

= w ·Φ(x, ŷ)−w ·Φ(x,y)+
√

ρ(y, ŷ). (45)

Note that this loss equals zero if and only if a correct prediction was made, namely if ŷt = yt . On
the other hand, if a prediction mistake occurred it means thatwt ranked ˆyt higher thanyt , thus,

√

ρ(yt , ŷt) ≤ wt ·Φ(xt , ŷt)−wt ·Φ(xt ,yt)+
√

ρ(yt , ŷt) = ℓPB(wt ;(xt ,yt)). (46)
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As in previous sections, we will prove an upper bound on the cumulative squared loss attained by
our algorithm,∑t ℓPB(wt ;(xt ,yt))

2. The cumulative squared loss in turn bounds∑t ρ(yt , ŷt) which is
the quantity we are trying to minimize. This explains the rationale behind our choiceof the margin
constraints in Eq. (43). The update in Eq. (44) has the closed form solution,

wt+1 = wt + τt (Φ(xt ,yt)−Φ(xt , ŷt)) , (47)

where,

τt =
ℓPB(wt ;(xt ,yt))

‖Φ(xt ,yt)−Φ(xt , ŷt)‖2 . (48)

As before, we obtain cost sensitive versions of PA-I and PA-II by setting,

τt = min

{

C ,
ℓPB(wt ;(xt ,yt))

‖Φ(xt ,yt)−Φ(xt , ŷt)‖2

}

(PA-I)

τt =
ℓPB(wt ;(xt ,yt))

‖Φ(xt ,yt)−Φ(xt , ŷt)‖2 + 1
2C

(PA-II), (49)

where in both casesC > 0 is a user-defined parameter.
The second cost sensitive update, the max-loss update, also focuses on satisfying a single con-

straint from Eq. (43). Let ˜yt be the label inY defined by,

ỹt = argmax
r∈Y

(

wt ·Φ(xt , r)−wt ·Φ(xt ,yt)+
√

ρ(yt , r)
)

. (50)

ỹt is the loss-maximizing label. That is, we would suffer the greatest loss on round t if we were to
predictỹt . The max-loss update focuses on the single constraint in Eq. (43) which corresponds to ˜yt .
Note that the online algorithm continues to predict the label ˆyt as before and that ˜yt only influences
the online update. Concretely, the max-loss update setswt+1 to be the solution to the following
optimization problem,

wt+1 = argmin
w∈Rn

1
2
‖w−wt‖2 s.t. wt ·Φ(xt ,yt)−wt ·Φ(xt , ỹt) ≥

√

ρ(yt , ỹt), (51)

The update in Eq. (51) has the same closed form solution given in Eq. (47)and Eq. (48) with ˆyt

replaced by ˜yt . Define the loss for the max-loss update to be,

ℓML

(

w;(x,y)
)

= w ·Φ(x, ỹ)−w ·Φ(x,y)+
√

ρ(y, ỹ), (52)

whereỹ is defined in Eq. (50). Note that since ˜y attains the maximal loss of all other labels, it follows
that,

ℓPB(wt ;(xt ,yt)) ≤ ℓML(wt ;(xt ,yt)).

From the above inequality and Eq. (46) we conclude thatℓML is also an upper bound on
√

ρ(yt , ŷt).
A note-worthy difference betweenℓPB andℓML is thatℓML(wt ;(xt ,yt)) = 0 if and only if Eq. (43)
holds for allr ∈ {Y \yt}, whereas this is not the case forℓPB.

The prediction-based and max-loss updates were previously discussedin Dekel et al. (2004a), in
the context of hierarchical classification. In that paper, a predefinedhierarchy over the label set was
used to induce the cost functionρ. The basic online algorithm presented there used the prediction-
based update, whereas the max-loss update was mentioned in the context ofa batch learning setting.
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Dekel et al. (2004a) evaluated both techniques empirically and found themto be highly effective on
speech recognition and text classification tasks.

Turning to the analysis of our cost sensitive algorithms, we follow the same strategy used in the
analysis of the regression and uniclass algorithms. Namely, we begin by proving a cost sensitive
version of Lemma 1 for both the prediction-based and the max-loss updates.

Lemma 9 Let (x1,y1), . . . ,(xT ,yT) be an arbitrary sequence of examples, wherext ∈ R and yt ∈ Y
for all t. Let u be an arbitrary vector inRn. If τt is defined as in Eq. (48) or Eq. (49) then,

T

∑
t=1

τt
(

2ℓPB(wt ;(xt ,yt))− τt‖Φ(xt ,yt)−Φ(xt , ŷt)‖2−2ℓML(u;(xt ,yt))
)

≤ ‖u‖2.

If τt is defined as in Eq. (48) or Eq. (49) witĥyt replaced byỹt then,

T

∑
t=1

τt
(

2ℓML(wt ;(xt ,yt))− τt‖Φ(xt ,yt)−Φ(xt , ỹt)‖2−2ℓML(u;(xt ,yt))
)

≤ ‖u‖2.

Proof We prove the first statement of the lemma, which involves the prediction-basedupdate rule.
The proof of the second statement is identical, except that ˆyt is replaced by ˜yt andℓPB(wt ;(xt ,yt)) is
replaced byℓML(wt ;(xt ,yt)).

As in the proof of Lemma 1, we use the definition∆t = ‖wt −u‖2−‖wt+1−u‖2 and the fact
that,

T

∑
t=1

∆t ≤ ‖u‖2. (53)

We focus our attention on bounding∆t from below. Using the recursive definition ofwt+1, we
rewrite∆t as,

∆t = ‖wt −u‖2−‖wt −u+ τt(Φ(xt ,yt)−Φ(xt , ŷt))‖2

= −2τt(wt −u) · (Φ(xt ,yt)−Φ(xt , ŷt)) − τ2
t ‖Φ(xt ,yt)−Φ(xt , ŷt)‖2. (54)

By definition,ℓML(u;(xt ,yt)) equals,

max
r∈Y

(

u · (Φ(xt , r)−Φ(xt ,yt))+
√

ρ(yt , r)
)

.

SinceℓML(u;(xt ,yt)) is the maximum overY , it is clearly greater thanu · (Φ(xt , ŷt)−Φ(xt ,yt))+
√

ρ(yt , ŷt). This can be written as,

u · (Φ(xt ,yt)−Φ(xt , ŷt)) ≥
√

ρ(yt , ŷt)− ℓML(u;(xt ,yt)).

Plugging the above back into Eq. (54) we get,

∆t ≥ −2τtwt · (Φ(xt ,yt)−Φ(xt , ŷt)) + 2τt

(

√

ρ(yt , ŷt)− ℓML(u;(xt ,yt))
)

− τ2
t ‖Φ(xt ,yt)−Φ(xt , ŷt)‖2. (55)
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Rearranging terms in the definition ofℓPB, we get thatwt · (Φ(xt ,yt)−Φ(xt , ŷt)) =
√

ρ(yt , ŷt)−
ℓPB(wt ;(xt ,yt)). This enables us to rewrite Eq. (55) as,

∆t ≥ −2τt

(

√

ρ(yt , ŷt)− ℓPB(wt ;(xt ,yt))
)

+

2τt

(

√

ρ(yt , ŷt)− ℓML(u;(xt ,yt))
)

− τ2
t ‖Φ(xt ,yt)−Φ(xt , ŷt)‖2

= τt
(

2ℓPB(wt ;(xt ,yt))− τt‖Φ(xt ,yt)−Φ(xt , ŷt)‖2−2ℓML(u;(xt ,yt))
)

.

Summing∆t over all t and comparing this lower bound with the upper bound provided in Eq. (53)
gives the desired bound.

This lemma can now be used to obtain cost sensitive versions of Thms. 2,3 and5 for both
prediction-based and max-loss updates. The proof of these theorems remains essentially the same as
before, however one cosmetic change is required:‖xt‖2 is replaced by either‖Φ(xt ,yt)−Φ(xt , ŷt)‖2

or ‖Φ(xt ,yt)−Φ(xt , ỹt)‖2 in each of the theorems and throughout their proofs. This provides cu-
mulative cost bounds for the PA and PA-II cost-sensitive algorithms.

Analyzing the cost-sensitive version of PA-I requires a slightly more delicateadaptation of
Thm. 4. For brevity, we prove the following theorem for the max-loss variant of the algorithm
and note that the proof for the prediction-based variant is essentially identical.

We make two simplifying assumptions: first assume that‖φ(xt ,yt)−φ(xt , ỹt)‖ is upper bounded
by 1. Second, assume thatC, the aggressiveness parameter given to the PA-I algorithm, is an upper
bound on the square root of the cost functionρ.

Theorem 10 Let(x1,y1), . . . ,(xT ,yT) be a sequence of examples wherext ∈R
n, yt ∈ Y and‖φ(xt ,yt)−

φ(xt , ỹt)‖ ≤ 1 for all t. Let ρ be a cost function fromY × Y to R+ and let C, the aggressiveness
parameter provided to the PA-I algorithm, be such that

√

ρ(yt , ŷt)≤C for all t. Then for any vector
u ∈ R

n, the cumulative cost obtained by the max-loss cost sensitive version of PA-I on the sequence
is bounded from above by,

T

∑
t=1

ρ(yt , ŷt) ≤ ‖u‖2 +2C
T

∑
t=1

ℓML(u;(xt ,yt)).

Proof We abbreviateρt = ρ(yt , ŷt) andℓt = ℓML(wt ;(xt ,yt)) throughout this proof.ℓt ≥
√ρt on

every roundt, as discussed in this section.τt is defined as,

τt = min

{

ℓt

‖φ(xt ,yt)−φ(xt , ỹt)‖2 , C

}

,

and due to our assumption on‖φ(xt ,yt)−φ(xt , ỹt)‖2 we get thatτt ≥ min{ℓt ,C}. Combining these
two facts gives,

min{ρt ,C
√

ρt} ≤ τtℓt .

Using our assumption onC, we know thatC
√ρt is at leastρt and thereforeρt ≤ τtℓt . Summing over

all t we get the bound,
T

∑
t=1

ρt ≤
T

∑
t=1

τtℓt . (56)
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Again using the definition ofτt , we know thatτtℓML(u;(xt ,yt))≤CℓML(u;(xt ,yt)) and thatτt‖φ(xt ,yt)−
φ(xt , ỹt)‖2 ≤ ℓt . Plugging these two inequalities into the second statement of Lemma 9 gives,

T

∑
t=1

τtℓt ≤ ‖u‖2 +2C
T

∑
t=1

ℓML(u;(xt ,yt)). (57)

Combining Eq. (57) with Eq. (56) proves the theorem.

This concludes our analysis of the cost-sensitive PA algorithms. We wrap up this section with a
discussion on some significant differences between the prediction-based and the max-loss variants
of our cost-sensitive algorithms. Both variants utilize the same prediction function to output the
predicted label ˆyt however each variant follows a different update strategy and is evaluated with
respect to a different loss function. The loss function used to evaluate the prediction-based variant
is a function ofyt andŷt , whereas the loss function used to evaluate the max-loss update essentially
ignores ˆyt . In this respect, the prediction-based loss is more natural.

On the other hand, the analysis of the prediction-based variant lacks the aesthetics of the max-
loss analysis. The analysis of the max-loss algorithm usesℓML to evaluate both the performance of
the algorithm and the performance ofu, while the analysis of the prediction-based algorithm uses
ℓPB to evaluate the algorithm andℓML to evaluateu. The prediction-based relative bound is to some
extent like comparing apples and oranges, since the algorithm andu are not evaluated using the
same loss function. In summary, both algorithms suffer from some theoreticaldisadvantage and
neither of them is theoretically superior to the other.

Finally, we turn our attention to an important algorithmic difference between the two update
strategies. The prediction-based update has a great advantage over the max-loss update in that the
cost functionρ does not play a role in determining the single constraint which the update focuses on.
In some cases, this can significantly speed-up the running time required by the online update. For
example, in the following section we exploit this property when devising algorithms for the complex
problem of sequence prediction. When reading the following section, notethat the max-loss update
could not have been used for sequence prediction in place of the prediction-based update. This is
perhaps the most significant difference between the two cost sensitive updates.

9. Learning with Structured Output

A trendy and useful application of large margin methods is learning with structured output. In
this setting, the set of possible labels are endowed with a predefined structure. Typically, the set
of labels is very large and the structure plays a key role in constructing efficient learning and in-
ference procedures. Notable examples for structured label sets are graphs (in particular trees) and
sequences (Collins, 2000; Altun et al., 2003; Taskar et al., 2003; Tsochantaridis et al., 2004). We
now overview how the cost-sensitive learning algorithms described in the previous section can be
adapted to structured output settings. For concreteness, we focus on an adaptation for sequence pre-
diction. Our derivation however can be easily mapped to other settings of learning with structured
output. In sequence prediction problems we are provided with a predefined alphabetY = {1, . . . ,k}.
Each input instance is associated with a label which is a sequence overY . For simplicity we assume
that the output sequence is of a fixed lengthm. Thus, on roundt, the learning algorithm receives an
instancext and then predicts an output sequenceŷt ∈ Y m. Upon predicting, the algorithm receives
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the correct sequenceyt that is associated withxt . As in the cost-sensitive case, the learning algo-
rithm is also provided with a cost functionρ : Y m× Y m → R+. The value ofρ(y,y′) represents
the cost associated with predictingy′ instead ofy. As before we assume thatρ(y,y′) equals zero if
y = y′. Apart from this requirement,ρ may be any computable function. Most sequence prediction
algorithms further assume thatρ is decomposable. Specifically, a common construction (Taskar
et al., 2003; Tsochantaridis et al., 2004) is achieved by defining,ρ(y,y′) = ∑m

i=1 ρ̃(yi ,y′i) whereρ̃
is any non-negative (local) cost overY ×Y . In contrast, we revert to a general cost function over
pairs of sequences.

As in the multiclass settings discussed above, we assume that there exists a setof features
φ1, . . . ,φd each of which takes as its input an instancex and a sequencey and outputs a real number.
We again denote byΦ(x,y) the vector of features evaluated onx andy. Equipped withΦ andρ, we
are left with the task of finding,

ŷt = argmax
y∈Y m

(wt ·Φ(xt ,y)) , (58)

on every online round. Witĥyt on hand, the PA update for string prediction is identical to the
prediction-based update described in the previous section. However, obtaining ŷt in the general
case may require as many askm evaluations ofwt ·Φ(xt ,y). This problem becomes intractable asm
becomes large. We must therefore impose some restrictions on the feature representationΦ which
will enable us to find̂yt efficiently. A possible restriction on the feature representation is to assume
that each featureφ j takes the form,

φ j(xt ,y) = ψ0
j (y1,xt)+

m

∑
i=2

ψ j(yi ,yi−1,xt), (59)

whereψ0
j andψ j are any computable functions. This construction is analogous to imposing a first

order Markovian structure on the output sequence. This form paves the way for an efficient infer-
ence, i.e. solving Eq. (58), using a dynamic programming procedure. Similaryet richer structures
such as dynamic Bayes nets can be imposed so long as the solution to Eq. (58)can be computed
efficiently. We note in passing that similar representation ofΦ using efficiently computable feature
sets were proposed in (Altun et al., 2003; Taskar et al., 2003; Tsochantaridis et al., 2004).

The analysis of the cost-sensitive PA updates carries over verbatim to thesequence prediction
setting. Our algorithm for learning with structured outputs was successfullyapplied to the task of
music to score alignment in (Shalev-Shwartz et al., 2004a).

10. Experiments

In this section we present experimental results that demonstrate differentaspects of our PA algo-
rithms and their accompanying analysis. In Sec. 10.1 we start with two experiments with synthetic
data which examine the robustness of our algorithms to noise. In Sec. 10.2 weinvestigate the effect
of the aggressiveness parameterC on the performance of the PA-I and PA-II algorithms. Finally,
in Sec. 10.3, we compare our multiclass versions of the PA algorithms to other online algorithms
for multiclass problems (Crammer and Singer, 2003a) on natural data sets.

The synthetic data set used in our experiments was generated as follows. First a label was chosen
uniformly at random from{−1,+1}. For positive labeled examples, instances were chosen by
randomly sampling a two-dimensional Gaussian with mean(1,1) and a diagonal covariance matrix
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Figure 3: The average error (left) and the average loss (right) of PA,PA-I and PA-II as a function
of the error of the optimal fixed linear classifier, in the presence of instance noise (top)
and label noise (bottom).

with (0.2,2) on its diagonal. Similarly, for negative labeled examples, instances were sampled
from a Gaussian with a mean of(−1,−1) and the same covariance matrix as for positive labeled
examples. To validate our results, we repeated each experiment 10 times where in each repetition
we generated 4,000 random examples. The results reported are averaged over the 10 repetitions.

10.1 Robustness to Noise

Our first experiments examine the robustness of our algorithms to both instance noise and label
noise. To examine instance noise, we contaminated each instance with a random vector sampled
from a zero-mean Gaussian with a covariance matrixσI , whereσ varied from 0 to 2. We set
the parameterC of PA-I and PA-II to be 0.001. We then ran PA, PA-I and PA-II on the resulting
sequence of examples. To evaluate our results, we used a brute-forcenumerical method to find
the optimal fixed linear classifier, that is, the linear classifier that makes the fewest classification
mistakes on the entire sequence of examples. We define theaverage errorof an online learning
algorithm on a given input sequence to be the number of prediction mistakes the algorithm makes
on that sequence normalized by the length of the sequence. Similarly, we define the average loss of
an online learning algorithm on a given sequence.

In the plots at the top of Fig. 3 we depict the average error and average loss of the three PA
variants as a function of the average error of the optimal linear classifier.The plots underscore
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Figure 4: The average error (left) and the average loss (right) of PA-I (top) and PA-II (bottom) as a
function of log(C) with different levels of label noise probabilityp.

several interesting phenomena. First note that for low levels of noise, allthree PA variants make a
similar number of errors. Our bounds from Sec. 4 suggest that as the noise level increases, PA-I and
PA-II should outperform the basic PA algorithm. It is clear from the graphs that our expectations
are met and that PA-I and PA-II outperform the basic PA algorithm when the noise level is high.
Finally, in this experiment PA-I and PA-II performed equally well for all levels of noise.

In our second experiment we left the instances intact and instead flipped each label with a
probability p, wherep was set to different values in[0,0.3]. As in the previous experiment, we set
C = 0.001 for both PA-I and PA-II . The results are depicted at the bottom of Fig. 3. It is apparent
from the graphs that the behavior observed in the previous experiment isrepeated here as well.

10.2 The Effect ofC

In our second set of experiments, we examine the effect of the aggressiveness parameterC on the
performance of PA-I and PA-II . Again we flipped the label of each instance in our synthetic data
set with probabilityp, this time with p set to 0, 0.1 and 0.2. We then ran PA-I and PA-II on the
resulting sequence of examples with different values of the parameterC. The average error and
average loss of the algorithms as a function of the parameterC are depicted in Fig. 4
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Figure 5: The average error of PA-I (left) and PA-II (right) as a function of the number of online
rounds,T, for different values ofC.

As can be seen from the graphs, the value of the parameterC significantly effects the results
of the algorithms. The graphs can be explained using our loss bounds in Thm. 4 and Thm. 5. For
concreteness, let us focus on the loss bound of the PA-II algorithm, given in Thm. 5. The bound
on the cumulative loss of the algorithm is comprised of two terms, the first depends on the squared
norm of the competitor,(‖u‖2), while the second depends on the cumulative (squared) loss of
the competitor(∑t(ℓ

⋆
t )

2). The parameterC divides the first term and multiplies the second term.
Therefore, whenC is small the bound is dominated by the first term(‖u‖2) and whenC is large the
bound is dominated by the second term(∑t(ℓ

⋆
t )

2). Since the label noise applied to the data effects
only the second term, we expect that for very small values ofC the loss of PA-I and PA-II will be
high, regardless of the noise level. On the other hand, as we increase thevalue ofC, the difference
between different noise levels becomes apparent. As a general rule-of-thumb,C should be small
when the data is noisy.

So far, the length of the sequence of examples presented to the online algorithms was fixed.
In the following, we discuss the effect ofC on the performance of the algorithms as a function of
sequence length (T). We generated a synthetic data set consisting of 104 examples with label noise
probability p = 0.02. We ran the PA-I and PA-II algorithms on the data set, once withC = 100 and
once withC = 0.001. At the end of each online round we calculated the average error attained so
far. The results are given in Fig. 5. For both PA-I and PA-II , settingC to be a small number leads
to a slow progress rate, since each online update changes the online hypothesis by a small amount.
On the other hand, whenC is large, the error rate decreases much faster, but at the price of inferior
performance later on.

10.3 Multiclass Experiments

Our last experiment demonstrates the efficiency of the PA algorithms on multiclass problems. This
experiment was performed with standard multiclass data sets: the USPS and MNIST data sets
of handwritten digits. We compared the multiclass versions of PA, PA-I and PA-II to the online
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Figure 6: The number of prediction mistakes made by different multiclass onlinealgorithms as a
function of the online round index, on the USPS (left) and MNIST (right) data sets.

multiclass algorithms described in (Crammer and Singer, 2003a). Specifically,Crammer and Singer
(2003a) present three multiclass versions of the Perceptron algorithm and a new margin based online
multiclass algorithm named MIRA. As a preprocessing step, we shifted and scaled the instances
of each data set so that its mean equals zero and its average squared Euclidean norm is 1. We
used Mercer kernels in all of the algorithms, namely, we replaced the standard dot product with
a polynomial kernelK(xi ,x j) = (a+ xi · x j)

d, wherea = 0 andd = 3 for the USPS data set and
a = 0.5 andd = 5 for the MNIST data set. These kernel parameters were set rather arbitrarily,
based on previous experience with these data sets using different algorithms. We set the parameter
C of PA-I and PA-II to 100 (we note that similar results hold for anyC > 100). The parameterβ of
MIRA was set to 0.01, following (Crammer and Singer, 2003a).

The plots in Fig. 6 depict the number of online prediction mistakes made on the two data sets by
three different algorithms: PA-I , the uniform-update version of multiclass Perceptron and MIRA.
The performance of PA and PA-II is not presented in this figure, since itis virtually indistinguish-
able from that of PA-I . For the same reason, only the uniform-update version of the multiclass
Perceptron is presented in the figure. It is apparent that both PA-I andMIRA outperform the Per-
ceptron. In addition, the performance of PA-I is comparable to that of MIRA with a slight advantage
to the latter. However, while each online update of MIRA requires solving a complex optimization
problem, each update of PA has a simple closed-form expression and is thus much faster and easier
to implement.

11. Discussion

We described an online algorithmic framework for solving numerous prediction problems rang-
ing from classification to sequence prediction. We derived several lossbounds for our algorithms
(Thms. 2-5). The proofs of all of the bounds are based on a single lemma (Lemma 1). There
are several possible extensions of the work presented in this paper. Wealready conducted fur-
ther research on applications of the PA algorithmic framework for learning margin-based suffix
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trees (Dekel et al., 2004b), pseudo-metrics (Shalev-Shwartz et al., 2004b), hierarchical classifica-
tion (Dekel et al., 2004a), and segmentation of sequences (Shalev-Shwartz et al., 2004a). While
the focus of this paper is on online settings, online algorithms can also serve as building blocks in
the construction of well performing batch algorithms. Online to batch conversions of the proposed
algorithms are yet another important future research direction. The update taken by our algorithms
is aggressive in the sense that even a small loss forces an update of the hypothesis. When using
kernels, this property often results in the use of many examples for representing the learned predic-
tor. Thus, the memory requirements imposed when using kernels can be quite demanding. We are
currently pursuing extensions of the PA framework that operate in the realm of bounded memory
constraints.
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Appendix A. Derivation of the PA-I and PA-II Updates

As in Sec. 3, wheneverℓt = 0 no update occurs andτt equals zero. Ifℓt > 0 we derive these
updates by defining the Lagrangian of the respective optimization problem and satisfying the KKT
conditions. The Lagrangian of the PA-I optimization problem is,

L (w,ξ,τ,λ) =
1
2
‖w−wt‖2 + Cξ + τ(1−ξ−yt

(

w ·xt)
)

− λξ

=
1
2
‖w−wt‖2 + ξ(C− τ−λ) + τ(1−yt

(

w ·xt)
)

, (60)

whereτ ≥ 0 andλ ≥ 0 are Lagrange multipliers. We now find the minimum of the Lagrangian with
respect to the (unconstrained) primal variablesw andξ. As in the previously discussed PA update,
differentiating this Lagrangian with respect to the elements ofw and setting these partial derivatives
to zero gives Eq. (5) and we can writew = wt + τytxt . Next, note that the minimum of the term
ξ(C− τ− λ) with respect toξ is zero wheneverC− τ− λ = 0. If howeverC− τ− λ 6= 0 then
ξ(C−τ−λ) can be made to approach−∞. Since we need to maximize the dual we can rule out the
latter case and pose the following constraint on the dual variables,

C− τ−λ = 0. (61)

The KKT conditions confineλ to be non-negative so we conclude thatτ ≤C. We now discuss two
possible cases: ifℓt/‖xt‖2 ≤C then we can plugging Eq. (61) back into Eq. (60) and we return to
the Lagrangian of the original PA algorithm (see Eq. (4)). From this pointand on, we can repeat
the same derivation as in the original PA update and getτt = ℓt/‖xt‖2. The other case is when
ℓt/‖xt‖2 > C. This condition can be rewritten as

C‖xt‖2 < 1−yt(wt ·xt). (62)

We also know that the constraint in Eq. (6) must hold at the optimum, so 1−yt(w ·xt) ≤ ξ. Using
the explicit form ofw given in Eq. (5), we can rewrite this constraint as 1−yt(wt ·xt)−τ‖xt‖2 ≤ ξ.
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Combining this inequality with the inequality in Eq. (62) gives,

C‖xt‖2− τ‖xt‖2 < ξ.

We now use our earlier conclusion thatτ ≤C to obtain 0< ξ. Turning to the KKT complementarity
condition, we know thatξλ = 0 at the optimum. Having concluded thatξ is strictly positive, we get
thatλ must equal zero. Pluggingλ = 0 into Eq. (61) givesτ = C. Summing up, we used the KKT
conditions to show that in the case whereℓt/‖xt‖2 > C, it is optimal to selectτ = C. Folding all of
the possible cases into a single equation, we defineτt to be,

τt = min
{

C , ℓt/‖xt‖2 } . (63)

The update of PA-I is like the update of PA clipped atC.
Turning to the update of PA-II , we again recall thatℓt = 0 leads toτt = 0, and deal with those

rounds whereℓt > 0. The Lagrangian of the optimization problem in Eq. (7) equals,

L (w,ξ,τ) =
1
2
‖w−wt‖2 + Cξ2 + τ

(

1−ξ−yt(w ·xt)
)

, (64)

whereτ ≥ 0 is a Lagrange multiplier. Again, differentiating this Lagrangian with respectto the
elements ofw and setting these partial derivatives to zero gives Eq. (5) and we can write w =
wt +τytxt . Differentiating the Lagrangian with respect toξ and setting that partial derivative to zero
results in,

0 =
∂L (w,ξ,τ)

∂ξ
= 2Cξ− τ =⇒ ξ =

τ
2C

.

Expressingξ as above and replacingw in Eq. (60) withwt + τytxt , we rewrite the Lagrangian as,

L (τ) = − τ2

2

(

‖xt‖2 +
1

2C

)

+ τ
(

1−yt(wt ·xt)
)

.

Setting the derivative of the above to zero gives,

0 =
∂L (τ)

∂τ
= − τ

(

‖xt‖2 +
1

2C

)

+
(

1−yt(wt ·xt)
)

=⇒ τ =
1−yt(wt ·xt)

‖xt‖2 + 1
2C

.

As in PA and PA-I , we can give a definition ofτt which holds in all cases,

τt =
ℓt

‖x‖2 + 1
2C

. (65)
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